Poetry stuff.

This commit is contained in:
Mikael CAPELLE
2023-12-19 15:39:10 +01:00
parent f15908876d
commit 12891194bb
238 changed files with 571 additions and 3 deletions

View File

View File

@@ -0,0 +1,7 @@
import sys
blocks = sys.stdin.read().split("\n\n")
values = sorted(sum(map(int, block.split())) for block in blocks)
print(f"answer 1 is {values[-1]}")
print(f"answer 2 is {sum(values[-3:])}")

View File

@@ -0,0 +1,38 @@
import sys
lines = sys.stdin.read().splitlines()
cycle = 1
x = 1
values = {cycle: x}
for line in lines:
cycle += 1
if line == "noop":
pass
else:
r = int(line.split()[1])
values[cycle] = x
cycle += 1
x += r
values[cycle] = x
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
print(f"answer 1 is {answer_1}")
for i in range(6):
for j in range(40):
v = values[1 + i * 40 + j]
if j >= v - 1 and j <= v + 1:
print("#", end="")
else:
print(".", end="")
print()

View File

@@ -0,0 +1,142 @@
import copy
import sys
from functools import reduce
from typing import Callable, Final, Mapping, Sequence
class Monkey:
id: Final[int]
items: Final[Sequence[int]]
worry_fn: Final[Callable[[int], int]]
test_value: Final[int]
throw_targets: Final[Mapping[bool, int]]
def __init__(
self,
id: int,
items: list[int],
worry_fn: Callable[[int], int],
test_value: int,
throw_targets: dict[bool, int],
):
self.id = id
self.items = items
self.worry_fn = worry_fn
self.test_value = test_value
self.throw_targets = throw_targets
def __eq__(self, o: object) -> bool:
if not isinstance(o, Monkey):
return False
return self.id == o.id
def __hash__(self) -> int:
return hash(self.id)
def parse_monkey(lines: list[str]) -> Monkey:
assert lines[0].startswith("Monkey")
monkey_id = int(lines[0].split()[-1][:-1])
# parse items
items = [int(r.strip()) for r in lines[1].split(":")[1].split(",")]
# parse worry
worry_fn: Callable[[int], int]
worry_s = lines[2].split("new =")[1].strip()
operand = worry_s.split()[2].strip()
if worry_s.startswith("old *"):
if operand == "old":
worry_fn = lambda w: w * w # noqa: E731
else:
worry_fn = lambda w: w * int(operand) # noqa: E731
elif worry_s.startswith("old +"):
if operand == "old":
worry_fn = lambda w: w + w # noqa: E731
else:
worry_fn = lambda w: w + int(operand) # noqa: E731
else:
assert False, worry_s
# parse test
assert lines[3].split(":")[1].strip().startswith("divisible by")
test_value = int(lines[3].split()[-1])
assert lines[4].strip().startswith("If true")
assert lines[5].strip().startswith("If false")
throw_targets = {True: int(lines[4].split()[-1]), False: int(lines[5].split()[-1])}
assert monkey_id not in throw_targets.values()
return Monkey(monkey_id, items, worry_fn, test_value, throw_targets)
def run(
monkeys: list[Monkey], n_rounds: int, me_worry_fn: Callable[[int], int]
) -> dict[Monkey, int]:
"""
Perform a full run.
Args:
monkeys: Initial list of monkeys. The Monkey are not modified.
n_rounds: Number of rounds to run.
me_worry_fn: Worry function to apply after the Monkey operation (e.g., divide
by 3 for round 1).
Returns:
A mapping containing, for each monkey, the number of items inspected.
"""
# copy of the items
items = {monkey: list(monkey.items) for monkey in monkeys}
# number of inspects
inspects = {monkey: 0 for monkey in monkeys}
for _ in range(n_rounds):
for monkey in monkeys:
for item in items[monkey]:
inspects[monkey] += 1
# compute the new worry level
item = me_worry_fn(monkey.worry_fn(item))
# find the target
target = monkey.throw_targets[item % monkey.test_value == 0]
assert target != monkey.id
items[monkeys[target]].append(item)
# clear after the loop
items[monkey].clear()
return inspects
def monkey_business(inspects: dict[Monkey, int]) -> int:
sorted_levels = sorted(inspects.values())
return sorted_levels[-2] * sorted_levels[-1]
monkeys = [parse_monkey(block.splitlines()) for block in sys.stdin.read().split("\n\n")]
# case 1: we simply divide the worry by 3 after applying the monkey worry operation
answer_1 = monkey_business(
run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3)
)
print(f"answer 1 is {answer_1}")
# case 2: to keep reasonable level values, we can use a modulo operation, we need to
# use the product of all "divisible by" test so that the test remains valid
#
# (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value
#
# (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here
# we use the product of all test value
#
total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1)
answer_2 = monkey_business(
run(copy.deepcopy(monkeys), 10_000, me_worry_fn=lambda w: w % total_test_value)
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,160 @@
import heapq
import sys
from typing import Callable, Iterator, TypeVar
Node = TypeVar("Node")
def dijkstra(
start: Node,
neighbors: Callable[[Node], Iterator[Node]],
cost: Callable[[Node, Node], float],
) -> tuple[dict[Node, float], dict[Node, Node]]:
"""
Compute shortest paths from one node to all reachable ones.
Args:
start: Starting node.
neighbors: Function returning the neighbors of a node.
cost: Function to compute the cost of an edge.
Returns:
A tuple (lengths, parents) where lengths is a mapping from Node to distance
(from the starting node) and parents a mapping from parents Node (in the
shortest path). If keyset of lengths and parents is the same. If a Node is not
in the mapping, it cannot be reached from the starting node.
"""
queue: list[tuple[float, Node]] = []
visited: set[Node] = set()
lengths: dict[Node, float] = {start: 0}
parents: dict[Node, Node] = {}
heapq.heappush(queue, (0, start))
while queue:
length, current = heapq.heappop(queue)
if current in visited:
continue
visited.add(current)
for neighbor in neighbors(current):
if neighbor in visited:
continue
neighbor_cost = length + cost(current, neighbor)
if neighbor_cost < lengths.get(neighbor, float("inf")):
lengths[neighbor] = neighbor_cost
parents[neighbor] = current
heapq.heappush(queue, (neighbor_cost, neighbor))
return lengths, parents
def make_path(parents: dict[Node, Node], start: Node, end: Node) -> list[Node] | None:
if end not in parents:
return None
path: list[Node] = [end]
while path[-1] is not start:
path.append(parents[path[-1]])
return list(reversed(path))
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
graph[end[0]][end[1]] = "E"
for i in range(0, len(path) - 1):
cr, cc = path[i]
nr, nc = path[i + 1]
if cr == nr and nc == cc - 1:
graph[cr][cc] = "<"
elif cr == nr and nc == cc + 1:
graph[cr][cc] = ">"
elif cr == nr - 1 and nc == cc:
graph[cr][cc] = "v"
elif cr == nr + 1 and nc == cc:
graph[cr][cc] = "^"
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
print("\n".join("".join(row) for row in graph))
def neighbors(
grid: list[list[int]], node: tuple[int, int], up: bool
) -> Iterator[tuple[int, int]]:
n_rows = len(grid)
n_cols = len(grid[0])
c_row, c_col = node
for n_row, n_col in (
(c_row - 1, c_col),
(c_row + 1, c_col),
(c_row, c_col - 1),
(c_row, c_col + 1),
):
if not (n_row >= 0 and n_row < n_rows and n_col >= 0 and n_col < n_cols):
continue
if up and grid[n_row][n_col] > grid[c_row][c_col] + 1:
continue
elif not up and grid[n_row][n_col] < grid[c_row][c_col] - 1:
continue
yield n_row, n_col
# === main code ===
lines = sys.stdin.read().splitlines()
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
start: tuple[int, int]
end: tuple[int, int]
# for part 2
start_s: list[tuple[int, int]] = []
for i_row, row in enumerate(grid):
for i_col, col in enumerate(row):
if chr(col + ord("a")) == "S":
start = (i_row, i_col)
start_s.append(start)
elif chr(col + ord("a")) == "E":
end = (i_row, i_col)
elif col == 0:
start_s.append((i_row, i_col))
# fix values
grid[start[0]][start[1]] = 0
grid[end[0]][end[1]] = ord("z") - ord("a")
lengths_1, parents_1 = dijkstra(
start=start, neighbors=lambda n: neighbors(grid, n, True), cost=lambda lhs, rhs: 1
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
print(f"answer 1 is {lengths_1[end] - 1}")
lengths_2, parents_2 = dijkstra(
start=end, neighbors=lambda n: neighbors(grid, n, False), cost=lambda lhs, rhs: 1
)
answer_2 = min(lengths_2.get(start, float("inf")) for start in start_s)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,41 @@
import json
import sys
from functools import cmp_to_key
from typing import TypeAlias, cast
blocks = sys.stdin.read().strip().split("\n\n")
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
Packet: TypeAlias = list[int | list["Packet"]]
def compare(lhs: Packet, rhs: Packet) -> int:
for lhs_a, rhs_a in zip(lhs, rhs):
if isinstance(lhs_a, int) and isinstance(rhs_a, int):
if lhs_a != rhs_a:
return rhs_a - lhs_a
else:
if not isinstance(lhs_a, list):
lhs_a = [lhs_a] # type: ignore
elif not isinstance(rhs_a, list):
rhs_a = [rhs_a] # type: ignore
assert isinstance(rhs_a, list) and isinstance(lhs_a, list)
r = compare(cast(Packet, lhs_a), cast(Packet, rhs_a))
if r != 0:
return r
return len(rhs) - len(lhs)
answer_1 = sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0)
print(f"answer_1 is {answer_1}")
dividers = [[[2]], [[6]]]
packets = [packet for packets in pairs for packet in packets]
packets.extend(dividers)
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
d_index = [packets.index(d) + 1 for d in dividers]
print(f"answer 2 is {d_index[0] * d_index[1]}")

View File

@@ -0,0 +1,140 @@
import sys
from enum import Enum, auto
from typing import Callable, cast
class Cell(Enum):
AIR = auto()
ROCK = auto()
SAND = auto()
def __str__(self) -> str:
return {Cell.AIR: ".", Cell.ROCK: "#", Cell.SAND: "O"}[self]
def print_blocks(blocks: dict[tuple[int, int], Cell]):
"""
Print the given set of blocks on a grid.
Args:
blocks: Set of blocks to print.
"""
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
for y in range(y_min, y_max + 1):
print(
"".join(str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1))
)
def flow(
blocks: dict[tuple[int, int], Cell],
stop_fn: Callable[[int, int], bool],
fill_fn: Callable[[int, int], Cell],
) -> dict[tuple[int, int], Cell]:
"""
Flow sands onto the given set of blocks
Args:
blocks: Blocks containing ROCK position. Modified in-place.
stop_fn: Function called with the last (assumed) position of a grain of
sand BEFORE adding it to blocks. If the function returns True, the grain
is added and a new one is flowed, otherwise, the whole procedure stops
and the function returns (without adding the final grain).
fill_fn: Function called when the target position of a grain (during the
flowing process) is missing from blocks.
Returns:
The input blocks.
"""
y_max = max(y for _, y in blocks)
while True:
x, y = 500, 0
while y <= y_max:
moved = False
for cx, cy in ((x, y + 1), (x - 1, y + 1), (x + 1, y + 1)):
if (cx, cy) not in blocks and fill_fn(cx, cy) == Cell.AIR:
x, y = cx, cy
moved = True
elif blocks[cx, cy] == Cell.AIR:
x, y = cx, cy
moved = True
if moved:
break
if not moved:
break
if stop_fn(x, y):
break
blocks[x, y] = Cell.SAND
return blocks
# === inputs ===
lines = sys.stdin.read().splitlines()
paths: list[list[tuple[int, int]]] = []
for line in lines:
parts = line.split(" -> ")
paths.append(
[
cast(tuple[int, int], tuple(int(c.strip()) for c in part.split(",")))
for part in parts
]
)
blocks: dict[tuple[int, int], Cell] = {}
for path in paths:
for start, end in zip(path[:-1], path[1:]):
x_start = min(start[0], end[0])
x_end = max(start[0], end[0]) + 1
y_start = min(start[1], end[1])
y_end = max(start[1], end[1]) + 1
for x in range(x_start, x_end):
for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
print_blocks(blocks)
print()
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
# === part 1 ===
blocks_1 = flow(
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
)
print_blocks(blocks_1)
print(f"answer 1 is {sum(v == Cell.SAND for v in blocks_1.values())}")
print()
# === part 2 ===
blocks_2 = flow(
blocks.copy(),
stop_fn=lambda x, y: x == 500 and y == 0,
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
)
blocks_2[500, 0] = Cell.SAND
print_blocks(blocks_2)
print(f"answer 2 is {sum(v == Cell.SAND for v in blocks_2.values())}")

View File

@@ -0,0 +1,87 @@
import sys
import numpy as np
import parse
def part1(sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], row: int) -> int:
no_beacons_row_l: list[np.ndarray] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by) # closest
no_beacons_row_l.append(sx - np.arange(0, d - abs(sy - row) + 1))
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1))
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
no_beacons_row = set(np.concatenate(no_beacons_row_l)).difference(beacons_at_row)
return len(no_beacons_row)
def part2_intervals(
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
) -> tuple[int, int, int]:
from tqdm import trange
for y in trange(xy_max + 1):
its: list[tuple[int, int]] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by)
dx = d - abs(sy - y)
if dx >= 0:
its.append((max(0, sx - dx), min(sx + dx, xy_max)))
its = sorted(its)
_, e = its[0]
for si, ei in its[1:]:
if si > e + 1:
return si - 1, y, 4_000_000 * (si - 1) + y
if ei > e:
e = ei
return (0, 0, 0)
def part2_cplex(
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
) -> tuple[int, int, int]:
from docplex.mp.model import Model
m = Model()
x, y = m.continuous_var_list(2, ub=xy_max, name=["x", "y"])
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by)
m.add_constraint(m.abs(x - sx) + m.abs(y - sy) >= d + 1, ctname=f"ct_{sx}_{sy}")
m.set_objective("min", x + y)
s = m.solve()
vx = int(s.get_value(x))
vy = int(s.get_value(y))
return vx, vy, 4_000_000 * vx + vy
lines = sys.stdin.read().splitlines()
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]] = {}
for line in lines:
r = parse.parse(
"Sensor at x={sx}, y={sy}: closest beacon is at x={bx}, y={by}", line
)
sensor_to_beacon[int(r["sx"]), int(r["sy"])] = (int(r["bx"]), int(r["by"]))
xy_max = 4_000_000 if max(sensor_to_beacon) > (1_000, 0) else 20
row = 2_000_000 if max(sensor_to_beacon) > (1_000, 0) else 10
print(f"answer 1 is {part1(sensor_to_beacon, row)}")
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max)
x, y, a2 = part2_intervals(sensor_to_beacon, xy_max)
print(f"answer 2 is {a2} (x={x}, y={y})")

View File

@@ -0,0 +1,158 @@
from __future__ import annotations
import heapq
import itertools
import re
import sys
from collections import defaultdict
from typing import FrozenSet, NamedTuple
from tqdm import tqdm
class Pipe(NamedTuple):
name: str
flow: int
tunnels: list[str]
def __lt__(self, other: object) -> bool:
return isinstance(other, Pipe) and other.name < self.name
def __eq__(self, other: object) -> bool:
return isinstance(other, Pipe) and other.name == self.name
def __hash__(self) -> int:
return hash(self.name)
def __str__(self) -> str:
return self.name
def __repr__(self) -> str:
return self.name
def breadth_first_search(pipes: dict[str, Pipe], pipe: Pipe) -> dict[Pipe, int]:
"""
Runs a BFS from the given pipe and return the shortest distance (in term of hops)
to all other pipes.
"""
queue = [(0, pipe_1)]
visited = set()
distances: dict[Pipe, int] = {}
while len(distances) < len(pipes):
distance, current = heapq.heappop(queue)
if current in visited:
continue
visited.add(current)
distances[current] = distance
for tunnel in current.tunnels:
heapq.heappush(queue, (distance + 1, pipes[tunnel]))
return distances
def update_with_better(
node_at_times: dict[FrozenSet[Pipe], int], flow: int, flowing: FrozenSet[Pipe]
) -> None:
node_at_times[flowing] = max(node_at_times[flowing], flow)
def part_1(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0))
)
node_at_times[0] = {start_pipe: {frozenset(): 0}}
for time in range(max_time):
for c_pipe, nodes in node_at_times[time].items():
for flowing, flow in nodes.items():
for target in relevant_pipes:
distance = distances[c_pipe, target] + 1
if time + distance >= max_time or target in flowing:
continue
update_with_better(
node_at_times[time + distance][target],
flow + sum(pipe.flow for pipe in flowing) * distance,
flowing | {target},
)
update_with_better(
node_at_times[max_time][c_pipe],
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
flowing,
)
return max(
flow
for nodes_of_pipe in node_at_times[max_time].values()
for flow in nodes_of_pipe.values()
)
def part_2(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
return part_1(start_pipe, max_time, distances, pipes_for_me) + part_1(
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
)
combs = [
frozenset(relevant_pipes_1)
for r in range(2, len(relevant_pipes) // 2 + 1)
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
]
return max(compute(comb) for comb in tqdm(combs))
# === MAIN ===
lines = sys.stdin.read().splitlines()
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
g = r.groups()
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
# compute distances from one valve to any other
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
# valves with flow
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
# 1651, 1653
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
# 1707, 2223
print(part_2(pipes["AA"], 26, distances, relevant_pipes))

View File

@@ -0,0 +1,120 @@
import sys
from typing import Sequence, TypeVar
import numpy as np
T = TypeVar("T")
def print_tower(tower: np.ndarray, out: str = "#"):
print("-" * (tower.shape[1] + 2))
non_empty = False
for row in reversed(range(1, tower.shape[0])):
if not non_empty and not tower[row, :].any():
continue
non_empty = True
print("|" + "".join(out if c else "." for c in tower[row, :]) + "|")
print("+" + "-" * tower.shape[1] + "+")
def tower_height(tower: np.ndarray) -> int:
return int(tower.shape[0] - tower[::-1, :].argmax(axis=0).min() - 1)
def next_cycle(sequence: Sequence[T], index: int) -> tuple[T, int]:
t = sequence[index]
index = (index + 1) % len(sequence)
return t, index
ROCKS = [
np.array([(0, 0), (0, 1), (0, 2), (0, 3)]),
np.array([(0, 1), (1, 0), (1, 1), (1, 2), (2, 1)]),
np.array([(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)]),
np.array([(0, 0), (1, 0), (2, 0), (3, 0)]),
np.array([(0, 0), (0, 1), (1, 0), (1, 1)]),
]
WIDTH = 7
START_X = 2
EMPTY_BLOCKS = np.zeros((10, WIDTH), dtype=bool)
def build_tower(
n_rocks: int,
jets: str,
early_stop: bool = False,
init: np.ndarray = np.ones(WIDTH, dtype=bool),
) -> tuple[np.ndarray, int, int, dict[int, int]]:
tower = EMPTY_BLOCKS.copy()
tower[0, :] = init
done_at: dict[tuple[int, int], int] = {}
heights: dict[int, int] = {}
i_jet, i_rock = 0, 0
rock_count = 0
for rock_count in range(n_rocks):
if early_stop:
if i_rock == 0 and (i_rock, i_jet) in done_at:
break
done_at[i_rock, i_jet] = rock_count
y_start = tower.shape[0] - tower[::-1, :].argmax(axis=0).min() + 3
rock, i_rock = next_cycle(ROCKS, i_rock)
rock_y = rock[:, 0] + y_start
rock_x = rock[:, 1] + START_X
if rock_y.max() >= tower.shape[0]:
tower = np.concatenate([tower, EMPTY_BLOCKS], axis=0)
while True:
jet, i_jet = next_cycle(jets, i_jet)
dx = 0
if jet == ">" and rock_x.max() < WIDTH - 1:
dx = 1
elif jet == "<" and rock_x.min() > 0:
dx = -1
if dx != 0 and not tower[rock_y, rock_x + dx].any():
rock_x = rock_x + dx
# move down
rock_y -= 1
if tower[rock_y, rock_x].any():
rock_y += 1
break
heights[rock_count] = tower_height(tower)
tower[rock_y, rock_x] = True
return tower, rock_count, done_at.get((i_rock, i_jet), -1), heights
line = sys.stdin.read().strip()
tower, *_ = build_tower(2022, line)
answer_1 = tower_height(tower)
print(f"answer 1 is {answer_1}")
TOTAL_ROCKS = 1_000_000_000_000
tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, line, True)
assert prev_1 > 0
# 2767 1513
remaining_rocks = TOTAL_ROCKS - n_rocks_1
n_repeat_rocks = n_rocks_1 - prev_1
n_repeat_towers = remaining_rocks // n_repeat_rocks
base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
answer_2 = base_height + (n_repeat_towers + 1) * repeat_height + remaining_height
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,51 @@
import sys
from typing import FrozenSet
import numpy as np
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in sys.stdin.read().splitlines()
]
)
xyz = xyz - xyz.min(axis=0) + 1
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
n_dims = len(cubes.shape)
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
answer_1 = sum(
1 for x, y, z in xyz for dx, dy, dz in faces if not cubes[x + dx, y + dy, z + dz]
)
print(f"answer 1 is {answer_1}")
visited = np.zeros_like(cubes, dtype=bool)
queue = [(0, 0, 0)]
n_faces = 0
while queue:
x, y, z = queue.pop(0)
if visited[x, y, z]:
continue
visited[x, y, z] = True
for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))):
continue
if visited[nx, ny, nz]:
continue
if cubes[nx, ny, nz]:
n_faces += 1
else:
queue.append((nx, ny, nz))
print(f"answer 2 is {n_faces}")

View File

@@ -0,0 +1,182 @@
import sys
from typing import Literal
import numpy as np
import parse
from tqdm import tqdm
Reagent = Literal["ore", "clay", "obsidian", "geode"]
REAGENTS: tuple[Reagent, ...] = (
"ore",
"clay",
"obsidian",
"geode",
)
IntOfReagent = dict[Reagent, int]
class State:
robots: IntOfReagent
reagents: IntOfReagent
def __init__(
self,
robots: IntOfReagent | None = None,
reagents: IntOfReagent | None = None,
):
if robots is None:
assert reagents is None
self.reagents = {reagent: 0 for reagent in REAGENTS}
self.robots = {reagent: 0 for reagent in REAGENTS}
self.robots["ore"] = 1
else:
assert robots is not None and reagents is not None
self.robots = robots
self.reagents = reagents
def __eq__(self, other) -> bool:
return (
isinstance(other, State)
and self.robots == other.robots
and self.reagents == other.reagents
)
def __hash__(self) -> int:
return hash(tuple((self.robots[r], self.reagents[r]) for r in REAGENTS))
def __str__(self) -> str:
return "State({}, {})".format(
"/".join(str(self.robots[k]) for k in REAGENTS),
"/".join(str(self.reagents[k]) for k in REAGENTS),
)
def __repr__(self) -> str:
return str(self)
def dominates(lhs: State, rhs: State):
return all(
lhs.robots[r] >= rhs.robots[r] and lhs.reagents[r] >= rhs.reagents[r]
for r in REAGENTS
)
lines = sys.stdin.read().splitlines()
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in lines:
r = parse.parse(
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
# since we can only build one robot per time, we do not need more than X robots
# of type K where X is the maximum number of K required among all robots, e.g.,
# in the first toy blueprint, we need at most 4 ore robots, 14 clay ones and 7
# obsidian ones
maximums = {
name: max(blueprint[r].get(name, 0) for r in REAGENTS) for name in REAGENTS
}
state_after_t: dict[int, set[State]] = {0: [State()]}
for t in range(1, max_time + 1):
# list of new states at the end of step t that we are going to prune later
states_for_t: set[State] = set()
for state in state_after_t[t - 1]:
robots_that_can_be_built = [
robot
for robot in REAGENTS
if all(
state.reagents[reagent] >= blueprint[robot].get(reagent, 0)
for reagent in REAGENTS
)
]
states_for_t.add(
State(
robots=state.robots,
reagents={
reagent: state.reagents[reagent] + state.robots[reagent]
for reagent in REAGENTS
},
)
)
if "geode" in robots_that_can_be_built:
robots_that_can_be_built = ["geode"]
else:
robots_that_can_be_built = [
robot
for robot in robots_that_can_be_built
if state.robots[robot] < maximums[robot]
]
for robot in robots_that_can_be_built:
robots = state.robots.copy()
robots[robot] += 1
reagents = {
reagent: state.reagents[reagent]
+ state.robots[reagent]
- blueprint[robot].get(reagent, 0)
for reagent in REAGENTS
}
states_for_t.add(State(robots=robots, reagents=reagents))
# use numpy to switch computation of dominated states -> store each state
# as a 8 array and use numpy broadcasting to find dominated states
states_after = np.asarray(list(states_for_t))
np_states = np.array(
[
[state.robots[r] for r in REAGENTS]
+ [state.reagents[r] for r in REAGENTS]
for state in states_after
]
)
to_keep = []
while len(np_states) > 0:
first_dom = (np_states[1:] >= np_states[0]).all(axis=1).any()
if first_dom:
np_states = np_states[1:]
else:
to_keep.append(np_states[0])
np_states = np_states[1:][~(np_states[1:] <= np_states[0]).all(axis=1)]
state_after_t[t] = {
State(
robots=dict(zip(REAGENTS, row[:4])),
reagents=dict(zip(REAGENTS, row[4:])),
)
for row in to_keep
}
return max(state.reagents["geode"] for state in state_after_t[max_time])
answer_1 = sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
print(f"answer 1 is {answer_1}")
answer_2 = run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,53 @@
import sys
def score_1(ux: int, vx: int) -> int:
# here ux and vx are both moves: 0 = rock, 1 = paper, 2 = scissor
#
# 1. to get the score of the move/shape, we simply add 1 -> vx + 1
# 2. to get the score of the outcome (loss/draw/win), we use the fact that the
# winning hand is always the opponent hand (ux) + 1 in modulo-3 arithmetic:
# - (ux - vx) % 3 gives us 0 for a draw, 1 for a loss and 2 for a win
# - 1 - ((ux - vx) % 3) gives us -1 for a win, 0 for a loss and 1 for a draw
# - (1 - ((ux - vx) % 3)) gives us 0 / 1 / 2 for loss / draw / win
# - the above can be rewritten as ((1 - (ux - vx)) % 3)
# we can then simply multiply this by 3 to get the outcome score
#
return (vx + 1) + ((1 - (ux - vx)) % 3) * 3
def score_2(ux: int, vx: int) -> int:
# here ux is the opponent move (0 = rock, 1 = paper, 2 = scissor) and vx is the
# outcome (0 = loss, 1 = draw, 2 = win)
#
# 1. to get the score to the move/shape, we need to find it (as 0, 1 or 2) and then
# add 1 to it
# - (vx - 1) gives the offset from the opponent shape (-1 for a loss, 0 for a
# draw and 1 for a win)
# - from the offset, we can retrieve the shape by adding the opponent shape and
# using modulo-3 arithmetic -> (ux + vx - 1) % 3
# - we then add 1 to get the final shape score
# 2. to get the score of the outcome, we can simply multiply vx by 3 -> vx * 3
return (ux + vx - 1) % 3 + 1 + vx * 3
lines = sys.stdin.readlines()
# the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using
# modulo-3 arithmetic
#
# in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move
# if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3)))
#
# we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for
# easier manipulation
values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines]
# part 1 - 13526
print(f"answer 1 is {sum(score_1(*v) for v in values)}")
# part 2 - 14204
print(f"answer 2 is {sum(score_2(*v) for v in values)}")

View File

@@ -0,0 +1,74 @@
from __future__ import annotations
import sys
class Number:
current: int
value: int
def __init__(self, value: int):
self.current = 0
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self):
return str(self)
def decrypt(numbers: list[Number], key: int, rounds: int) -> int:
numbers = numbers.copy()
original = numbers.copy()
for index, number in enumerate(numbers):
number.current = index
for _ in range(rounds):
for number in original:
index = number.current
offset = (number.value * key) % (len(numbers) - 1)
target = index + offset
# need to wrap
if target >= len(numbers):
target = offset - (len(numbers) - index) + 1
for number_2 in numbers[target:index]:
number_2.current += 1
numbers = (
numbers[:target]
+ [number]
+ numbers[target:index]
+ numbers[index + 1 :]
)
else:
for number_2 in numbers[index : target + 1]:
number_2.current -= 1
numbers = (
numbers[:index]
+ numbers[index + 1 : target + 1]
+ [number]
+ numbers[target + 1 :]
)
number.current = target
index_of_0 = next(
filter(lambda index: numbers[index].value == 0, range(len(numbers)))
)
return sum(
numbers[(index_of_0 + offset) % len(numbers)].value * key
for offset in (1000, 2000, 3000)
)
numbers = [Number(int(x)) for i, x in enumerate(sys.stdin.readlines())]
answer_1 = decrypt(numbers, 1, 1)
print(f"answer 1 is {answer_1}")
answer_2 = decrypt(numbers, 811589153, 10)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,107 @@
import operator
import sys
from typing import Callable
def compute(monkeys: dict[str, int | tuple[str, str, str]], monkey: str) -> int:
value = monkeys[monkey]
if isinstance(value, int):
return value
else:
op: dict[str, Callable[[int, int], int]] = {
"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.floordiv,
}
value = op[value[1]](compute(monkeys, value[0]), compute(monkeys, value[2]))
monkeys[monkey] = value
return value
def invert(
monkeys: dict[str, int | tuple[str, str, str]], monkey: str, target: int
) -> dict[str, int | tuple[str, str, str]]:
"""
Revert the given mapping from monkey name to value or operation such that
the value from 'monkey' is computable by inverting operation until the root is
found.
Args:
monkeys: Dictionary of monkeys, that will be updated and returned.
monkey: Name of the monkey to start from.
target: Target value to set for the monkey that depends on root.
Returns:
The given dictionary of monkeys.
"""
monkeys = monkeys.copy()
depends: dict[str, str] = {}
for m, v in monkeys.items():
if isinstance(v, int):
continue
op1, _, op2 = v
assert op1 not in depends
assert op2 not in depends
depends[op1] = m
depends[op2] = m
invert_op = {"+": "-", "-": "+", "*": "/", "/": "*"}
current = monkey
while True:
dep = depends[current]
if dep == "root":
monkeys[current] = target
break
val = monkeys[dep]
assert not isinstance(val, int)
op1, ope, op2 = val
if op1 == current:
monkeys[current] = (dep, invert_op[ope], op2)
elif ope in ("+", "*"):
monkeys[current] = (dep, invert_op[ope], op1)
else:
monkeys[current] = (op1, ope, dep)
current = dep
return monkeys
lines = sys.stdin.read().splitlines()
monkeys: dict[str, int | tuple[str, str, str]] = {}
op_monkeys: set[str] = set()
for line in lines:
parts = line.split(":")
name = parts[0].strip()
try:
value = int(parts[1].strip())
monkeys[name] = value
except ValueError:
op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2)
op_monkeys.add(name)
answer_1 = compute(monkeys.copy(), "root")
print(f"answer 1 is {answer_1}")
# assume the second operand of 'root' can be computed, and the first one depends on
# humn, which is the case is my input and the test input
p1, _, p2 = monkeys["root"] # type: ignore
answer_2 = compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,223 @@
import re
import sys
from typing import Callable
import numpy as np
VOID, EMPTY, WALL = 0, 1, 2
TILE_FROM_CHAR = {" ": VOID, ".": EMPTY, "#": WALL}
SCORES = {"E": 0, "S": 1, "W": 2, "N": 3}
board_map_s, direction_s = sys.stdin.read().split("\n\n")
# board
board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines)
board = np.array(
[
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines()
]
)
directions = [
int(p1) if p2 else p1 for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
]
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
faces = np.zeros_like(board)
size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
SIZE = np.gcd(*board.shape)
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
else:
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
def run(wrap: Callable[[int, int, str], tuple[int, int, str]]) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(board[y0, x0 + 1 : x0 + direction + 1] == WALL)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = direction - (row_last_non_void[y0] - x0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(board[y0 + 1 : y0 + direction + 1, x0] == WALL)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = direction - (col_last_non_void[x0] - y0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif x0 - direction >= 0 and board[y0, x0 - direction] == EMPTY:
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = direction - (x0 - row_first_non_void[y0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif y0 - direction >= 0 and board[y0 - direction, x0] == EMPTY:
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = direction - (y0 - col_first_non_void[x0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
else:
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
return y0, x0, r0
y1, x1, r1 = run(wrap_part_1)
answer_1 = 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
print(f"answer 1 is {answer_1}")
y2, x2, r2 = run(wrap_part_2)
answer_2 = 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,103 @@
import itertools
import sys
from collections import defaultdict
Directions = list[
tuple[
str, tuple[int, int], tuple[tuple[int, int], tuple[int, int], tuple[int, int]]
]
]
# (Y, X)
DIRECTIONS: Directions = [
("N", (-1, 0), ((-1, -1), (-1, 0), (-1, 1))),
("S", (1, 0), ((1, -1), (1, 0), (1, 1))),
("W", (0, -1), ((-1, -1), (0, -1), (1, -1))),
("E", (0, 1), ((-1, 1), (0, 1), (1, 1))),
]
def min_max_yx(positions: set[tuple[int, int]]) -> tuple[int, int, int, int]:
ys, xs = {y for y, x in positions}, {x for y, x in positions}
return min(ys), min(xs), max(ys), max(xs)
def print_positions(positions: set[tuple[int, int]]):
min_y, min_x, max_y, max_x = min_max_yx(positions)
print(
"\n".join(
"".join(
"#" if (y, x) in positions else "." for x in range(min_x - 1, max_x + 2)
)
for y in range(min_y - 1, max_y + 2)
)
)
def round(
positions: set[tuple[int, int]],
directions: Directions,
):
to_move: dict[tuple[int, int], list[tuple[int, int]]] = defaultdict(lambda: [])
for y, x in positions:
elves = {
(dy, dx): (y + dy, x + dx) in positions
for dy, dx in itertools.product((-1, 0, 1), (-1, 0, 1))
if (dy, dx) != (0, 0)
}
if not any(elves.values()):
to_move[y, x].append((y, x))
continue
found: str | None = None
for d, (dy, dx), d_yx_check in directions:
if not any(elves[dy, dx] for dy, dx in d_yx_check):
found = d
to_move[y + dy, x + dx].append((y, x))
break
if found is None:
to_move[y, x].append((y, x))
positions.clear()
for ty, tx in to_move:
if len(to_move[ty, tx]) > 1:
positions.update(to_move[ty, tx])
else:
positions.add((ty, tx))
directions.append(directions.pop(0))
POSITIONS = {
(i, j)
for i, row in enumerate(sys.stdin.read().splitlines())
for j, col in enumerate(row)
if col == "#"
}
# === part 1 ===
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for r in range(10):
round(p1, d1)
min_y, min_x, max_y, max_x = min_max_yx(p1)
answer_1 = sum(
(y, x) not in p1 for y in range(min_y, max_y + 1) for x in range(min_x, max_x + 1)
)
print(f"answer 1 is {answer_1}")
# === part 2 ===
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0
while True:
answer_2 += 1
backup = p2.copy()
round(p2, d2)
if backup == p2:
break
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,98 @@
import heapq
import math
import sys
from collections import defaultdict
lines = sys.stdin.read().splitlines()
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
east_winds = [{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)]
west_winds = [{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
# (distance + heuristic, distance, (start_pos, cycle))
queue = [(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
while queue:
_, distance, ((y, x), cycle) = heapq.heappop(queue)
if ((y, x), cycle) in visited:
continue
distances[y, x][cycle] = distance
visited.add(((y, x), cycle))
if (y, x) == (end[0], end[1]):
break
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
n_cycle = (cycle + 1) % CYCLE
if (ty, tx) == end:
heapq.heappush(queue, (distance + 1, distance + 1, ((ty, tx), n_cycle)))
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue
heapq.heappush(
queue,
((heuristic(ty, tx) + distance + 1, distance + 1, ((ty, tx), n_cycle))),
)
return distances, next(iter(distances[end].values()))
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
distances_1, forward_1 = run(start, 0, end)
print(f"answer 1 is {forward_1}")
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
print(f"answer 2 is {forward_1 + return_1 + forward_2}")

View File

@@ -0,0 +1,27 @@
import sys
lines = sys.stdin.read().splitlines()
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
def snafu2number(number: str) -> int:
value = 0
for c in number:
value *= 5
value += coeffs[c]
return value
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
answer_1 = number2snafu(sum(map(snafu2number, lines)))
print(f"answer 1 is {answer_1}")

View File

@@ -0,0 +1,23 @@
import string
import sys
lines = [line.strip() for line in sys.stdin.readlines()]
# extract content of each part
parts = [(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines]
# priorities
priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)}
# part 1
part1 = sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2))
print(f"answer 1 is {part1}")
# part 2
n_per_group = 3
part2 = sum(
priorities[c]
for i in range(0, len(lines), n_per_group)
for c in set(lines[i]).intersection(*lines[i + 1 : i + n_per_group])
)
print(f"answer 2 is {part2}")

View File

@@ -0,0 +1,17 @@
import sys
lines = [line.strip() for line in sys.stdin.readlines()]
def make_range(value: str) -> set[int]:
parts = value.split("-")
return set(range(int(parts[0]), int(parts[1]) + 1))
sections = [tuple(make_range(part) for part in line.split(",")) for line in lines]
answer_1 = sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections)
print(f"answer 1 is {answer_1}")
answer_2 = sum(bool(s1.intersection(s2)) for s1, s2 in sections)
print(f"answer 1 is {answer_2}")

View File

@@ -0,0 +1,41 @@
import copy
import sys
blocks_s, moves_s = (part.splitlines() for part in sys.stdin.read().split("\n\n"))
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()}
# this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the
# form of '[X] ' (including the trailing space)
#
for block in blocks_s[-2::-1]:
for stack, index in zip(blocks, range(0, len(block), 4)):
crate = block[index + 1 : index + 2].strip()
if crate:
blocks[stack].append(crate)
# part 1 - deep copy for part 2
blocks_1 = copy.deepcopy(blocks)
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
for _i in range(int(count_s)):
blocks_1[to_].append(blocks_1[from_].pop())
# part 2
blocks_2 = copy.deepcopy(blocks)
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
count = int(count_s)
blocks_2[to_].extend(blocks_2[from_][-count:])
del blocks_2[from_][-count:]
answer_1 = "".join(s[-1] for s in blocks_1.values())
print(f"answer 1 is {answer_1}")
answer_2 = "".join(s[-1] for s in blocks_2.values())
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,15 @@
import sys
def index_of_first_n_differents(data: str, n: int) -> int:
for i in range(len(data)):
if len(set(data[i : i + n])) == n:
return i + n
return -1
data = sys.stdin.read().strip()
print(f"answer 1 is {index_of_first_n_differents(data, 4)}")
print(f"answer 2 is {index_of_first_n_differents(data, 14)}")

View File

@@ -0,0 +1,80 @@
import sys
from pathlib import Path
lines = sys.stdin.read().splitlines()
# we are going to use Path to create path and go up/down in the file tree since it
# implements everything we need
#
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
# on Windows but that is not an issue since only the sizes matter
#
# mapping from path to list of files or directories
trees: dict[Path, list[Path]] = {}
# mapping from paths to either size (for file) or -1 for directory
sizes: dict[Path, int] = {}
# first line must be a cd otherwise we have no idea where we are
assert lines[0].startswith("$ cd")
base_path = Path(lines[0].strip("$").split()[1]).resolve()
cur_path = base_path
trees[cur_path] = []
sizes[cur_path] = -1
for line in lines[1:]:
# command
if line.startswith("$"):
parts = line.strip("$").strip().split()
command = parts[0]
if command == "cd":
cur_path = cur_path.joinpath(parts[1]).resolve()
# just initialize the lis of files if not already done
if cur_path not in trees:
trees[cur_path] = []
else:
# nothing to do here
pass
# fill the current path
else:
parts = line.split()
name: str = parts[1]
if line.startswith("dir"):
size = -1
else:
size = int(parts[0])
path = cur_path.joinpath(name)
trees[cur_path].append(path)
sizes[path] = size
def compute_size(path: Path) -> int:
size = sizes[path]
if size >= 0:
return size
return sum(compute_size(sub) for sub in trees[path])
acc_sizes = {path: compute_size(path) for path in trees}
# part 1
answer_1 = sum(size for size in acc_sizes.values() if size <= 100_000)
print(f"answer 1 is {answer_1}")
# part 2
total_space = 70_000_000
update_space = 30_000_000
free_space = total_space - acc_sizes[base_path]
to_free_space = update_space - free_space
answer_2 = min(size for size in acc_sizes.values() if size >= to_free_space)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,53 @@
import sys
import numpy as np
from numpy.typing import NDArray
lines = sys.stdin.read().splitlines()
trees = np.array([[int(x) for x in row] for row in lines])
# answer 1
highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1
highest_trees[1:-1, 1:-1] = [
[
[
trees[:i, j].max(),
trees[i + 1 :, j].max(),
trees[i, :j].max(),
trees[i, j + 1 :].max(),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
answer_1 = (highest_trees.min(axis=2) < trees).sum()
print(f"answer 1 is {answer_1}")
def viewing_distance(row_of_trees: NDArray[np.int_], value: int) -> int:
w = np.where(row_of_trees >= value)[0]
if not w.size:
return len(row_of_trees)
return w[0] + 1
# answer 2
v_distances = np.zeros(trees.shape + (4,), dtype=int)
v_distances[1:-1, 1:-1, :] = [
[
[
viewing_distance(trees[i - 1 :: -1, j], trees[i, j]),
viewing_distance(trees[i, j - 1 :: -1], trees[i, j]),
viewing_distance(trees[i, j + 1 :], trees[i, j]),
viewing_distance(trees[i + 1 :, j], trees[i, j]),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
answer_2 = np.prod(v_distances, axis=2).max()
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,59 @@
import sys
import numpy as np
def move(head: tuple[int, int], command: str) -> tuple[int, int]:
h_col, h_row = head
if command == "L":
head = (h_col - 1, h_row)
elif command == "R":
head = (h_col + 1, h_row)
elif command == "U":
head = (h_col, h_row + 1)
elif command == "D":
head = (h_col, h_row - 1)
return head
def follow(head: tuple[int, int], tail: tuple[int, int]) -> tuple[int, int]:
h_col, h_row = head
t_col, t_row = tail
if abs(t_col - h_col) <= 1 and abs(t_row - h_row) <= 1:
return tail
return t_col + np.sign(h_col - t_col), t_row + np.sign(h_row - t_row)
def run(commands: list[str], n_blocks: int) -> list[tuple[int, int]]:
blocks: list[tuple[int, int]] = [(0, 0) for _ in range(n_blocks)]
visited = [blocks[-1]]
for command in commands:
blocks[0] = move(blocks[0], command)
for i in range(0, n_blocks - 1):
blocks[i + 1] = follow(blocks[i], blocks[i + 1])
visited.append(blocks[-1])
return visited
lines = sys.stdin.read().splitlines()
# flatten the commands
commands: list[str] = []
for line in lines:
d, c = line.split()
commands.extend(d * int(c))
visited_1 = run(commands, n_blocks=2)
print(f"answer 1 is {len(set(visited_1))}")
visited_2 = run(commands, n_blocks=10)
print(f"answer 2 is {len(set(visited_2))}")