Poetry stuff.

This commit is contained in:
Mikael CAPELLE
2023-12-19 15:39:10 +01:00
parent 41b07cfe83
commit 2959387bcd
238 changed files with 571 additions and 3 deletions

View File

View File

@@ -0,0 +1,45 @@
import sys
lines = sys.stdin.read().splitlines()
lookups_1 = {str(d): d for d in range(1, 10)}
lookups_2 = lookups_1 | {
d: i + 1
for i, d in enumerate(
(
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
)
)
}
def find_values(lookups: dict[str, int]) -> list[int]:
values: list[int] = []
for line in filter(bool, lines):
first_digit = min(
lookups,
key=lambda lookup: index
if (index := line.find(lookup)) >= 0
else len(line),
)
last_digit = max(
lookups,
key=lambda lookup: index if (index := line.rfind(lookup)) >= 0 else -1,
)
values.append(10 * lookups[first_digit] + lookups[last_digit])
return values
print(f"answer 1 is {sum(find_values(lookups_1))}")
print(f"answer 2 is {sum(find_values(lookups_2))}")

View File

@@ -0,0 +1,100 @@
import os
import sys
from typing import Literal, cast
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
Symbol = Literal["|", "-", "L", "J", "7", "F", ".", "S"]
lines: list[list[Symbol]] = [
[cast(Symbol, symbol) for symbol in line] for line in sys.stdin.read().splitlines()
]
# find starting point
si, sj = next(
(i, j)
for i in range(len(lines))
for j in range(len(lines[0]))
if lines[i][j] == "S"
)
# find one of the two outputs
ni, nj = si, sj
for ni, nj, chars in (
(si - 1, sj, "|7F"),
(si + 1, sj, "|LJ"),
(si, sj - 1, "-LF"),
(si, sj + 1, "-J7"),
):
if lines[ni][nj] in chars:
break
# part 1 - find the loop (re-used in part 2)
loop = [(si, sj), (ni, nj)]
while True:
pi, pj = loop[-2]
i, j = loop[-1]
sym = lines[i][j]
if sym == "|" and pi > i or sym in "JL" and pi == i:
i -= 1
elif sym == "|" and pi < i or sym in "7F" and pi == i:
i += 1
elif sym == "-" and pj > j or sym in "J7" and pj == j:
j -= 1
elif sym == "-" and pj < j or sym in "LF" and pj == j:
j += 1
if (i, j) == (si, sj):
break
loop.append((i, j))
answer_1 = len(loop) // 2
print(f"answer 1 is {answer_1}")
# part 2
# replace S by an appropriate character for the loop below
di1, dj1 = loop[1][0] - loop[0][0], loop[1][1] - loop[0][1]
di2, dj2 = loop[0][0] - loop[-1][0], loop[0][1] - loop[-1][1]
mapping: dict[tuple[int, int], dict[tuple[int, int], Symbol]] = {
(0, 1): {(0, 1): "-", (-1, 0): "F", (1, 0): "L"},
(0, -1): {(0, -1): "-", (-1, 0): "7", (1, 0): "J"},
(1, 0): {(1, 0): "|", (0, 1): "7", (0, -1): "F"},
(-1, 0): {(-1, 0): "|", (0, -1): "L", (0, 1): "J"},
}
lines[si][sj] = mapping[di1, dj1][di2, dj2]
# find the points inside the loop using an adaptation of ray casting for a discrete
# grid (https://stackoverflow.com/a/218081/2666289)
#
# use a set for faster '... in loop' check
#
loop_s = set(loop)
inside: set[tuple[int, int]] = set()
for i in range(len(lines)):
cnt = 0
for j in range(len(lines[0])):
if (i, j) not in loop_s and cnt % 2 == 1:
inside.add((i, j))
if (i, j) in loop_s and lines[i][j] in "|LJ":
cnt += 1
if VERBOSE:
for i in range(len(lines)):
for j in range(len(lines[0])):
if (i, j) == (si, sj):
print("\033[91mS\033[0m", end="")
elif (i, j) in loop:
print(lines[i][j], end="")
elif (i, j) in inside:
print("\033[92mI\033[0m", end="")
else:
print(".", end="")
print()
answer_2 = len(inside)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,41 @@
import sys
import numpy as np
lines = sys.stdin.read().splitlines()
data = np.array([[c == "#" for c in line] for line in lines])
rows = {c for c in range(data.shape[0]) if not data[c, :].any()}
columns = {c for c in range(data.shape[1]) if not data[:, c].any()}
galaxies_y, galaxies_x = np.where(data) # type: ignore
def compute_total_distance(expansion: int) -> int:
distances: list[int] = []
for g1 in range(len(galaxies_y)):
x1, y1 = int(galaxies_x[g1]), int(galaxies_y[g1])
for g2 in range(g1 + 1, len(galaxies_y)):
x2, y2 = int(galaxies_x[g2]), int(galaxies_y[g2])
dx = sum(
1 + (expansion - 1) * (x in columns)
for x in range(min(x1, x2), max(x1, x2))
)
dy = sum(
1 + (expansion - 1) * (y in rows)
for y in range(min(y1, y2), max(y1, y2))
)
distances.append(dx + dy)
return sum(distances)
# part 1
answer_1 = compute_total_distance(2)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = compute_total_distance(1000000)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,107 @@
import os
import sys
from functools import lru_cache
from typing import Iterable
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
@lru_cache
def compute_fitting_arrangements(pattern: str, counts: tuple[int, ...]) -> int:
"""
fn3p tries to fit ALL values in counts() inside the pattern.
"""
# no pattern -> ok if nothing to fit, otherwise ko
if not pattern:
count = 1 if not counts else 0
# no count -> ok if pattern has no mandatory entry, else ko
elif not counts:
count = 1 if pattern.find("#") == -1 else 0
# cannot fit all values -> ko
elif len(pattern) < sum(counts) + len(counts) - 1:
count = 0
elif len(pattern) < counts[0]:
count = 0
else:
count = 0
if pattern[0] == "?":
count += compute_fitting_arrangements(pattern[1:], counts)
if len(pattern) == counts[0]:
count += 1
elif pattern[counts[0]] != "#":
count += compute_fitting_arrangements(pattern[counts[0] + 1 :], counts[1:])
return count
@lru_cache
def compute_possible_arrangements(
patterns: tuple[str, ...], counts: tuple[int, ...]
) -> int:
if not patterns:
return 1 if not counts else 0
with_hash = sum(1 for p in patterns[1:] if p.find("#") >= 0)
if with_hash > len(counts):
return 0
to_fit = counts if with_hash == 0 else counts[:-with_hash]
remaining = () if with_hash == 0 else counts[-with_hash:]
if not to_fit:
if patterns[0].find("#") != -1:
return 0
return compute_possible_arrangements(patterns[1:], remaining)
elif patterns[0].find("#") != -1 and len(patterns[0]) < to_fit[0]:
return 0
elif patterns[0].find("?") == -1:
if len(patterns[0]) != to_fit[0]:
return 0
return compute_possible_arrangements(patterns[1:], counts[1:])
else:
return sum(
fp * compute_possible_arrangements(patterns[1:], to_fit[i:] + remaining)
for i in range(len(to_fit) + 1)
if (fp := compute_fitting_arrangements(patterns[0], to_fit[:i])) > 0
)
def compute_all_possible_arrangements(lines: Iterable[str], repeat: int) -> int:
count = 0
if VERBOSE:
from tqdm import tqdm
lines = tqdm(lines)
for line in lines:
parts = line.split(" ")
count += compute_possible_arrangements(
tuple(filter(len, "?".join(parts[0] for _ in range(repeat)).split("."))),
tuple(int(c) for c in parts[1].split(",")) * repeat,
)
return count
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = compute_all_possible_arrangements(lines, 1)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = compute_all_possible_arrangements(lines, 5)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,43 @@
import sys
from typing import Callable, Literal
def split(block: list[str], axis: Literal[0, 1], count: int) -> int:
n_iter = len(block) if axis == 0 else len(block[0])
n_check = len(block) if axis == 1 else len(block[0])
at: Callable[[int, int], str] = (
(lambda i, j: block[i][j]) if axis == 0 else (lambda i, j: block[j][i])
)
for i in range(n_iter - 1):
size = min(i + 1, n_iter - i - 1)
if (
sum(
at(i - s, j) != at(i + 1 + s, j)
for s in range(0, size)
for j in range(n_check)
)
== count
):
return i + 1
return 0
blocks = [block.splitlines() for block in sys.stdin.read().split("\n\n")]
# part 1
answer_1 = sum(
split(block, axis=1, count=0) + 100 * split(block, axis=0, count=0)
for block in blocks
)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = sum(
split(block, axis=1, count=1) + 100 * split(block, axis=0, count=1)
for block in blocks
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,68 @@
import sys
from typing import TypeAlias
RockGrid: TypeAlias = list[list[str]]
rocks0 = [list(line) for line in sys.stdin.read().splitlines()]
def slide_rocks_top(rocks: RockGrid) -> RockGrid:
top = [0 if c == "." else 1 for c in rocks[0]]
for row in range(1, len(rocks)):
for col in range(len(rocks[0])):
match rocks[row][col]:
case "O":
if top[col] != row:
rocks[top[col]][col] = "O"
rocks[row][col] = "."
top[col] = top[col] + 1
case "#":
top[col] = row + 1
case _:
pass
return rocks
def cycle(rocks: RockGrid) -> RockGrid:
for _ in range(4):
rocks = slide_rocks_top(rocks)
rocks = [
[rocks[len(rocks) - j - 1][i] for j in range(len(rocks))]
for i in range(len(rocks[0]))
]
return rocks
rocks = slide_rocks_top([[c for c in r] for r in rocks0])
# part 1
answer_1 = sum(
(len(rocks) - i) * sum(1 for c in row if c == "O") for i, row in enumerate(rocks)
)
print(f"answer 1 is {answer_1}")
# part 2
rocks = rocks0
N = 1000000000
cycles: list[RockGrid] = []
i_cycle: int = -1
for i_cycle in range(N):
rocks = cycle(rocks)
if any(rocks == c for c in cycles):
break
cycles.append([[c for c in r] for r in rocks])
cycle_start = next(i for i in range(len(cycles)) if (rocks == cycles[i]))
cycle_length = i_cycle - cycle_start
ci = cycle_start + (N - cycle_start) % cycle_length - 1
answer_2 = sum(
(len(rocks) - i) * sum(1 for c in row if c == "O")
for i, row in enumerate(cycles[ci])
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,31 @@
import sys
from functools import reduce
steps = sys.stdin.read().strip().split(",")
def _hash(s: str) -> int:
return reduce(lambda v, u: ((v + ord(u)) * 17) % 256, s, 0)
# part 1
answer_1 = sum(map(_hash, steps))
print(f"answer 1 is {answer_1}")
# part 2
boxes: list[dict[str, int]] = [{} for _ in range(256)]
for step in steps:
if (i := step.find("=")) >= 0:
label, length = step[:i], int(step[i + 1 :])
boxes[_hash(label)][label] = length
else:
label = step[:-1]
boxes[_hash(label)].pop(label, None)
answer_2 = sum(
i_box * i_lens * length
for i_box, box in enumerate(boxes, start=1)
for i_lens, length in enumerate(box.values(), start=1)
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,110 @@
import os
import sys
from typing import Literal, TypeAlias, cast
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
CellType: TypeAlias = Literal[".", "|", "-", "\\", "/"]
Direction: TypeAlias = Literal["R", "L", "U", "D"]
Mappings: dict[
CellType,
dict[
Direction,
tuple[tuple[tuple[int, int, Direction], ...], tuple[Direction, ...]],
],
] = {
".": {
"R": (((0, +1, "R"),), ("R", "L")),
"L": (((0, -1, "L"),), ("R", "L")),
"U": (((-1, 0, "U"),), ("U", "D")),
"D": (((+1, 0, "D"),), ("U", "D")),
},
"-": {
"R": (((0, +1, "R"),), ("R", "L")),
"L": (((0, -1, "L"),), ("R", "L")),
"U": (((0, +1, "R"), (0, -1, "L")), ("U", "D")),
"D": (((0, +1, "R"), (0, -1, "L")), ("U", "D")),
},
"|": {
"U": (((-1, 0, "U"),), ("U", "D")),
"D": (((+1, 0, "D"),), ("U", "D")),
"R": (((-1, 0, "U"), (+1, 0, "D")), ("R", "L")),
"L": (((-1, 0, "U"), (+1, 0, "D")), ("R", "L")),
},
"/": {
"R": (((-1, 0, "U"),), ("R", "D")),
"L": (((+1, 0, "D"),), ("L", "U")),
"U": (((0, +1, "R"),), ("U", "L")),
"D": (((0, -1, "L"),), ("R", "D")),
},
"\\": {
"R": (((+1, 0, "D"),), ("R", "U")),
"L": (((-1, 0, "U"),), ("L", "D")),
"U": (((0, -1, "L"),), ("U", "R")),
"D": (((0, +1, "R"),), ("L", "D")),
},
}
def propagate(
layout: list[list[CellType]], start: tuple[int, int], direction: Direction
) -> list[list[tuple[Direction, ...]]]:
n_rows, n_cols = len(layout), len(layout[0])
beams: list[list[tuple[Direction, ...]]] = [
[() for _ in range(len(layout[0]))] for _ in range(len(layout))
]
queue = [(start, direction)]
while queue:
(row, col), direction = queue.pop()
if (
row not in range(0, n_rows)
or col not in range(0, n_cols)
or direction in beams[row][col]
):
continue
moves, update = Mappings[layout[row][col]][direction]
beams[row][col] += update
for move in moves:
queue.append(((row + move[0], col + move[1]), move[2]))
return beams
layout: list[list[CellType]] = [
[cast(CellType, col) for col in row] for row in sys.stdin.read().splitlines()
]
beams = propagate(layout, (0, 0), "R")
if VERBOSE:
print("\n".join(["".join("#" if col else "." for col in row) for row in beams]))
# part 1
answer_1 = sum(sum(map(bool, row)) for row in beams)
print(f"answer 1 is {answer_1}")
# part 2
n_rows, n_cols = len(layout), len(layout[0])
cases: list[tuple[tuple[int, int], Direction]] = []
for row in range(n_rows):
cases.append(((row, 0), "R"))
cases.append(((row, n_cols - 1), "L"))
for col in range(n_cols):
cases.append(((0, col), "D"))
cases.append(((n_rows - 1, col), "U"))
answer_2 = max(
sum(sum(map(bool, row)) for row in propagate(layout, start, direction))
for start, direction in cases
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,233 @@
from __future__ import annotations
import heapq
import os
import sys
from collections import defaultdict
from dataclasses import dataclass
from typing import Literal, TypeAlias
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
Direction: TypeAlias = Literal[">", "<", "^", "v"]
@dataclass(frozen=True, order=True)
class Label:
row: int
col: int
direction: Direction
count: int
parent: Label | None = None
# mappings from direction to row shift / col shift / opposite direction
MAPPINGS: dict[Direction, tuple[int, int, Direction]] = {
">": (0, +1, "<"),
"<": (0, -1, ">"),
"v": (+1, 0, "^"),
"^": (-1, 0, "v"),
}
def print_shortest_path(
grid: list[list[int]],
target: tuple[int, int],
per_cell: dict[tuple[int, int], list[tuple[Label, int]]],
):
assert len(per_cell[target]) == 1
label = per_cell[target][0][0]
path: list[Label] = []
while True:
path.insert(0, label)
if label.parent is None:
break
label = label.parent
p_grid = [[str(c) for c in r] for r in grid]
for i in range(len(grid)):
for j in range(len(grid[0])):
if per_cell[i, j]:
p_grid[i][j] = f"\033[94m{grid[i][j]}\033[0m"
prev_label = path[0]
for label in path[1:]:
for r in range(
min(prev_label.row, label.row), max(prev_label.row, label.row) + 1
):
for c in range(
min(prev_label.col, label.col),
max(prev_label.col, label.col) + 1,
):
if (r, c) != (prev_label.row, prev_label.col):
p_grid[r][c] = f"\033[93m{grid[r][c]}\033[0m"
p_grid[label.row][label.col] = f"\033[91m{grid[label.row][label.col]}\033[0m"
prev_label = label
p_grid[0][0] = f"\033[92m{grid[0][0]}\033[0m"
print("\n".join("".join(row) for row in p_grid))
def shortest_many_paths(grid: list[list[int]]) -> dict[tuple[int, int], int]:
n_rows, n_cols = len(grid), len(grid[0])
visited: dict[tuple[int, int], tuple[Label, int]] = {}
queue: list[tuple[int, Label]] = [
(0, Label(row=n_rows - 1, col=n_cols - 1, direction="^", count=0))
]
while queue and len(visited) != n_rows * n_cols:
distance, label = heapq.heappop(queue)
if (label.row, label.col) in visited:
continue
visited[label.row, label.col] = (label, distance)
for direction, (c_row, c_col, i_direction) in MAPPINGS.items():
if label.direction == i_direction:
continue
else:
row, col = (label.row + c_row, label.col + c_col)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue
heapq.heappush(
queue,
(
distance
+ sum(
grid[r][c]
for r in range(min(row, label.row), max(row, label.row) + 1)
for c in range(min(col, label.col), max(col, label.col) + 1)
)
- grid[row][col],
Label(
row=row,
col=col,
direction=direction,
count=0,
parent=label,
),
),
)
return {(r, c): visited[r, c][1] for r in range(n_rows) for c in range(n_cols)}
def shortest_path(
grid: list[list[int]],
min_straight: int,
max_straight: int,
lower_bounds: dict[tuple[int, int], int],
) -> int:
n_rows, n_cols = len(grid), len(grid[0])
target = (len(grid) - 1, len(grid[0]) - 1)
# for each tuple (row, col, direction, count), the associated label when visited
visited: dict[tuple[int, int, str, int], Label] = {}
# list of all visited labels for a cell (with associated distance)
per_cell: dict[tuple[int, int], list[tuple[Label, int]]] = defaultdict(list)
# need to add two start labels, otherwise one of the two possible direction will
# not be possible
queue: list[tuple[int, int, Label]] = [
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="^", count=0)),
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="<", count=0)),
]
while queue:
_, distance, label = heapq.heappop(queue)
if (label.row, label.col, label.direction, label.count) in visited:
continue
visited[label.row, label.col, label.direction, label.count] = label
per_cell[label.row, label.col].append((label, distance))
if (label.row, label.col) == target:
break
for direction, (c_row, c_col, i_direction) in MAPPINGS.items():
# cannot move in the opposite direction
if label.direction == i_direction:
continue
# other direction, move 'min_straight' in the new direction
elif label.direction != direction:
row, col, count = (
label.row + min_straight * c_row,
label.col + min_straight * c_col,
min_straight,
)
# same direction, too many count
elif label.count == max_straight:
continue
# same direction, keep going and increment count
else:
row, col, count = (
label.row + c_row,
label.col + c_col,
label.count + 1,
)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue
distance_to = (
distance
+ sum(
grid[r][c]
for r in range(min(row, label.row), max(row, label.row) + 1)
for c in range(min(col, label.col), max(col, label.col) + 1)
)
- grid[label.row][label.col]
)
heapq.heappush(
queue,
(
distance_to + lower_bounds[row, col],
distance_to,
Label(
row=row,
col=col,
direction=direction,
count=count,
parent=label,
),
),
)
if VERBOSE:
print_shortest_path(grid, target, per_cell)
return per_cell[target][0][1]
data = [[int(c) for c in r] for r in sys.stdin.read().splitlines()]
estimates = shortest_many_paths(data)
# part 1
answer_1 = shortest_path(data, 1, 3, lower_bounds=estimates)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = shortest_path(data, 4, 10, lower_bounds=estimates)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,54 @@
import sys
from typing import Literal, TypeAlias, cast
Direction: TypeAlias = Literal["R", "L", "U", "D"]
DIRECTIONS: list[Direction] = ["R", "D", "L", "U"]
MOVES: dict[Direction, tuple[int, int]] = {
"R": (0, +1),
"L": (0, -1),
"U": (-1, 0),
"D": (+1, 0),
}
def area(corners: list[tuple[int, int]], perimeter: int) -> int:
area = abs(
sum(c0[0] * c1[1] - c0[1] * c1[0] for c0, c1 in zip(corners, corners[1::])) // 2
)
return 1 + area - perimeter // 2 + perimeter
def polygon(values: list[tuple[Direction, int]]) -> tuple[list[tuple[int, int]], int]:
perimeter = 0
corners: list[tuple[int, int]] = [(0, 0)]
for direction, amount in values:
perimeter += amount
corners.append(
(
corners[-1][0] + amount * MOVES[direction][0],
corners[-1][1] + amount * MOVES[direction][1],
)
)
return corners, perimeter
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = area(
*polygon([(cast(Direction, (p := line.split())[0]), int(p[1])) for line in lines])
)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = area(
*polygon(
[
(DIRECTIONS[int((h := line.split()[-1])[-2])], int(h[2:-2], 16))
for line in lines
]
)
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,132 @@
import logging
import operator
import os
import sys
from math import prod
from typing import Literal, TypeAlias, cast
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
Category: TypeAlias = Literal["x", "m", "a", "s"]
Part: TypeAlias = dict[Category, int]
PartWithBounds: TypeAlias = dict[Category, tuple[int, int]]
OPERATORS = {"<": operator.lt, ">": operator.gt}
# None if there is no check (last entry), otherwise (category, sense, value)
Check: TypeAlias = tuple[Category, Literal["<", ">"], int] | None
# workflow as a list of check, in specified order, with target
Workflow: TypeAlias = list[tuple[Check, str]]
def accept(workflows: dict[str, Workflow], part: Part) -> bool:
workflow = "in"
decision: bool | None = None
while decision is None:
for check, target in workflows[workflow]:
ok = check is None
if check is not None:
category, sense, value = check
ok = OPERATORS[sense](part[category], value)
if ok:
if target in workflows:
workflow = target
else:
decision = target == "A"
break
return decision
def propagate(workflows: dict[str, Workflow], start: PartWithBounds) -> int:
def transfer_or_accept(
target: str, meta: PartWithBounds, queue: list[tuple[PartWithBounds, str]]
) -> int:
if target in workflows:
logging.info(f" transfer to {target}")
queue.append((meta, target))
return 0
elif target == "A":
logging.info(" accepted")
return prod((high - low + 1) for low, high in meta.values())
else:
logging.info(" rejected")
return 0
accepted = 0
queue: list[tuple[PartWithBounds, str]] = [(start, "in")]
while queue:
meta, workflow = queue.pop()
logging.info(f"{workflow}: {meta}")
for check, target in workflows[workflow]:
if check is None:
accepted += transfer_or_accept(target, meta, queue)
continue
category, sense, value = check
bounds, op = meta[category], OPERATORS[sense]
logging.info(f" splitting {meta} into {category} {sense} {value}")
if not op(bounds[0], value) and not op(bounds[1], value):
logging.info(" reject, always false")
continue
if op(meta[category][0], value) and op(meta[category][1], value):
logging.info(" accept, always true")
accepted += transfer_or_accept(target, meta, queue)
break
meta2 = meta.copy()
if sense == "<":
meta2[category] = (meta[category][0], value - 1)
meta[category] = (value, meta[category][1])
else:
meta2[category] = (value + 1, meta[category][1])
meta[category] = (meta[category][0], value)
logging.info(f" split {meta2} ({target}), {meta}")
accepted += transfer_or_accept(target, meta2, queue)
return accepted
workflows_s, parts_s = sys.stdin.read().strip().split("\n\n")
workflows: dict[str, Workflow] = {}
for workflow_s in workflows_s.split("\n"):
name, block_s = workflow_s.split("{")
workflows[name] = []
for block in block_s[:-1].split(","):
check: Check
if (i := block.find(":")) >= 0:
check, target = (
cast(Category, block[0]),
cast(Literal["<", ">"], block[1]),
int(block[2:i]),
), block[i + 1 :]
else:
check, target = None, block
workflows[name].append((check, target))
# part 1
parts: list[Part] = [
{cast(Category, s[0]): int(s[2:]) for s in part_s[1:-1].split(",")}
for part_s in parts_s.split("\n")
]
answer_1 = sum(sum(part.values()) for part in parts if accept(workflows, part))
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = propagate(
workflows, {cast(Category, c): (1, 4000) for c in ["x", "m", "a", "s"]}
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,43 @@
import math
import sys
from typing import Literal, TypeAlias, cast
CubeType: TypeAlias = Literal["red", "blue", "green"]
MAX_CUBES: dict[CubeType, int] = {"red": 12, "green": 13, "blue": 14}
# parse games
lines = sys.stdin.read().splitlines()
games: dict[int, list[dict[CubeType, int]]] = {}
for line in filter(bool, lines):
id_part, sets_part = line.split(":")
games[int(id_part.split(" ")[-1])] = [
{
cast(CubeType, s[1]): int(s[0])
for cube_draw in cube_set_s.strip().split(", ")
if (s := cube_draw.split(" "))
}
for cube_set_s in sets_part.strip().split(";")
]
# part 1
answer_1 = sum(
id
for id, set_of_cubes in games.items()
if all(
n_cubes <= MAX_CUBES[cube]
for cube_set in set_of_cubes
for cube, n_cubes in cube_set.items()
)
)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = sum(
math.prod(
max(cube_set.get(cube, 0) for cube_set in set_of_cubes) for cube in MAX_CUBES
)
for set_of_cubes in games.values()
)
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,13 @@
import sys
from collections import defaultdict
from dataclasses import dataclass
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,53 @@
import string
import sys
from collections import defaultdict
NOT_A_SYMBOL = "." + string.digits
lines = sys.stdin.read().splitlines()
values: list[int] = []
gears: dict[tuple[int, int], list[int]] = defaultdict(list)
for i, line in enumerate(lines):
j = 0
while j < len(line):
# skip everything until a digit is found (start of a number)
if line[j] not in string.digits:
j += 1
continue
# extract the range of the number and its value
k = j + 1
while k < len(line) and line[k] in string.digits:
k += 1
value = int(line[j:k])
# lookup around the number if there is a symbol - we go through the number
# itself but that should not matter since it only contains digits
found = False
for i2 in range(max(0, i - 1), min(i + 1, len(lines) - 1) + 1):
for j2 in range(max(0, j - 1), min(k, len(line) - 1) + 1):
assert i2 >= 0 and i2 < len(lines)
assert j2 >= 0 and j2 < len(line)
if lines[i2][j2] not in NOT_A_SYMBOL:
found = True
if lines[i2][j2] == "*":
gears[i2, j2].append(value)
if found:
values.append(value)
# continue starting from the end of the number
j = k
# part 1
answer_1 = sum(values)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = sum(v1 * v2 for v1, v2 in filter(lambda vs: len(vs) == 2, gears.values()))
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,41 @@
import sys
from dataclasses import dataclass
@dataclass(frozen=True)
class Card:
id: int
numbers: list[int]
values: list[int]
lines = sys.stdin.read().splitlines()
cards: list[Card] = []
for line in lines:
id_part, e_part = line.split(":")
numbers_s, values_s = e_part.split("|")
cards.append(
Card(
id=int(id_part.split()[1]),
numbers=[int(v.strip()) for v in numbers_s.strip().split()],
values=[int(v.strip()) for v in values_s.strip().split()],
)
)
winnings = [sum(1 for n in card.values if n in card.numbers) for card in cards]
# part 1
answer_1 = sum(2 ** (winning - 1) for winning in winnings if winning > 0)
print(f"answer 1 is {answer_1}")
# part 2
card2cards = {i: list(range(i + 1, i + w + 1)) for i, w in enumerate(winnings)}
card2values = {i: 0 for i in range(len(cards))}
for i in range(len(cards)):
card2values[i] += 1
for j in card2cards[i]:
card2values[j] += card2values[i]
print(f"answer 2 is {sum(card2values.values())}")

129
src/holt59/aoc/2023/day5.py Normal file
View File

@@ -0,0 +1,129 @@
import sys
from typing import Sequence
MAP_ORDER = [
"seed",
"soil",
"fertilizer",
"water",
"light",
"temperature",
"humidity",
"location",
]
lines = sys.stdin.read().splitlines()
# mappings from one category to another, each list contains
# ranges stored as (source, target, length), ordered by start and
# completed to have no "hole"
maps: dict[tuple[str, str], list[tuple[int, int, int]]] = {}
# parsing
index = 2
while index < len(lines):
p1, _, p2 = lines[index].split()[0].split("-")
# extract the existing ranges from the file - we store as (source, target, length)
# whereas the file is in order (target, source, length)
index += 1
values: list[tuple[int, int, int]] = []
while index < len(lines) and lines[index]:
n1, n2, n3 = lines[index].split()
values.append((int(n2), int(n1), int(n3)))
index += 1
# sort by source value
values.sort()
# add a 'fake' interval starting at 0 if missing
if values[0][0] != 0:
values.insert(0, (0, 0, values[0][0]))
# fill gaps between intervals
for i in range(len(values) - 1):
next_start = values[i + 1][0]
end = values[i][0] + values[i][2]
if next_start != end:
values.insert(
i + 1,
(end, end, next_start - end),
)
# add an interval covering values up to at least 2**32 at the end
last_start, _, last_length = values[-1]
values.append((last_start + last_length, last_start + last_length, 2**32))
assert all(v1[0] + v1[2] == v2[0] for v1, v2 in zip(values[:-1], values[1:]))
assert values[0][0] == 0
assert values[-1][0] + values[-1][-1] >= 2**32
maps[p1, p2] = values
index += 1
def find_range(
values: tuple[int, int], map: list[tuple[int, int, int]]
) -> list[tuple[int, int]]:
"""
Given an input range, use the given mapping to find the corresponding list of
ranges in the target domain.
"""
r_start, r_length = values
ranges: list[tuple[int, int]] = []
# find index of the first and last intervals in map that overlaps the input
# interval
index_start, index_end = -1, -1
for index_start, (start, _, length) in enumerate(map):
if start <= r_start and start + length > r_start:
break
for index_end, (start, _, length) in enumerate(
map[index_start:], start=index_start
):
if r_start + r_length >= start and r_start + r_length < start + length:
break
assert index_start >= 0 and index_end >= 0
# special case if one interval contains everything
if index_start == index_end:
start, target, length = map[index_start]
ranges.append((target + r_start - start, r_length))
else:
# add the start interval part
start, target, length = map[index_start]
ranges.append((target + r_start - start, start + length - r_start))
# add all intervals between the first and last (excluding both)
index = index_start + 1
while index < index_end:
start, target, length = map[index]
ranges.append((target, length))
index += 1
# add the last interval
start, target, length = map[index_end]
ranges.append((target, r_start + r_length - start))
return ranges
def find_location_ranges(seeds: Sequence[tuple[int, int]]) -> Sequence[tuple[int, int]]:
for map1, map2 in zip(MAP_ORDER[:-1], MAP_ORDER[1:]):
seeds = [s2 for s1 in seeds for s2 in find_range(s1, maps[map1, map2])]
return seeds
# part 1 - use find_range() with range of length 1
seeds_p1 = [(int(s), 1) for s in lines[0].split(":")[1].strip().split()]
answer_1 = min(start for start, _ in find_location_ranges(seeds_p1))
print(f"answer 1 is {answer_1}")
# # part 2
parts = lines[0].split(":")[1].strip().split()
seeds_p2 = [(int(s), int(e)) for s, e in zip(parts[::2], parts[1::2])]
answer_2 = min(start for start, _ in find_location_ranges(seeds_p2))
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,47 @@
import math
import sys
def extreme_times_to_beat(time: int, distance: int) -> tuple[int, int]:
# formula (T = total time, D = target distance)
# - speed(t) = t,
# - distance(t) = (T - t) * speed(t)
# - distance(t) > D
# <=> (T - t) * t > D
# <=> -t^2 + T * t - D >= 0
a, b, c = -1, time, -distance
d = b * b - 4 * a * c
t1 = math.ceil(-(b - math.sqrt(d)) / (2 * a))
t2 = math.floor(-(b + math.sqrt(d)) / (2 * a))
if (time - t1) * t1 == distance:
t1 += 1
if (time - t2) * t2 == distance:
t2 -= 1
return t1, t2
lines = sys.stdin.read().splitlines()
# part 1
times = list(map(int, lines[0].split()[1:]))
distances = list(map(int, lines[1].split()[1:]))
answer_1 = math.prod(
t2 - t1 + 1
for t1, t2 in (
extreme_times_to_beat(time, distance)
for time, distance in zip(times, distances)
)
)
print(f"answer 1 is {answer_1}")
# part 2
time = int(lines[0].split(":")[1].strip().replace(" ", ""))
distance = int(lines[1].split(":")[1].strip().replace(" ", ""))
t1, t2 = extreme_times_to_beat(time, distance)
answer_2 = t2 - t1 + 1
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,49 @@
import sys
from collections import Counter, defaultdict
class HandTypes:
HIGH_CARD = 0
ONE_PAIR = 1
TWO_PAIR = 2
THREE_OF_A_KIND = 3
FULL_HOUSE = 4
FOUR_OF_A_KIND = 5
FIVE_OF_A_KIND = 6
# mapping from number of different cards + highest count of card to the hand type
LEN_LAST_TO_TYPE: dict[int, dict[int, int]] = {
1: defaultdict(lambda: HandTypes.FIVE_OF_A_KIND),
2: defaultdict(lambda: HandTypes.FULL_HOUSE, {4: HandTypes.FOUR_OF_A_KIND}),
3: defaultdict(lambda: HandTypes.TWO_PAIR, {3: HandTypes.THREE_OF_A_KIND}),
4: defaultdict(lambda: HandTypes.ONE_PAIR),
5: defaultdict(lambda: HandTypes.HIGH_CARD),
}
def extract_key(hand: str, values: dict[str, int], joker: str = "0") -> tuple[int, ...]:
# get count of each cards, in increasing count - the 'or' part handles the JJJJJ
# case when joker is True
cnt = sorted(Counter(hand.replace(joker, "")).values()) or [0]
return (LEN_LAST_TO_TYPE[len(cnt)][cnt[-1] + hand.count(joker)],) + tuple(
values[c] for c in hand
)
lines = sys.stdin.read().splitlines()
cards = [(t[0], int(t[1])) for line in lines if (t := line.split())]
# part 1
values = {card: value for value, card in enumerate("23456789TJQKA")}
cards.sort(key=lambda cv: extract_key(cv[0], values=values))
answer_1 = sum(rank * value for rank, (_, value) in enumerate(cards, start=1))
print(f"answer 1 is {answer_1}")
# part 2
values = {card: value for value, card in enumerate("J23456789TQKA")}
cards.sort(key=lambda cv: extract_key(cv[0], values=values, joker="J"))
answer_2 = sum(rank * value for rank, (_, value) in enumerate(cards, start=1))
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,29 @@
import itertools
import math
import sys
lines = sys.stdin.read().splitlines()
sequence = lines[0]
nodes = {
p[0]: {d: n for d, n in zip("LR", p[1].strip("()").split(", "))}
for line in lines[2:]
if (p := line.split(" = "))
}
def path(start: str):
path = [start]
it_seq = iter(itertools.cycle(sequence))
while not path[-1].endswith("Z"):
path.append(nodes[path[-1]][next(it_seq)])
return path
# part 1
answer_1 = len(path(next(node for node in nodes if node.endswith("A")))) - 1
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = math.lcm(*(len(path(node)) - 1 for node in nodes if node.endswith("A")))
print(f"answer 2 is {answer_2}")

View File

@@ -0,0 +1,29 @@
import sys
lines = sys.stdin.read().splitlines()
data = [[int(c) for c in line.split()] for line in lines]
right_values: list[int] = []
left_values: list[int] = []
for values in data:
diffs = [values]
while any(d != 0 for d in diffs[-1]):
diffs.append([rhs - lhs for lhs, rhs in zip(diffs[-1][:-1], diffs[-1][1:])])
rhs: list[int] = [0]
lhs: list[int] = [0]
for cx in range(len(diffs) - 1):
rhs.append(diffs[-cx - 2][-1] + rhs[cx])
lhs.append(diffs[-cx - 2][0] - lhs[cx])
right_values.append(rhs[-1])
left_values.append(lhs[-1])
# part 1
answer_1 = sum(right_values)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = sum(left_values)
print(f"answer 2 is {answer_2}")