1
1

2024 day 14.

This commit is contained in:
Mikaël Capelle 2024-12-14 10:22:19 +01:00
parent 67e41503c9
commit 4f8b50577a
6 changed files with 789 additions and 148 deletions
poetry.lockpyproject.toml
src/holt59/aoc
2023
2024
inputs
holt59/2024
tests/2024

347
poetry.lock generated
View File

@ -1,5 +1,16 @@
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.1.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = false
python-versions = ">=3.7"
files = [
{file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"},
{file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"},
]
[[package]]
name = "appnope"
version = "0.1.4"
@ -133,6 +144,30 @@ traitlets = ">=4"
[package.extras]
test = ["pytest"]
[[package]]
name = "cplex"
version = "22.1.1.2"
description = "A Python interface to the CPLEX Callable Library, Community Edition."
optional = false
python-versions = "*"
files = [
{file = "cplex-22.1.1.2-cp310-cp310-macosx_10_6_x86_64.whl", hash = "sha256:d74a91f6e9c6f4ad4c7c69f7ab937ea9e91178a556f6f105c87eef9e434ea42e"},
{file = "cplex-22.1.1.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b066b5aa01fcf7cb471ad41920b3fecdd87dc95686e9a7031ff470873f0db10f"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:a7230032928b1a657c384d3f49c04d8b80d0ab8134a2f4c0b26ff50e71ec767a"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:dd81e8ee7a7f1fb5769bcbb1349b084b37c495cbd0db1a095d774f97d790ee3c"},
{file = "cplex-22.1.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:68b33bb9ff84be3442a6f71000e7214781c6aa8674143a9aa79cb9a84e697dfd"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_10_6_x86_64.whl", hash = "sha256:cda2f59af50d6c3d6476b2e38aba1e947f9bd72591d71961a9d53b5582062ba9"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0f69a539ed50994e26e32c3d2b203eb5f112d1ba64400241614e1a91c0933974"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:2a0f6984980779e6878a6cded52ee08806bae49af6bd209c7740549417e69e96"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux2014_ppc64le.whl", hash = "sha256:0ac0005414a09facbeaa976a89b3153d4ed15f23a89bf5d283f65d4e951f63be"},
{file = "cplex-22.1.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:46550cac476d74cc95dc3abf6f9bfe08c9fd61d889e20f2028f754b9fe503b88"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_10_6_x86_64.whl", hash = "sha256:21f6fd1ad4876a7775e64fe8a1fb43f6bb7a010c5e099abdb8c01887a8cc1d84"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d6acbf74c3fe32f2138a98730d1ebe3fa275c8c3fdcd8b1f68d312bfe9ef6899"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3211f9c84f44c6317ea1e83a6c2ff1cfdc08532f421987b7faa8c07a018dfae5"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:648ad8c1c83ea30b0802c571a0dbf7fac23dcb9dc121ea0768c1794313aec2a7"},
{file = "cplex-22.1.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:285b26008a77942c6c9c29bff91e1658c1beed2aa520e1a8b26137d81abf81dc"},
]
[[package]]
name = "debugpy"
version = "1.8.9"
@ -179,6 +214,19 @@ files = [
{file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
]
[[package]]
name = "docplex"
version = "2.28.240"
description = "The IBM Decision Optimization CPLEX Modeling for Python"
optional = false
python-versions = "*"
files = [
{file = "docplex-2.28.240.tar.gz", hash = "sha256:c0de407e33f8709bb4cd91b6efeb96fd88bfecbdce2caec51afb79253bde6ff5"},
]
[package.dependencies]
six = "*"
[[package]]
name = "exceptiongroup"
version = "1.2.2"
@ -207,6 +255,17 @@ files = [
[package.extras]
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
[[package]]
name = "immutabledict"
version = "4.2.1"
description = "Immutable wrapper around dictionaries (a fork of frozendict)"
optional = false
python-versions = ">=3.8"
files = [
{file = "immutabledict-4.2.1-py3-none-any.whl", hash = "sha256:c56a26ced38c236f79e74af3ccce53772827cef5c3bce7cab33ff2060f756373"},
{file = "immutabledict-4.2.1.tar.gz", hash = "sha256:d91017248981c72eb66c8ff9834e99c2f53562346f23e7f51e7a5ebcf66a3bcc"},
]
[[package]]
name = "ipykernel"
version = "6.29.5"
@ -353,17 +412,6 @@ files = [
[package.dependencies]
traitlets = "*"
[[package]]
name = "more-itertools"
version = "10.5.0"
description = "More routines for operating on iterables, beyond itertools"
optional = false
python-versions = ">=3.8"
files = [
{file = "more-itertools-10.5.0.tar.gz", hash = "sha256:5482bfef7849c25dc3c6dd53a6173ae4795da2a41a80faea6700d9f5846c5da6"},
{file = "more_itertools-10.5.0-py3-none-any.whl", hash = "sha256:037b0d3203ce90cca8ab1defbbdac29d5f993fc20131f3664dc8d6acfa872aef"},
]
[[package]]
name = "mpmath"
version = "1.3.0"
@ -441,68 +489,109 @@ files = [
[[package]]
name = "numpy"
version = "2.1.3"
version = "2.2.0"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff"},
{file = "numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4"},
{file = "numpy-2.1.3-cp310-cp310-win32.whl", hash = "sha256:72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23"},
{file = "numpy-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0"},
{file = "numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d"},
{file = "numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0"},
{file = "numpy-2.1.3-cp311-cp311-win32.whl", hash = "sha256:d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9"},
{file = "numpy-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2"},
{file = "numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e"},
{file = "numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0"},
{file = "numpy-2.1.3-cp312-cp312-win32.whl", hash = "sha256:e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9"},
{file = "numpy-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a"},
{file = "numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f"},
{file = "numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef"},
{file = "numpy-2.1.3-cp313-cp313-win32.whl", hash = "sha256:50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f"},
{file = "numpy-2.1.3-cp313-cp313-win_amd64.whl", hash = "sha256:747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17"},
{file = "numpy-2.1.3-cp313-cp313t-win32.whl", hash = "sha256:08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48"},
{file = "numpy-2.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb"},
{file = "numpy-2.1.3.tar.gz", hash = "sha256:aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761"},
{file = "numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa"},
{file = "numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31"},
{file = "numpy-2.2.0-cp310-cp310-win32.whl", hash = "sha256:b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661"},
{file = "numpy-2.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4"},
{file = "numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6"},
{file = "numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d"},
{file = "numpy-2.2.0-cp311-cp311-win32.whl", hash = "sha256:4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410"},
{file = "numpy-2.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73"},
{file = "numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3"},
{file = "numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef"},
{file = "numpy-2.2.0-cp312-cp312-win32.whl", hash = "sha256:afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1"},
{file = "numpy-2.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3"},
{file = "numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367"},
{file = "numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742"},
{file = "numpy-2.2.0-cp313-cp313-win32.whl", hash = "sha256:3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e"},
{file = "numpy-2.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72"},
{file = "numpy-2.2.0-cp313-cp313t-win32.whl", hash = "sha256:30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066"},
{file = "numpy-2.2.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221"},
{file = "numpy-2.2.0.tar.gz", hash = "sha256:140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0"},
]
[[package]]
name = "ortools"
version = "9.11.4210"
description = "Google OR-Tools python libraries and modules"
optional = false
python-versions = ">=3.8"
files = [
{file = "ortools-9.11.4210-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:127f20f03ce04c28f979eac635d1cacdc01597c9e035a1981070506294d7db9c"},
{file = "ortools-9.11.4210-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:250c62ba9e5fcaf18ada449bc0128c71bb0dbea83ddec5559cc506cff920235c"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7c15cefc7bc71aa2f70bee157aaa7e51ed8cb74c3edd499d15b6f5cd79cdf5b"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c3693f0cb07ee0b5d36c4817bcfe05a745e3a613798a2ed62eb998d7fff979c"},
{file = "ortools-9.11.4210-cp310-cp310-win_amd64.whl", hash = "sha256:6b9d4ae6c7e9efac7cbef8a6289e97e238c2f0a8ef587b3e56b71af14c2f04e6"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:0f902caa1576d737714f6a4fa165db62469bce82115e250409607197b3b6b434"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f3e2869396dc6d8ee2d11b65d6f88f6386bb3ad64212c0ad7a6d32ddcb48ca"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c5844ff927ce3c5428159cdd01b7fdbe243e8062bf1dfdb2e0eb305a55a30"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5a17a37aeaa7d149e2fe8c8dfd5f09630ae28ad734a109ad55536605f8059df"},
{file = "ortools-9.11.4210-cp311-cp311-win_amd64.whl", hash = "sha256:d9b858f0273e19f81555428d54d407428d0a70a8cb5df2c320935bb735f2c6bb"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:079bea08c6341dcfe3fb9586eb6edec6ae80f4ed16ed366fd7a46ef4b5709009"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7f55124f9d1afa6434d0d6de07c6a4eb836f29b00b3413d27138634d5d79b606"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f48e3d4053a169440608d881c1abd2a706db885d9b0af85bf45b444a1fec244"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03ecd32e5d760d48e59832ef6bf724f8cac95e4e40db72a7fb912abf7adcf931"},
{file = "ortools-9.11.4210-cp312-cp312-win_amd64.whl", hash = "sha256:bc1b6e4cc0a121ef888481a99194765e6df72d4d3da81f928543171a2bac8cbb"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:a503291dc12dc44da48567c5e1f79c77cd054fb86176f2c99d2860bc5a57e03d"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2fd0aa0b4edfb3088f086bc05d42a381cc3d03da4b8ad18ce18ba213ab2c719f"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c242738a49279c3a58b4611a64dd24634f1638f4dbb435163e3f9308e7c84c9"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9186bbc7a30538f277e704e9e77ff52bc75aa2c17095a125b2dc212a75cf8e"},
{file = "ortools-9.11.4210-cp38-cp38-win_amd64.whl", hash = "sha256:afcca4919e1095a79af0375276c5377a2d75794ebd592c4cc841d9979e0526e7"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:a2828e91960c4e4fcf27bc6e200e2cd61ce1c42d4a3b95481a842a58c8315345"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d7d1a105f105502cf2f785816b09b796e5845fd47efac0dc0e3c0476b4c961a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f250641d7b822be25237fb78aed0878b07e8afdefddb700bafcc52f32ad520a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd2c0b319f4c0999360ab45a85d5764838c9dd0fd33437d12e32b2c07cbe04e4"},
{file = "ortools-9.11.4210-cp39-cp39-win_amd64.whl", hash = "sha256:219ffa56e8e4f52561586cea3dd55eb0f5d174a84c83a819d71debad766338e3"},
]
[package.dependencies]
absl-py = ">=2.0.0"
immutabledict = ">=3.0.0"
numpy = ">=1.13.3"
pandas = ">=2.0.0"
protobuf = ">=5.26.1,<5.27"
[[package]]
name = "packaging"
version = "24.2"
@ -700,6 +789,26 @@ files = [
[package.dependencies]
wcwidth = "*"
[[package]]
name = "protobuf"
version = "5.26.1"
description = ""
optional = false
python-versions = ">=3.8"
files = [
{file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"},
{file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"},
{file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"},
{file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"},
{file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"},
{file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"},
{file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"},
{file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"},
{file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"},
]
[[package]]
name = "psutil"
version = "6.1.0"
@ -782,13 +891,13 @@ windows-terminal = ["colorama (>=0.4.6)"]
[[package]]
name = "pyright"
version = "1.1.389"
version = "1.1.390"
description = "Command line wrapper for pyright"
optional = false
python-versions = ">=3.7"
files = [
{file = "pyright-1.1.389-py3-none-any.whl", hash = "sha256:41e9620bba9254406dc1f621a88ceab5a88af4c826feb4f614d95691ed243a60"},
{file = "pyright-1.1.389.tar.gz", hash = "sha256:716bf8cc174ab8b4dcf6828c3298cac05c5ed775dda9910106a5dcfe4c7fe220"},
{file = "pyright-1.1.390-py3-none-any.whl", hash = "sha256:ecebfba5b6b50af7c1a44c2ba144ba2ab542c227eb49bc1f16984ff714e0e110"},
{file = "pyright-1.1.390.tar.gz", hash = "sha256:aad7f160c49e0fbf8209507a15e17b781f63a86a1facb69ca877c71ef2e9538d"},
]
[package.dependencies]
@ -1037,90 +1146,40 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "ruff"
version = "0.8.1"
version = "0.8.3"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.8.1-py3-none-linux_armv6l.whl", hash = "sha256:fae0805bd514066f20309f6742f6ee7904a773eb9e6c17c45d6b1600ca65c9b5"},
{file = "ruff-0.8.1-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b8a4f7385c2285c30f34b200ca5511fcc865f17578383db154e098150ce0a087"},
{file = "ruff-0.8.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:cd054486da0c53e41e0086e1730eb77d1f698154f910e0cd9e0d64274979a209"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2029b8c22da147c50ae577e621a5bfbc5d1fed75d86af53643d7a7aee1d23871"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2666520828dee7dfc7e47ee4ea0d928f40de72056d929a7c5292d95071d881d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:333c57013ef8c97a53892aa56042831c372e0bb1785ab7026187b7abd0135ad5"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:288326162804f34088ac007139488dcb43de590a5ccfec3166396530b58fb89d"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b12c39b9448632284561cbf4191aa1b005882acbc81900ffa9f9f471c8ff7e26"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:364e6674450cbac8e998f7b30639040c99d81dfb5bbc6dfad69bc7a8f916b3d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b22346f845fec132aa39cd29acb94451d030c10874408dbf776af3aaeb53284c"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:b2f2f7a7e7648a2bfe6ead4e0a16745db956da0e3a231ad443d2a66a105c04fa"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:adf314fc458374c25c5c4a4a9270c3e8a6a807b1bec018cfa2813d6546215540"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_i686.whl", hash = "sha256:a885d68342a231b5ba4d30b8c6e1b1ee3a65cf37e3d29b3c74069cdf1ee1e3c9"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:d2c16e3508c8cc73e96aa5127d0df8913d2290098f776416a4b157657bee44c5"},
{file = "ruff-0.8.1-py3-none-win32.whl", hash = "sha256:93335cd7c0eaedb44882d75a7acb7df4b77cd7cd0d2255c93b28791716e81790"},
{file = "ruff-0.8.1-py3-none-win_amd64.whl", hash = "sha256:2954cdbe8dfd8ab359d4a30cd971b589d335a44d444b6ca2cb3d1da21b75e4b6"},
{file = "ruff-0.8.1-py3-none-win_arm64.whl", hash = "sha256:55873cc1a473e5ac129d15eccb3c008c096b94809d693fc7053f588b67822737"},
{file = "ruff-0.8.1.tar.gz", hash = "sha256:3583db9a6450364ed5ca3f3b4225958b24f78178908d5c4bc0f46251ccca898f"},
{file = "ruff-0.8.3-py3-none-linux_armv6l.whl", hash = "sha256:8d5d273ffffff0acd3db5bf626d4b131aa5a5ada1276126231c4174543ce20d6"},
{file = "ruff-0.8.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:e4d66a21de39f15c9757d00c50c8cdd20ac84f55684ca56def7891a025d7e939"},
{file = "ruff-0.8.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c356e770811858bd20832af696ff6c7e884701115094f427b64b25093d6d932d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c0a60a825e3e177116c84009d5ebaa90cf40dfab56e1358d1df4e29a9a14b13"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:75fb782f4db39501210ac093c79c3de581d306624575eddd7e4e13747e61ba18"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f26bc76a133ecb09a38b7868737eded6941b70a6d34ef53a4027e83913b6502"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:01b14b2f72a37390c1b13477c1c02d53184f728be2f3ffc3ace5b44e9e87b90d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53babd6e63e31f4e96ec95ea0d962298f9f0d9cc5990a1bbb023a6baf2503a82"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ae441ce4cf925b7f363d33cd6570c51435972d697e3e58928973994e56e1452"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c65bc0cadce32255e93c57d57ecc2cca23149edd52714c0c5d6fa11ec328cd"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5be450bb18f23f0edc5a4e5585c17a56ba88920d598f04a06bd9fd76d324cb20"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8faeae3827eaa77f5721f09b9472a18c749139c891dbc17f45e72d8f2ca1f8fc"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:db503486e1cf074b9808403991663e4277f5c664d3fe237ee0d994d1305bb060"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6567be9fb62fbd7a099209257fef4ad2c3153b60579818b31a23c886ed4147ea"},
{file = "ruff-0.8.3-py3-none-win32.whl", hash = "sha256:19048f2f878f3ee4583fc6cb23fb636e48c2635e30fb2022b3a1cd293402f964"},
{file = "ruff-0.8.3-py3-none-win_amd64.whl", hash = "sha256:f7df94f57d7418fa7c3ffb650757e0c2b96cf2501a0b192c18e4fb5571dfada9"},
{file = "ruff-0.8.3-py3-none-win_arm64.whl", hash = "sha256:fe2756edf68ea79707c8d68b78ca9a58ed9af22e430430491ee03e718b5e4936"},
{file = "ruff-0.8.3.tar.gz", hash = "sha256:5e7558304353b84279042fc584a4f4cb8a07ae79b2bf3da1a7551d960b5626d3"},
]
[[package]]
name = "scipy"
version = "1.14.1"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"},
{file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"},
{file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"},
{file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"},
{file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"},
{file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"},
{file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"},
{file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"},
{file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"},
{file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"},
{file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"},
{file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"},
{file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"},
{file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"},
{file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"},
{file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"},
{file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"},
]
[package.dependencies]
numpy = ">=1.23.5,<2.3"
[package.extras]
dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"]
doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"]
test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "six"
version = "1.16.0"
version = "1.17.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
files = [
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
{file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"},
{file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"},
]
[[package]]
@ -1306,4 +1365,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "10ecc039b99b304e65eef14905c0fb0fcc7b8fb31328b19c65b54779fcc0e336"
content-hash = "5c79acb7e2d7e54d17dddd6b1497ba1b6af487f1ff7f5a32e117a46f56d5cf80"

View File

@ -12,11 +12,8 @@ python = "^3.10"
numpy = "^2.1.3"
tqdm = "^4.67.1"
parse = "^1.20.2"
scipy = "^1.14.1"
sympy = "^1.13.3"
networkx = "^3.4.2"
pandas = "^2.2.3"
more-itertools = "^10.5.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.389"
@ -26,6 +23,13 @@ ipykernel = "^6.29.5"
networkx-stubs = "^0.0.1"
types-networkx = "^3.4.2.20241115"
[tool.poetry.group.cplex.dependencies]
docplex = "^2.28.240"
cplex = "^22.1.1.2"
[tool.poetry.group.ortools.dependencies]
ortools = "^9.11.4210"
[tool.poetry.scripts]
holt59-aoc = "holt59.aoc.__main__:main"

View File

@ -63,6 +63,7 @@ class Solver(BaseSolver):
(x, y, z), (vx, vy, vz), positions[i1], velocities[i1]
):
equations.append(p + ti * d - pi - ti * di)
print(equations)
r = solve(equations, [x, y, z, vx, vy, vz] + list(ts), dict=True)[0]
yield r[x] + r[y] + r[z]

View File

@ -1,7 +1,72 @@
import itertools as it
import operator as op
from math import prod
from typing import Any, Iterator
import parse # pyright: ignore[reportMissingTypeStubs]
from ..base import BaseSolver
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
positions: list[tuple[int, int]] = []
velocities: list[tuple[int, int]] = []
for line in input.splitlines():
r = parse.parse("p={x:d},{y:d} v={vx:d},{vy:d}", line) # type: ignore
positions.append((r["y"], r["x"])) # type: ignore
velocities.append((r["vy"], r["vx"])) # type: ignore
n_rows, n_cols = 103, 101
if len(positions) < 20:
n_rows, n_cols = 7, 11
n_rounds = 100
new_positions = [
((row + v_row * n_rounds) % n_rows, (col + v_col * n_rounds) % n_cols)
for (row, col), (v_row, v_col) in zip(positions, velocities, strict=True)
]
midrow = n_rows // 2
midcol = n_cols // 2
yield prod(
(
sum(opr(row, midrow) and opc(col, midcol) for row, col in new_positions)
for opr, opc in it.product((op.gt, op.lt), repeat=2)
)
)
new_positions = positions.copy()
for rnd in self.progress.wrap(range(10000)):
new_positions = [
((row + v_row) % n_rows, (col + v_col) % n_cols)
for (row, col), (v_row, v_col) in zip(
new_positions, velocities, strict=True
)
]
m = [[False for _ in range(n_cols)] for _ in range(n_rows)]
for row, col in new_positions:
m[row][col] = True
found = False
for row in m:
if sum(row) <= 10:
continue
if any(all(row[i : i + 10]) for i in range(n_cols - 10)):
if self.files:
self.files.create(
f"result_{rnd+1}.txt",
"\n".join(
"".join("#" if m[i][j] else "." for j in range(n_cols))
for i in range(n_rows)
).encode(),
True,
)
yield rnd + 1
found = True
break
if found:
break

View File

@ -0,0 +1,500 @@
p=99,12 v=19,18
p=90,98 v=47,-52
p=86,3 v=82,-13
p=13,8 v=-67,-47
p=36,45 v=28,65
p=71,35 v=-8,-62
p=75,8 v=-30,-21
p=3,46 v=-38,-96
p=1,89 v=78,18
p=47,59 v=-63,99
p=92,78 v=68,48
p=42,31 v=78,94
p=75,29 v=9,83
p=46,12 v=-29,48
p=80,16 v=-70,33
p=18,66 v=57,-97
p=60,12 v=89,-90
p=21,36 v=-41,-78
p=75,53 v=52,-62
p=18,79 v=45,51
p=20,29 v=63,-97
p=22,68 v=23,1
p=6,67 v=-24,-44
p=44,35 v=-54,29
p=33,80 v=28,-56
p=48,78 v=55,-22
p=88,79 v=99,69
p=12,96 v=-50,-59
p=6,57 v=80,61
p=98,31 v=-77,14
p=91,65 v=-13,20
p=52,53 v=-85,41
p=94,94 v=-15,5
p=69,75 v=-41,-11
p=98,77 v=71,-54
p=23,47 v=-61,-27
p=32,74 v=-11,96
p=22,87 v=-5,-75
p=65,22 v=26,71
p=1,67 v=13,69
p=32,96 v=-90,-94
p=17,17 v=-5,71
p=57,85 v=-92,28
p=52,32 v=-41,69
p=13,85 v=-43,-83
p=51,39 v=-38,32
p=64,17 v=91,82
p=97,86 v=-69,-70
p=98,94 v=46,-21
p=43,31 v=61,-24
p=42,58 v=-51,-42
p=5,46 v=-4,91
p=65,52 v=10,50
p=23,6 v=-42,29
p=54,25 v=4,44
p=5,19 v=-77,-74
p=44,77 v=-23,-26
p=10,70 v=6,-72
p=38,101 v=-50,-36
p=9,49 v=35,72
p=64,14 v=77,-78
p=21,2 v=-67,-6
p=34,97 v=-73,-37
p=77,13 v=-30,60
p=50,40 v=83,-58
p=99,85 v=-59,-87
p=65,0 v=-76,-48
p=44,94 v=-45,34
p=5,59 v=92,35
p=73,100 v=93,-71
p=50,20 v=-74,-97
p=9,33 v=-10,-89
p=54,49 v=-46,99
p=99,100 v=92,51
p=84,94 v=-53,-45
p=92,13 v=-61,69
p=19,52 v=56,-12
p=20,52 v=-38,-90
p=98,12 v=99,-22
p=46,23 v=95,-32
p=84,100 v=-70,70
p=19,69 v=58,-52
p=77,67 v=-51,31
p=11,6 v=18,-67
p=11,22 v=-50,-82
p=73,43 v=25,79
p=60,16 v=-58,-36
p=86,18 v=-88,71
p=21,50 v=-50,-88
p=17,20 v=-65,-54
p=38,26 v=67,71
p=22,60 v=-46,15
p=81,46 v=-39,16
p=25,98 v=22,-41
p=9,72 v=-94,8
p=82,59 v=-46,-34
p=71,41 v=-23,45
p=74,1 v=-70,32
p=96,17 v=-37,95
p=39,45 v=-6,-23
p=46,4 v=61,55
p=41,100 v=-35,-10
p=65,75 v=-1,-26
p=8,21 v=7,-32
p=43,71 v=-12,73
p=85,67 v=58,-41
p=73,7 v=31,-89
p=85,71 v=-93,-72
p=54,83 v=-46,-75
p=13,66 v=-24,-98
p=67,13 v=21,-21
p=1,33 v=24,-66
p=71,27 v=54,-78
p=69,86 v=42,35
p=17,28 v=-83,94
p=92,19 v=25,-68
p=92,84 v=-31,16
p=32,26 v=-6,54
p=20,97 v=-16,36
p=1,102 v=13,9
p=59,26 v=-68,91
p=92,44 v=-20,30
p=16,45 v=-83,34
p=30,69 v=-75,-46
p=51,64 v=-73,68
p=53,29 v=-57,-61
p=14,100 v=-15,86
p=80,41 v=-20,-81
p=5,92 v=-60,1
p=91,10 v=-49,98
p=0,62 v=-79,9
p=40,1 v=3,-70
p=81,32 v=-53,41
p=53,18 v=-46,94
p=69,96 v=-95,-82
p=32,92 v=-69,-30
p=73,83 v=-59,-65
p=74,67 v=-8,-99
p=71,45 v=-58,60
p=35,29 v=-51,-92
p=68,15 v=-92,-55
p=74,3 v=26,30
p=67,25 v=-58,22
p=31,46 v=-73,-92
p=29,69 v=45,23
p=48,78 v=-23,-29
p=41,13 v=-45,-78
p=57,8 v=-3,26
p=45,53 v=45,4
p=37,23 v=-62,41
p=41,90 v=-35,55
p=88,96 v=53,-71
p=38,15 v=-90,71
p=62,20 v=4,-88
p=64,19 v=15,-85
p=96,61 v=10,81
p=19,81 v=57,-45
p=53,11 v=67,44
p=51,83 v=66,85
p=29,76 v=-84,-26
p=63,23 v=-13,14
p=23,51 v=-18,-52
p=23,41 v=73,-55
p=99,75 v=-32,-14
p=68,20 v=79,45
p=27,74 v=45,42
p=55,96 v=47,-73
p=87,29 v=-93,22
p=20,76 v=-49,88
p=11,78 v=-67,-41
p=31,78 v=-12,-99
p=21,49 v=64,9
p=56,45 v=10,-4
p=67,97 v=-59,92
p=96,58 v=-49,96
p=36,51 v=-68,8
p=18,10 v=-79,-60
p=25,7 v=47,-55
p=12,101 v=40,-52
p=83,57 v=-42,-38
p=62,89 v=77,20
p=8,49 v=51,-54
p=12,98 v=-20,53
p=47,89 v=35,68
p=46,16 v=89,6
p=72,34 v=37,45
p=61,31 v=49,76
p=42,98 v=64,17
p=27,41 v=71,27
p=50,8 v=-1,-63
p=97,5 v=-56,9
p=41,58 v=5,-38
p=66,101 v=-64,13
p=67,95 v=-40,18
p=94,41 v=-37,73
p=89,102 v=-4,2
p=44,51 v=-84,65
p=9,89 v=29,89
p=28,29 v=5,29
p=76,4 v=-89,8
p=75,93 v=-75,89
p=38,6 v=-73,-2
p=19,1 v=-95,-6
p=61,76 v=-69,23
p=6,27 v=64,-24
p=97,76 v=47,28
p=62,86 v=50,-61
p=85,50 v=-93,-92
p=10,76 v=-83,31
p=58,42 v=52,-81
p=47,42 v=16,38
p=3,17 v=-66,52
p=58,84 v=-59,-36
p=91,76 v=20,-68
p=9,62 v=-10,-23
p=45,99 v=-85,-2
p=0,8 v=-77,17
p=53,70 v=-41,-23
p=32,96 v=6,89
p=67,33 v=26,37
p=94,86 v=47,47
p=26,74 v=-39,12
p=19,15 v=-55,16
p=60,76 v=93,-98
p=44,71 v=-49,-38
p=35,77 v=-1,-7
p=68,98 v=32,89
p=10,54 v=-23,-24
p=63,10 v=-77,50
p=75,61 v=71,80
p=35,78 v=-5,-55
p=74,23 v=15,-45
p=10,68 v=52,-34
p=45,43 v=8,-67
p=12,76 v=24,-75
p=62,73 v=-86,77
p=9,82 v=-38,-64
p=1,95 v=25,-64
p=67,30 v=-69,-20
p=92,25 v=-79,75
p=42,19 v=-46,-78
p=3,98 v=35,-83
p=89,102 v=53,90
p=25,10 v=-5,37
p=46,0 v=-74,29
p=12,40 v=-79,92
p=13,21 v=-56,-44
p=63,49 v=77,-27
p=3,12 v=83,-67
p=48,42 v=72,-62
p=37,74 v=-46,16
p=25,75 v=51,-26
p=84,35 v=81,-43
p=38,40 v=-63,19
p=77,13 v=-64,-48
p=95,13 v=-82,-44
p=81,41 v=-19,-81
p=33,81 v=-64,41
p=69,75 v=65,35
p=30,76 v=45,39
p=48,72 v=-29,39
p=74,10 v=78,-61
p=70,17 v=9,52
p=11,67 v=46,-87
p=35,72 v=-11,-46
p=86,37 v=-82,60
p=99,24 v=-91,56
p=92,46 v=-54,-23
p=93,12 v=76,-9
p=92,43 v=-97,-75
p=3,72 v=10,-79
p=13,83 v=13,8
p=78,80 v=3,-60
p=81,41 v=84,-73
p=93,9 v=-25,36
p=78,96 v=20,-37
p=40,50 v=-78,59
p=66,21 v=85,78
p=37,67 v=56,53
p=49,62 v=-91,-63
p=59,54 v=60,-69
p=57,81 v=77,39
p=51,79 v=-19,-11
p=65,27 v=74,95
p=33,56 v=44,-27
p=7,43 v=80,38
p=11,19 v=36,-88
p=27,15 v=-95,44
p=2,76 v=-15,-53
p=90,40 v=-14,56
p=93,52 v=30,-92
p=31,42 v=56,-16
p=86,64 v=-25,-51
p=97,81 v=-76,-76
p=11,36 v=35,-77
p=9,94 v=-10,-48
p=35,3 v=68,-6
p=10,84 v=69,58
p=12,17 v=18,71
p=61,62 v=77,-4
p=6,93 v=29,-82
p=91,71 v=-49,62
p=84,5 v=26,-17
p=100,1 v=-22,-38
p=90,27 v=-34,-39
p=84,21 v=-68,-62
p=72,10 v=-70,63
p=83,20 v=42,-74
p=51,99 v=-57,51
p=13,56 v=-78,76
p=21,88 v=80,81
p=40,97 v=76,85
p=61,92 v=-97,-15
p=29,58 v=56,-88
p=90,0 v=-34,-2
p=35,46 v=-23,-35
p=88,49 v=82,-67
p=83,23 v=98,-1
p=19,80 v=-5,-98
p=21,45 v=-90,45
p=79,3 v=-14,-86
p=49,37 v=27,-54
p=95,0 v=-93,36
p=55,46 v=-63,26
p=38,78 v=-61,-97
p=91,61 v=-60,-92
p=44,15 v=-51,75
p=82,86 v=20,-72
p=93,69 v=8,-95
p=93,59 v=-37,50
p=73,50 v=-84,22
p=8,7 v=-50,25
p=97,46 v=-14,22
p=43,2 v=-96,44
p=29,32 v=-33,34
p=30,64 v=-56,-95
p=12,65 v=-38,54
p=64,54 v=-12,-54
p=32,29 v=66,-4
p=80,84 v=-24,34
p=2,93 v=53,-87
p=77,14 v=59,-82
p=12,25 v=-77,78
p=65,74 v=76,-61
p=93,89 v=-26,59
p=1,35 v=25,-12
p=100,26 v=1,48
p=28,79 v=-96,16
p=18,1 v=-16,2
p=42,38 v=-39,-31
p=35,76 v=-76,-93
p=28,6 v=78,24
p=36,33 v=-34,-5
p=26,73 v=-95,-95
p=96,22 v=-83,-25
p=82,74 v=-30,-76
p=9,98 v=46,-52
p=80,3 v=13,-65
p=65,11 v=68,-58
p=68,57 v=-13,57
p=91,2 v=27,-94
p=2,96 v=-16,-29
p=65,67 v=-6,-55
p=79,63 v=88,-19
p=17,12 v=-27,52
p=10,6 v=52,-86
p=3,74 v=-37,-61
p=90,47 v=14,68
p=77,87 v=-59,20
p=80,63 v=-98,8
p=20,27 v=-64,10
p=93,60 v=-54,-38
p=93,14 v=52,95
p=53,79 v=-63,-87
p=12,21 v=-10,-70
p=71,62 v=76,-19
p=77,13 v=-3,-48
p=51,99 v=-46,-36
p=58,50 v=77,-31
p=59,62 v=54,43
p=66,66 v=-86,12
p=34,87 v=-93,-88
p=93,64 v=-47,71
p=11,5 v=1,-67
p=54,11 v=-80,-13
p=74,31 v=-30,-85
p=25,60 v=6,-34
p=94,77 v=81,73
p=62,70 v=-41,54
p=44,70 v=-68,80
p=25,78 v=42,71
p=46,0 v=-29,82
p=6,4 v=9,76
p=34,40 v=-52,3
p=62,23 v=2,50
p=85,72 v=31,27
p=85,67 v=1,1
p=3,37 v=-15,-96
p=99,29 v=-65,15
p=65,67 v=-22,-99
p=72,65 v=55,6
p=38,97 v=56,-52
p=16,13 v=35,82
p=0,7 v=-8,-86
p=47,4 v=33,-14
p=50,34 v=-26,59
p=27,61 v=60,81
p=100,11 v=13,-93
p=94,33 v=-26,-35
p=9,43 v=52,68
p=23,73 v=-1,-50
p=76,88 v=62,-78
p=62,28 v=43,3
p=95,22 v=-80,79
p=43,81 v=-84,40
p=19,10 v=85,2
p=40,31 v=-45,-81
p=33,59 v=11,-80
p=53,66 v=27,12
p=52,94 v=5,24
p=3,96 v=-71,-33
p=18,48 v=28,-27
p=76,18 v=34,-7
p=75,73 v=93,-53
p=48,9 v=-12,48
p=65,51 v=-69,-66
p=78,10 v=-14,-40
p=44,32 v=-52,7
p=36,20 v=-68,48
p=4,58 v=63,61
p=12,62 v=-39,-53
p=31,36 v=56,-85
p=14,58 v=-51,-61
p=86,11 v=-76,-17
p=45,38 v=-79,-1
p=60,41 v=29,18
p=28,8 v=-22,-59
p=66,47 v=-13,72
p=91,15 v=-31,-55
p=69,73 v=15,-87
p=52,49 v=71,-76
p=73,69 v=-47,-49
p=87,7 v=-20,-94
p=1,0 v=-76,40
p=96,48 v=-14,88
p=52,36 v=-46,26
p=94,48 v=3,-39
p=36,38 v=-71,-93
p=64,8 v=55,-47
p=75,63 v=59,-38
p=64,97 v=15,-94
p=63,102 v=4,-40
p=41,78 v=16,-87
p=63,82 v=58,50
p=32,24 v=48,42
p=57,69 v=-35,31
p=73,26 v=-2,-28
p=31,89 v=28,32
p=82,93 v=-14,62
p=61,87 v=-12,-26
p=58,36 v=-72,-13
p=80,49 v=-59,15
p=34,10 v=72,40
p=4,82 v=41,16
p=46,12 v=5,82
p=81,17 v=75,-36
p=69,12 v=99,90
p=98,16 v=-55,-24
p=49,39 v=38,-89
p=91,1 v=92,-32
p=91,99 v=-48,-33
p=16,44 v=-60,53
p=26,60 v=-56,-31
p=31,32 v=28,-16
p=36,40 v=33,-47
p=60,18 v=-97,-51
p=5,2 v=36,-21
p=83,8 v=20,-47
p=32,40 v=-16,-39
p=65,11 v=-84,11
p=58,31 v=-80,-5
p=96,38 v=-42,-65
p=40,23 v=14,87
p=36,81 v=67,77
p=13,74 v=35,96
p=6,58 v=-36,-64
p=73,23 v=-53,-5
p=22,18 v=45,-58
p=67,29 v=-81,-52
p=14,18 v=-33,-17
p=51,28 v=43,-55
p=98,11 v=-72,95
p=80,17 v=-53,10
p=76,54 v=65,-77
p=76,98 v=-74,66
p=12,50 v=97,64
p=53,27 v=67,26
p=22,89 v=57,-60
p=23,34 v=40,-43
p=35,85 v=17,-6

View File

@ -0,0 +1,12 @@
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3