132 lines
3.4 KiB
Python
132 lines
3.4 KiB
Python
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import heapq
|
||
|
import sys
|
||
|
|
||
|
|
||
|
def dijkstra(
|
||
|
start: tuple[int, int], end: tuple[int, int], grid: list[list[int]]
|
||
|
) -> list[tuple[int, int]] | None:
|
||
|
n_rows = len(grid)
|
||
|
n_cols = len(grid[0])
|
||
|
|
||
|
def heuristic(row: int, col: int) -> int:
|
||
|
return abs(end[0] - row) + abs(end[1] - col)
|
||
|
|
||
|
queue: list[tuple[tuple[int, int], tuple[int, int]]] = []
|
||
|
visited: set[tuple[int, int]] = set()
|
||
|
lengths: dict[tuple[int, int], int] = {}
|
||
|
parents: dict[tuple[int, int], tuple[int, int]] = {}
|
||
|
|
||
|
heapq.heappush(queue, ((heuristic(start[0], start[1]), 0), start))
|
||
|
|
||
|
while queue:
|
||
|
(_, length), (c_row, c_col) = heapq.heappop(queue)
|
||
|
|
||
|
visited.add((c_row, c_col))
|
||
|
|
||
|
if (c_row, c_col) == end:
|
||
|
break
|
||
|
|
||
|
for n_row, n_col in (
|
||
|
(c_row - 1, c_col),
|
||
|
(c_row + 1, c_col),
|
||
|
(c_row, c_col - 1),
|
||
|
(c_row, c_col + 1),
|
||
|
):
|
||
|
|
||
|
if not (n_row >= 0 and n_row < n_rows and n_col >= 0 and n_col < n_cols):
|
||
|
continue
|
||
|
|
||
|
if (n_row, n_col) in visited:
|
||
|
continue
|
||
|
|
||
|
if grid[n_row][n_col] > grid[c_row][c_col] + 1:
|
||
|
continue
|
||
|
|
||
|
if length + 1 < lengths.get((n_row, n_col), n_rows * n_cols):
|
||
|
lengths[n_row, n_col] = length + 1
|
||
|
parents[n_row, n_col] = (c_row, c_col)
|
||
|
|
||
|
heapq.heappush(
|
||
|
queue,
|
||
|
(
|
||
|
(heuristic(n_row, n_col) + length + 1, length + 1),
|
||
|
(n_row, n_col),
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if end not in visited:
|
||
|
return None
|
||
|
|
||
|
path: list[tuple[int, int]] = [end]
|
||
|
|
||
|
while path[-1] != start:
|
||
|
path.append(parents[path[-1]])
|
||
|
|
||
|
return list(reversed(path))
|
||
|
|
||
|
|
||
|
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
|
||
|
_, end = path[0], path[-1]
|
||
|
|
||
|
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
|
||
|
graph[end[0]][end[1]] = "E"
|
||
|
|
||
|
for i in range(0, len(path) - 1):
|
||
|
cr, cc = path[i]
|
||
|
nr, nc = path[i + 1]
|
||
|
|
||
|
if cr == nr and nc == cc - 1:
|
||
|
graph[cr][cc] = "<"
|
||
|
elif cr == nr and nc == cc + 1:
|
||
|
graph[cr][cc] = ">"
|
||
|
elif cr == nr - 1 and nc == cc:
|
||
|
graph[cr][cc] = "v"
|
||
|
elif cr == nr + 1 and nc == cc:
|
||
|
graph[cr][cc] = "^"
|
||
|
else:
|
||
|
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
|
||
|
|
||
|
print("\n".join("".join(row) for row in graph))
|
||
|
|
||
|
|
||
|
lines = sys.stdin.read().splitlines()
|
||
|
|
||
|
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
|
||
|
|
||
|
start: tuple[int, int]
|
||
|
end: tuple[int, int]
|
||
|
|
||
|
# for part 2
|
||
|
start_s: list[tuple[int, int]] = []
|
||
|
|
||
|
for i_row, row in enumerate(grid):
|
||
|
for i_col, col in enumerate(row):
|
||
|
if chr(col + ord("a")) == "S":
|
||
|
start = (i_row, i_col)
|
||
|
start_s.append(start)
|
||
|
elif chr(col + ord("a")) == "E":
|
||
|
end = (i_row, i_col)
|
||
|
elif col == 0:
|
||
|
start_s.append((i_row, i_col))
|
||
|
|
||
|
# fix values
|
||
|
grid[start[0]][start[1]] = 0
|
||
|
grid[end[0]][end[1]] = ord("z") - ord("a")
|
||
|
|
||
|
path = dijkstra(start, end, grid)
|
||
|
assert path is not None
|
||
|
|
||
|
print_path(path, n_rows=len(grid), n_cols=len(grid[0]))
|
||
|
|
||
|
answer_1 = len(path) - 1
|
||
|
print(f"answer 1 is {answer_1}")
|
||
|
|
||
|
answer_2 = min(
|
||
|
len(path) - 1
|
||
|
for start in start_s
|
||
|
if (path := dijkstra(start, end, grid)) is not None
|
||
|
)
|
||
|
print(f"answer 2 is {answer_2}")
|