Better day 16.
This commit is contained in:
parent
15b987a590
commit
100df02a09
244
2022/day16.py
244
2022/day16.py
@ -7,10 +7,9 @@ import itertools
|
||||
import re
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import NamedTuple
|
||||
from typing import FrozenSet, NamedTuple
|
||||
|
||||
from docplex.mp.model import Model
|
||||
from docplex.mp.vartype import BinaryVarType
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class Pipe(NamedTuple):
|
||||
@ -55,6 +54,75 @@ def breadth_first_search(pipes: dict[str, Pipe], pipe_1: Pipe, pipe_2: Pipe) ->
|
||||
return -1
|
||||
|
||||
|
||||
def update_with_better(
|
||||
node_at_times: dict[FrozenSet[Pipe], int], flow: int, flowing: FrozenSet[Pipe]
|
||||
) -> None:
|
||||
node_at_times[flowing] = max(node_at_times[flowing], flow)
|
||||
|
||||
|
||||
def part_1(
|
||||
start_pipe: Pipe,
|
||||
max_time: int,
|
||||
distances: dict[tuple[Pipe, Pipe], int],
|
||||
relevant_pipes: FrozenSet[Pipe],
|
||||
):
|
||||
|
||||
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
|
||||
lambda: defaultdict(lambda: defaultdict(lambda: 0))
|
||||
)
|
||||
node_at_times[0] = {start_pipe: {frozenset(): 0}}
|
||||
|
||||
for time in range(max_time):
|
||||
for c_pipe, nodes in node_at_times[time].items():
|
||||
for flowing, flow in nodes.items():
|
||||
for target in relevant_pipes:
|
||||
|
||||
distance = distances[c_pipe, target] + 1
|
||||
if time + distance >= max_time or target in flowing:
|
||||
continue
|
||||
|
||||
update_with_better(
|
||||
node_at_times[time + distance][target],
|
||||
flow + sum(pipe.flow for pipe in flowing) * distance,
|
||||
flowing | {target},
|
||||
)
|
||||
|
||||
update_with_better(
|
||||
node_at_times[max_time][c_pipe],
|
||||
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
|
||||
flowing,
|
||||
)
|
||||
|
||||
return max(
|
||||
flow
|
||||
for nodes_of_pipe in node_at_times[max_time].values()
|
||||
for flow in nodes_of_pipe.values()
|
||||
)
|
||||
|
||||
|
||||
def part_2(
|
||||
start_pipe: Pipe,
|
||||
max_time: int,
|
||||
distances: dict[tuple[Pipe, Pipe], int],
|
||||
relevant_pipes: FrozenSet[Pipe],
|
||||
):
|
||||
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
|
||||
return part_1(start_pipe, max_time, distances, pipes_for_me) + part_1(
|
||||
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
|
||||
)
|
||||
|
||||
combs = [
|
||||
frozenset(relevant_pipes_1)
|
||||
for r in range(2, len(relevant_pipes) // 2 + 1)
|
||||
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
|
||||
]
|
||||
|
||||
return max(compute(comb) for comb in tqdm(combs))
|
||||
|
||||
|
||||
# === MAIN ===
|
||||
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
|
||||
@ -77,171 +145,11 @@ for pipe_1 in pipes.values():
|
||||
distances[pipe_1, pipe_2] = breadth_first_search(pipes, pipe_1, pipe_2)
|
||||
|
||||
# valves with flow
|
||||
relevant_pipes = [pipe for pipe in pipes.values() if pipe.flow > 0]
|
||||
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
|
||||
|
||||
|
||||
# nodes: list[tuple[Pipe, int, int, list[Pipe]]] = [(start_pipe, 0, 0, [])]
|
||||
# best_flow: int = 0
|
||||
# 1651, 1653
|
||||
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
|
||||
|
||||
# while nodes:
|
||||
# current, time, flow, flowing = nodes.pop(0)
|
||||
|
||||
# if time == max_time:
|
||||
# if flow > best_flow:
|
||||
# best_flow = flow
|
||||
# continue
|
||||
|
||||
# next_nodes: list[tuple[Pipe, int, int, list[Pipe]]] = []
|
||||
# for target in relevant_pipes:
|
||||
|
||||
# if target is current or target in flowing:
|
||||
# continue
|
||||
|
||||
# distance = distances[current, target] + 1
|
||||
|
||||
# if time + distance >= max_time:
|
||||
# continue
|
||||
|
||||
# next_nodes.append(
|
||||
# (
|
||||
# target,
|
||||
# time + distance,
|
||||
# flow + distance * sum(pipe.flow for pipe in flowing) + target.flow,
|
||||
# flowing + [target],
|
||||
# )
|
||||
# )
|
||||
|
||||
# # print(time, current, flow, next_nodes)
|
||||
|
||||
# if not next_nodes:
|
||||
# next_nodes.append(
|
||||
# (
|
||||
# current,
|
||||
# max_time,
|
||||
# flow + sum(pipe.flow for pipe in flowing) * (max_time - time - 1),
|
||||
# flowing,
|
||||
# )
|
||||
# )
|
||||
|
||||
# nodes.extend(next_nodes)
|
||||
|
||||
# # if time >= 4:
|
||||
# # break
|
||||
|
||||
# print(best_flow)
|
||||
|
||||
|
||||
# nodes = [best]
|
||||
# while nodes[-1].parent is not None:
|
||||
# nodes.append(nodes[-1].parent)
|
||||
# nodes = list(reversed(nodes))
|
||||
|
||||
# for node in nodes:
|
||||
# print(node.time, node.valve, node.flow, node.flowing)
|
||||
|
||||
#
|
||||
start_pipe = pipes["AA"]
|
||||
max_time = 30
|
||||
ee = [0]
|
||||
|
||||
# max_time = 26
|
||||
# ee = [0, 1]
|
||||
|
||||
m = Model()
|
||||
|
||||
var_out: dict[Pipe, dict[Pipe, BinaryVarType]] = {
|
||||
pipe: m.binary_var_dict(relevant_pipes) for pipe in relevant_pipes + [start_pipe]
|
||||
}
|
||||
var_in: dict[Pipe, dict[Pipe, BinaryVarType]] = {pipe: {} for pipe in relevant_pipes}
|
||||
for p1 in var_out:
|
||||
for p2 in var_out[p1]:
|
||||
var_in[p2][p1] = var_out[p1][p2]
|
||||
|
||||
open_at: dict[tuple[int, Pipe], BinaryVarType] = m.continuous_var_dict(
|
||||
(
|
||||
(t, pipe)
|
||||
for t, pipe in itertools.product(range(max_time), [start_pipe] + relevant_pipes)
|
||||
),
|
||||
lb=0,
|
||||
ub=1,
|
||||
)
|
||||
|
||||
for time, pipe in itertools.product(range(max_time), relevant_pipes):
|
||||
m.add_constraint(open_at[time, pipe] <= m.sum())
|
||||
|
||||
|
||||
for e in ee:
|
||||
m.add_constraint(open_at[e, 0, start_pipe] == 1)
|
||||
|
||||
for e, pipe in itertools.product(ee, relevant_pipes):
|
||||
m.add_constraint(open_at[e, 0, pipe] == 0)
|
||||
|
||||
for e, t, p1 in itertools.product(ee, range(max_time), relevant_pipes):
|
||||
from_time_and_pipe = [
|
||||
(p2, t - distances[p2, p1] - 1)
|
||||
for p2 in relevant_pipes + [start_pipe]
|
||||
if t - distances[p2, p1] - 1 >= 0 and p2 is not p1
|
||||
]
|
||||
|
||||
if from_time_and_pipe:
|
||||
m.add_constraint(
|
||||
open_at[e, t, p1]
|
||||
<= m.sum(open_at[e, t2, p2] for p2, t2 in from_time_and_pipe)
|
||||
)
|
||||
else:
|
||||
m.add_constraint(open_at[e, t, p1] == 0)
|
||||
|
||||
for pipe in relevant_pipes + [start_pipe]:
|
||||
m.add_constraint(
|
||||
m.sum(open_at[e, t, pipe] for e, t in itertools.product(ee, range(max_time)))
|
||||
<= 1
|
||||
)
|
||||
for e, t in itertools.product(ee, range(max_time)):
|
||||
m.add_constraint(
|
||||
m.sum(open_at[e, t, pipe] for pipe in relevant_pipes + [start_pipe]) <= 1
|
||||
)
|
||||
|
||||
# keeps flowing
|
||||
flowing_at = {
|
||||
(t, pipe): m.sum(
|
||||
open_at[e, t2, pipe] for e, t2 in itertools.product(ee, range(0, t))
|
||||
)
|
||||
for t, pipe in itertools.product(range(max_time), relevant_pipes)
|
||||
}
|
||||
|
||||
|
||||
# objective
|
||||
m.set_objective(
|
||||
"max",
|
||||
m.sum(
|
||||
flowing_at[t, pipe] * pipe.flow
|
||||
for t, pipe in itertools.product(range(max_time), relevant_pipes)
|
||||
),
|
||||
)
|
||||
|
||||
m.log_output = True
|
||||
s = m.solve()
|
||||
|
||||
print(s.get_objective_value())
|
||||
|
||||
|
||||
for t in range(max_time):
|
||||
opent = {
|
||||
e: [
|
||||
pipe
|
||||
for pipe in relevant_pipes + [start_pipe]
|
||||
if s.get_value(open_at[e, t, pipe]) > 1e-8
|
||||
]
|
||||
for e in ee
|
||||
}
|
||||
flowing = [
|
||||
pipe
|
||||
for pipe in relevant_pipes
|
||||
if any(s.get_value(flowing_at[t, pipe]) > 1e-8 for e in ee)
|
||||
]
|
||||
|
||||
assert all(len(opent[e]) <= 1 for e in ee)
|
||||
|
||||
o = [opent[e][0] if opent[e] else "-" for e in ee]
|
||||
|
||||
print(f"t={t}, open={o}, flowing={flowing}")
|
||||
# 1707, 2223
|
||||
print(part_2(pipes["AA"], 26, distances, relevant_pipes))
|
||||
|
Loading…
Reference in New Issue
Block a user