# -*- encoding: utf-8 -*- import heapq import sys from typing import Callable, Iterator, TypeVar Node = TypeVar("Node") def dijkstra( start: Node, end: Node, neighbors: Callable[[Node], Iterator[Node]], cost: Callable[[Node, Node], float], heuristic: Callable[[Node, Node], float] | None = None, ) -> list[Node] | None: queue: list[tuple[tuple[float, float, float], Node]] = [] visited: set[Node] = set() lengths: dict[Node, float] = {start: 0} parents: dict[Node, Node] = {} if heuristic is None: def priority(node: Node): c = lengths[node] return (c, c, c) else: def priority(node: Node): assert heuristic is not None h = heuristic(node, end) c = lengths[node] return (h + c, h, c) heapq.heappush(queue, (priority(start), start)) while queue and (end not in visited): (_, _, length), current = heapq.heappop(queue) if current in visited: continue visited.add(current) for neighbor in neighbors(current): if neighbor in visited: continue neighbor_cost = length + cost(current, neighbor) if neighbor_cost < lengths.get(neighbor, float("inf")): lengths[neighbor] = length + 1 parents[neighbor] = current heapq.heappush(queue, (priority(neighbor), neighbor)) if end not in visited: return None path: list[Node] = [end] while path[-1] is not start: path.append(parents[path[-1]]) return list(reversed(path)) def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None: end = path[-1] graph = [["." for _c in range(n_cols)] for _r in range(n_rows)] graph[end[0]][end[1]] = "E" for i in range(0, len(path) - 1): cr, cc = path[i] nr, nc = path[i + 1] if cr == nr and nc == cc - 1: graph[cr][cc] = "<" elif cr == nr and nc == cc + 1: graph[cr][cc] = ">" elif cr == nr - 1 and nc == cc: graph[cr][cc] = "v" elif cr == nr + 1 and nc == cc: graph[cr][cc] = "^" else: assert False, "{} -> {} infeasible".format(path[i], path[i + 1]) print("\n".join("".join(row) for row in graph)) lines = sys.stdin.read().splitlines() grid = [[ord(cell) - ord("a") for cell in line] for line in lines] start: tuple[int, int] end: tuple[int, int] # for part 2 start_s: list[tuple[int, int]] = [] for i_row, row in enumerate(grid): for i_col, col in enumerate(row): if chr(col + ord("a")) == "S": start = (i_row, i_col) start_s.append(start) elif chr(col + ord("a")) == "E": end = (i_row, i_col) elif col == 0: start_s.append((i_row, i_col)) # fix values grid[start[0]][start[1]] = 0 grid[end[0]][end[1]] = ord("z") - ord("a") n_rows = len(grid) n_cols = len(grid[0]) def heuristic(lhs: tuple[int, int], rhs: tuple[int, int]) -> float: return abs(lhs[0] - rhs[0]) + abs(lhs[1] - rhs[1]) def neighbors(node: tuple[int, int]) -> Iterator[tuple[int, int]]: c_row, c_col = node for n_row, n_col in ( (c_row - 1, c_col), (c_row + 1, c_col), (c_row, c_col - 1), (c_row, c_col + 1), ): if not (n_row >= 0 and n_row < n_rows and n_col >= 0 and n_col < n_cols): continue if grid[n_row][n_col] > grid[c_row][c_col] + 1: continue yield n_row, n_col path = dijkstra( start=start, end=end, neighbors=neighbors, cost=lambda lhs, rhs: 1, heuristic=heuristic, ) assert path is not None print_path(path, n_rows=len(grid), n_cols=len(grid[0])) answer_1 = len(path) - 1 print(f"answer 1 is {answer_1}") answer_2 = min( len(path) - 1 for start in start_s if ( path := dijkstra( start=start, end=end, neighbors=neighbors, cost=lambda lhs, rhs: 1, heuristic=heuristic, ) ) is not None ) print(f"answer 2 is {answer_2}")