Clean code.

This commit is contained in:
Holt59
2018-03-10 20:39:21 +01:00
parent 84f01ce47e
commit 094a2331af
20 changed files with 343 additions and 547 deletions

View File

@@ -9,244 +9,205 @@
package org.insa.algo.datastructures;
import java.util.* ;
import java.util.ArrayList;
/**
* Implements a binary heap.
* Note that all "matching" is based on the compareTo method.
* Implements a binary heap. Note that all "matching" is based on the compareTo
* method.
*
* @author Mark Allen Weiss
* @author DLB
*/
public class BinaryHeap<E extends Comparable<E>> {
private int currentSize; // Number of elements in heap
private int currentSize; // Number of elements in heap
// Java genericity does not work with arrays.
// We have to use an ArrayList
private ArrayList<E> array; // The heap array
// Java genericity does not work with arrays.
// We have to use an ArrayList
private ArrayList<E> array; // The heap array
/**
* Construct the binary heap.
*/
public BinaryHeap() {
this.currentSize = 0;
this.array = new ArrayList<E>() ;
}
/**
* Construct the binary heap.
*/
public BinaryHeap() {
this.currentSize = 0;
this.array = new ArrayList<E>();
}
// Constructor used for debug.
public BinaryHeap(BinaryHeap<E> heap) {
this.currentSize = heap.currentSize ;
this.array = new ArrayList<E>(heap.array) ;
}
// Constructor used for debug.
public BinaryHeap(BinaryHeap<E> heap) {
this.currentSize = heap.currentSize;
this.array = new ArrayList<E>(heap.array);
}
// Sets an element in the array
private void arraySet(int index, E value) {
if (index == this.array.size()) {
this.array.add(value) ;
}
else {
this.array.set(index, value) ;
}
}
// Sets an element in the array
private void arraySet(int index, E value) {
if (index == this.array.size()) {
this.array.add(value);
}
else {
this.array.set(index, value);
}
}
/**
* Test if the heap is logically empty.
* @return true if empty, false otherwise.
*/
public boolean isEmpty() { return this.currentSize == 0; }
/**
* Test if the heap is logically empty.
*
* @return true if empty, false otherwise.
*/
public boolean isEmpty() {
return this.currentSize == 0;
}
/**
* Returns size.
* @return current size.
*/
public int size() { return this.currentSize; }
/**
* Returns size.
*
* @return current size.
*/
public int size() {
return this.currentSize;
}
/**
* Returns index of parent.
*/
private int index_parent(int index) {
return (index - 1) / 2;
}
/**
* Returns index of parent.
*/
private int index_parent(int index) {
return (index - 1) / 2 ;
}
/**
* Returns index of left child.
*/
private int index_left(int index) {
return index * 2 + 1;
}
/**
* Returns index of left child.
*/
private int index_left(int index) {
return index * 2 + 1 ;
}
/**
* Insert into the heap.
*
* @param x the item to insert.
*/
public void insert(E x) {
int index = this.currentSize++;
this.arraySet(index, x);
this.percolateUp(index);
}
/**
* Insert into the heap.
* @param x the item to insert.
*/
public void insert(E x) {
int index = this.currentSize++ ;
this.arraySet(index, x) ;
this.percolateUp(index) ;
}
/**
* Internal method to percolate up in the heap.
*
* @param index the index at which the percolate begins.
*/
private void percolateUp(int index) {
E x = this.array.get(index);
/**
* Internal method to percolate up in the heap.
* @param index the index at which the percolate begins.
*/
private void percolateUp(int index) {
E x = this.array.get(index) ;
for (; index > 0
&& x.compareTo(this.array.get(index_parent(index))) < 0; index = index_parent(
index)) {
E moving_val = this.array.get(index_parent(index));
this.arraySet(index, moving_val);
}
for( ; index > 0 && x.compareTo(this.array.get(index_parent(index)) ) < 0; index = index_parent(index) ) {
E moving_val = this.array.get(index_parent(index)) ;
this.arraySet(index, moving_val) ;
}
this.arraySet(index, x);
}
this.arraySet(index, x) ;
}
/**
* Internal method to percolate down in the heap.
*
* @param index the index at which the percolate begins.
*/
private void percolateDown(int index) {
int ileft = index_left(index);
int iright = ileft + 1;
/**
* Internal method to percolate down in the heap.
* @param index the index at which the percolate begins.
*/
private void percolateDown(int index) {
int ileft = index_left(index) ;
int iright = ileft + 1 ;
if (ileft < this.currentSize) {
E current = this.array.get(index);
E left = this.array.get(ileft);
boolean hasRight = iright < this.currentSize;
E right = (hasRight) ? this.array.get(iright) : null;
if (ileft < this.currentSize) {
E current = this.array.get(index) ;
E left = this.array.get(ileft) ;
boolean hasRight = iright < this.currentSize ;
E right = (hasRight)?this.array.get(iright):null ;
if (!hasRight || left.compareTo(right) < 0) {
// Left is smaller
if (left.compareTo(current) < 0) {
this.arraySet(index, left);
this.arraySet(ileft, current);
this.percolateDown(ileft);
}
}
else {
// Right is smaller
if (right.compareTo(current) < 0) {
this.arraySet(index, right);
this.arraySet(iright, current);
this.percolateDown(iright);
}
}
}
}
if (!hasRight || left.compareTo(right) < 0) {
// Left is smaller
if (left.compareTo(current) < 0) {
this.arraySet(index, left) ;
this.arraySet(ileft, current) ;
this.percolateDown( ileft ) ;
}
}
else {
// Right is smaller
if (right.compareTo(current) < 0) {
this.arraySet(index, right) ;
this.arraySet(iright, current) ;
this.percolateDown( iright ) ;
}
}
}
}
/**
* Find the smallest item in the heap.
*
* @return the smallest item in the heap.
*
* @throws RuntimeException if this heap is empty.
*/
public E findMin() throws RuntimeException {
if (isEmpty())
throw new RuntimeException("Empty binary heap");
return this.array.get(0);
}
/**
* Find the smallest item in the heap.
* @return the smallest item.
* @throws Exception if empty.
*/
public E findMin( ) {
if( isEmpty() )
throw new RuntimeException( "Empty binary heap" );
return this.array.get(0);
}
/**
* Remove the smallest item from the heap.
*
* @return the smallest item in the heap.
*
* @throws RuntimeException if this heap is empty.
*/
public E deleteMin() throws RuntimeException {
E minItem = findMin();
E lastItem = this.array.get(--this.currentSize);
this.arraySet(0, lastItem);
this.percolateDown(0);
return minItem;
}
/**
* Remove the smallest item from the heap.
* @return the smallest item.
* @throws Exception if empty.
*/
public E deleteMin( ) {
E minItem = findMin( );
E lastItem = this.array.get(--this.currentSize) ;
this.arraySet(0, lastItem) ;
this.percolateDown( 0 );
return minItem;
}
/**
* Prints the heap
*/
public void print() {
System.out.println();
System.out.println("======== HEAP (size = " + this.currentSize + ") ========");
System.out.println();
/**
* Prints the heap
*/
public void print() {
System.out.println() ;
System.out.println("======== HEAP (size = " + this.currentSize + ") ========") ;
System.out.println() ;
for (int i = 0; i < this.currentSize; i++) {
System.out.println(this.array.get(i).toString());
}
for (int i = 0 ; i < this.currentSize ; i++) {
System.out.println(this.array.get(i).toString()) ;
}
System.out.println();
System.out.println("-------- End of heap --------");
System.out.println();
}
System.out.println() ;
System.out.println("-------- End of heap --------") ;
System.out.println() ;
}
/**
* Prints the elements of the heap according to their respective order.
*/
public void printSorted() {
/**
* Prints the elements of the heap according to their respective order.
*/
public void printSorted() {
BinaryHeap<E> copy = new BinaryHeap<E>(this);
BinaryHeap<E> copy = new BinaryHeap<E>(this) ;
System.out.println();
System.out.println("======== Sorted HEAP (size = " + this.currentSize + ") ========");
System.out.println();
System.out.println() ;
System.out.println("======== Sorted HEAP (size = " + this.currentSize + ") ========") ;
System.out.println() ;
while (!copy.isEmpty()) {
System.out.println(copy.deleteMin());
}
while (!copy.isEmpty()) {
System.out.println(copy.deleteMin()) ;
}
System.out.println();
System.out.println("-------- End of heap --------");
System.out.println();
}
System.out.println() ;
System.out.println("-------- End of heap --------") ;
System.out.println() ;
}
// Test program : compare with the reference implementation PriorityQueue.
public static void main(String [] args) {
BinaryHeap<Integer> heap = new BinaryHeap<Integer>() ;
PriorityQueue<Integer> queue = new PriorityQueue<Integer>() ;
int count = 0 ;
int blocksize = 10000 ;
System.out.println("Interrupt to stop the test.") ;
while (true) {
// Insert up to blocksize elements
int nb_insert = (int)(Math.random() * (blocksize + 1)) ;
for (int i = 0 ; i < nb_insert ; i++) {
Integer obj = new Integer(i) ;
heap.insert(obj) ;
queue.add(obj) ;
}
// Remove up to blocksize elements
int nb_remove = (int)(Math.random() * blocksize * 1.1) ;
if (nb_remove > queue.size()) {
nb_remove = queue.size() ;
}
for (int i = 0 ; i < nb_remove ; i++) {
int removed1 = queue.poll().intValue() ;
int removed2 = heap.deleteMin().intValue() ;
if (removed1 != removed2) {
System.out.println("Ouch : expected " + removed1 + " .. but got " + removed2) ;
System.exit(1) ;
}
}
if (heap.size() != queue.size()) {
System.out.println("Ouch : heap size = " + heap.size() + " queue size = " + queue.size() ) ;
System.exit(1) ;
}
count += nb_remove ;
if (count > 1000000) {
System.out.println("" + count + " items successfully compared. Heap size : " + heap.size()) ;
count = 0 ;
}
}
}
}

View File

@@ -1,30 +0,0 @@
package org.insa.algo.strongconnectivity;
import java.util.ArrayList;
import org.insa.graph.Node;
public interface StronglyConnectedComponentObserver {
/**
* Notify that the algorithm is entering a new component.
*
* @param curNode Starting node for the component.
*/
public void notifyStartComponent(Node curNode);
/**
* Notify that a new node has been found for the current component.
*
* @param node New node found for the current component.
*/
public void notifyNewNodeInComponent(Node node);
/**
* Notify that the algorithm has computed a new component.
*
* @param nodes List of nodes in the component.
*/
public void notifyEndComponent(ArrayList<Node> nodes);
}

View File

@@ -1,25 +0,0 @@
package org.insa.algo.strongconnectivity;
import org.insa.algo.AbstractAlgorithm;
public abstract class StronglyConnectedComponentsAlgorithm
extends AbstractAlgorithm<StronglyConnectedComponentObserver> {
/**
* @param data
*/
public StronglyConnectedComponentsAlgorithm(StronglyConnectedComponentsData data) {
super(data);
}
@Override
public StronglyConnectedComponentsSolution run() {
return (StronglyConnectedComponentsSolution) super.run();
}
@Override
public StronglyConnectedComponentsData getInputData() {
return (StronglyConnectedComponentsData) super.getInputData();
}
}

View File

@@ -1,16 +0,0 @@
package org.insa.algo.strongconnectivity;
import org.insa.algo.AbstractInputData;
import org.insa.graph.Graph;
public class StronglyConnectedComponentsData extends AbstractInputData {
/**
*
* @param graph
*/
public StronglyConnectedComponentsData(Graph graph) {
super(graph);
}
}

View File

@@ -1,35 +0,0 @@
package org.insa.algo.strongconnectivity;
import java.util.ArrayList;
import org.insa.algo.AbstractSolution;
import org.insa.graph.Node;
public class StronglyConnectedComponentsSolution extends AbstractSolution {
// Components
private ArrayList<ArrayList<Node>> components;
protected StronglyConnectedComponentsSolution(StronglyConnectedComponentsData data) {
super(data);
}
protected StronglyConnectedComponentsSolution(StronglyConnectedComponentsData data,
Status status, ArrayList<ArrayList<Node>> components) {
super(data, status);
this.components = components;
}
@Override
public StronglyConnectedComponentsData getInputData() {
return (StronglyConnectedComponentsData) super.getInputData();
}
/**
* @return Components of the solution, if any.
*/
public ArrayList<ArrayList<Node>> getComponents() {
return components;
}
}

View File

@@ -1,144 +0,0 @@
package org.insa.algo.strongconnectivity;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Stack;
import org.insa.algo.AbstractSolution.Status;
import org.insa.graph.Arc;
import org.insa.graph.Graph;
import org.insa.graph.Node;
public class TarjanAlgorithm extends StronglyConnectedComponentsAlgorithm {
private final static int UNDEFINED = -1;
// Stack of nodes and flags.
private Stack<Node> stack;
private boolean[] inStack;
// Current index.
private int index;
// Information of nodes
private int[] indexes;
private int[] lowlink;
// Array of strongly connected components
ArrayList<ArrayList<Node>> components;
public TarjanAlgorithm(StronglyConnectedComponentsData data) {
super(data);
}
/**
* Push the given node to the stack.
*
* @param node
*/
protected void pushNode(Node node) {
stack.push(node);
inStack[node.getId()] = true;
}
/**
* Pop and return a node from the stack.
*
* @return Node popped from the stack
*/
protected Node popNode() {
Node top = stack.pop();
inStack[top.getId()] = false;
return top;
}
/**
* Check if the given node is in the stack.
*
* @param node
*
* @return true if the given node is in the stack, false otherwize.
*/
protected boolean isInStack(Node node) {
return inStack[node.getId()];
}
/**
* Find the strong component containing the given node.
*
* @param node
*
* @return The strong component containing the given node.
*/
protected void findAndAddStrongComponent(Node v) {
// Update node info, index and push the node.
indexes[v.getId()] = index;
lowlink[v.getId()] = index;
index += 1;
pushNode(v);
for (Arc a: v.getSuccessors()) {
Node w = a.getDestination();
if (!hasBeenVisited(w)) {
findAndAddStrongComponent(w);
lowlink[v.getId()] = Math.min(lowlink[v.getId()], lowlink[w.getId()]);
}
else if (isInStack(w)) {
lowlink[v.getId()] = Math.min(lowlink[v.getId()], indexes[w.getId()]);
}
}
// Compute the component (if any)
if (lowlink[v.getId()] == indexes[v.getId()]) {
ArrayList<Node> component = new ArrayList<Node>();
Node w;
do {
w = popNode();
component.add(w);
} while (!w.equals(v));
components.add(component);
System.out.println("Size of the stack: " + stack.size());
}
}
/**
* Check if the given node has not been visited yet.
*
* @return true if the node has been visited.
*/
protected boolean hasBeenVisited(Node node) {
return this.indexes[node.getId()] != UNDEFINED;
}
@Override
protected StronglyConnectedComponentsSolution doRun() {
Graph graph = getInputData().getGraph();
components = new ArrayList<ArrayList<Node>>();
// Initialize everything
final int nbNodes = graph.getNodes().size();
stack = new Stack<Node>();
inStack = new boolean[nbNodes];
// Current index.
index = 0;
// Information of nodes
indexes = new int[nbNodes];
Arrays.fill(indexes, UNDEFINED);
lowlink = new int[nbNodes];
// Find components
for (Node node: graph.getNodes()) {
if (!hasBeenVisited(node)) {
findAndAddStrongComponent(node);
}
}
return new StronglyConnectedComponentsSolution(getInputData(), Status.OPTIMAL, components);
}
}