Refactor code for API (#3)
Co-authored-by: Mikael CAPELLE <mikael.capelle@thalesaleniaspace.com> Co-authored-by: Mikaël Capelle <capelle.mikael@gmail.com> Reviewed-on: #3
This commit is contained in:
@@ -1,9 +1,6 @@
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from typing import Any, Iterator
|
||||
|
||||
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
|
||||
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
|
||||
from ..base import BaseSolver
|
||||
|
||||
|
||||
def reachable(
|
||||
@@ -21,129 +18,133 @@ def reachable(
|
||||
return tiles
|
||||
|
||||
|
||||
map = sys.stdin.read().splitlines()
|
||||
start = next(
|
||||
(i, j) for i in range(len(map)) for j in range(len(map[i])) if map[i][j] == "S"
|
||||
)
|
||||
|
||||
# part 1
|
||||
answer_1 = len(reachable(map, {start}, 6 if len(map) < 20 else 64))
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
# part 2
|
||||
|
||||
# the initial map is a square and contains an empty rhombus whose diameter is the size
|
||||
# of the map, and has only empty cells around the middle row and column
|
||||
#
|
||||
# after ~n/2 steps, the first map is filled with a rhombus, after that we get a bigger
|
||||
# rhombus every n steps
|
||||
#
|
||||
# we are going to find the number of cells reached for the initial rhombus, n steps
|
||||
# after and n * 2 steps after
|
||||
#
|
||||
cycle = len(map)
|
||||
rhombus = (len(map) - 3) // 2 + 1
|
||||
|
||||
values: list[int] = []
|
||||
values.append(len(tiles := reachable(map, {start}, rhombus)))
|
||||
values.append(len(tiles := reachable(map, tiles, cycle)))
|
||||
values.append(len(tiles := reachable(map, tiles, cycle)))
|
||||
|
||||
if logging.root.getEffectiveLevel() == logging.INFO:
|
||||
n_rows, n_cols = len(map), len(map[0])
|
||||
|
||||
rows = [
|
||||
[
|
||||
map[i % n_rows][j % n_cols] if (i, j) not in tiles else "O"
|
||||
for j in range(-2 * cycle, 3 * cycle)
|
||||
]
|
||||
for i in range(-2 * cycle, 3 * cycle)
|
||||
]
|
||||
|
||||
for i in range(len(rows)):
|
||||
for j in range(len(rows[i])):
|
||||
if (i // cycle) % 2 == (j // cycle) % 2:
|
||||
rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
|
||||
|
||||
print("\n".join("".join(row) for row in rows))
|
||||
|
||||
|
||||
logging.info(f"values to fit: {values}")
|
||||
|
||||
# version 1:
|
||||
#
|
||||
# after 3 cycles, the figure looks like the following:
|
||||
#
|
||||
# I M D
|
||||
# I J A K D
|
||||
# H A F A L
|
||||
# C E A K B
|
||||
# C G B
|
||||
#
|
||||
# after 4 cycles, the figure looks like the following:
|
||||
#
|
||||
# I M D
|
||||
# I J A K D
|
||||
# I J A B A K D
|
||||
# H A B A B A L
|
||||
# C E A B A N F
|
||||
# C E A N F
|
||||
# C G F
|
||||
#
|
||||
# the 'radius' of the rhombus is the number of cycles minus 1
|
||||
#
|
||||
# the 4 'corner' (M, H, L, G) are counted once, the blocks with a corner triangle (D, I,
|
||||
# C, B) are each counted radius times, the blocks with everything but one corner (J, K,
|
||||
# E, N) are each counted radius - 1 times
|
||||
#
|
||||
# there are two versions of the whole block, A and B in the above (or odd and even),
|
||||
# depending on the number of cycles, either A or B will be in the center
|
||||
#
|
||||
|
||||
counts = [
|
||||
[
|
||||
sum(
|
||||
(i, j) in tiles
|
||||
for i in range(ci * cycle, (ci + 1) * cycle)
|
||||
for j in range(cj * cycle, (cj + 1) * cycle)
|
||||
class Solver(BaseSolver):
|
||||
def solve(self, input: str) -> Iterator[Any]:
|
||||
map = input.splitlines()
|
||||
start = next(
|
||||
(i, j)
|
||||
for i in range(len(map))
|
||||
for j in range(len(map[i]))
|
||||
if map[i][j] == "S"
|
||||
)
|
||||
for cj in range(-2, 3)
|
||||
]
|
||||
for ci in range(-2, 3)
|
||||
]
|
||||
|
||||
radius = (26501365 - rhombus) // cycle - 1
|
||||
A = counts[2][2] if radius % 2 == 0 else counts[2][1]
|
||||
B = counts[2][2] if radius % 2 == 1 else counts[2][1]
|
||||
answer_2 = (
|
||||
(radius + 1) * A
|
||||
+ radius * B
|
||||
+ 2 * radius * (radius + 1) // 2 * A
|
||||
+ 2 * radius * (radius - 1) // 2 * B
|
||||
+ sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
|
||||
+ sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3))) * (radius + 1)
|
||||
+ sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
|
||||
)
|
||||
print(f"answer 2 (v1) is {answer_2}")
|
||||
# part 1
|
||||
yield len(reachable(map, {start}, 6 if len(map) < 20 else 64))
|
||||
|
||||
# version 2: fitting a polynomial
|
||||
#
|
||||
# the value we are interested in (26501365) can be written as R + K * C where R is the
|
||||
# step at which we find the first rhombus, and K the repeat step, so instead of fitting
|
||||
# for X values (R, R + K, R + 2 K), we are going to fit for (0, 1, 2), giving us much
|
||||
# simpler equation for the a, b and c coefficient
|
||||
#
|
||||
# we get:
|
||||
# - (a * 0² + b * 0 + c) = y1 => c = y1
|
||||
# - (a * 1² + b * 1 + c) = y2 => a + b = y2 - y1
|
||||
# => b = y2 - y1 - a
|
||||
# - (a * 2² + b * 2 + c) = y3 => 4a + 2b = y3 - y1
|
||||
# => 4a + 2(y2 - y1 - a) = y3 - y1
|
||||
# => a = (y1 + y3) / 2 - y2
|
||||
#
|
||||
y1, y2, y3 = values
|
||||
a, b, c = (y1 + y3) // 2 - y2, 2 * y2 - (3 * y1 + y3) // 2, y1
|
||||
# part 2
|
||||
|
||||
n = (26501365 - rhombus) // cycle
|
||||
answer_2 = a * n * n + b * n + c
|
||||
print(f"answer 2 (v2) is {answer_2}")
|
||||
# the initial map is a square and contains an empty rhombus whose diameter is
|
||||
# the size of the map, and has only empty cells around the middle row and column
|
||||
#
|
||||
# after ~n/2 steps, the first map is filled with a rhombus, after that we get a
|
||||
# bigger rhombus every n steps
|
||||
#
|
||||
# we are going to find the number of cells reached for the initial rhombus, n
|
||||
# steps after and n * 2 steps after
|
||||
#
|
||||
cycle = len(map)
|
||||
rhombus = (len(map) - 3) // 2 + 1
|
||||
|
||||
values: list[int] = []
|
||||
values.append(len(tiles := reachable(map, {start}, rhombus)))
|
||||
values.append(len(tiles := reachable(map, tiles, cycle)))
|
||||
values.append(len(tiles := reachable(map, tiles, cycle)))
|
||||
|
||||
if self.verbose:
|
||||
n_rows, n_cols = len(map), len(map[0])
|
||||
|
||||
rows = [
|
||||
[
|
||||
map[i % n_rows][j % n_cols] if (i, j) not in tiles else "O"
|
||||
for j in range(-2 * cycle, 3 * cycle)
|
||||
]
|
||||
for i in range(-2 * cycle, 3 * cycle)
|
||||
]
|
||||
|
||||
for i in range(len(rows)):
|
||||
for j in range(len(rows[i])):
|
||||
if (i // cycle) % 2 == (j // cycle) % 2:
|
||||
rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
|
||||
|
||||
for row in rows:
|
||||
self.logger.info("".join(row))
|
||||
|
||||
self.logger.info(f"values to fit: {values}")
|
||||
|
||||
# version 1:
|
||||
#
|
||||
# after 3 cycles, the figure looks like the following:
|
||||
#
|
||||
# I M D
|
||||
# I J A K D
|
||||
# H A F A L
|
||||
# C E A K B
|
||||
# C G B
|
||||
#
|
||||
# after 4 cycles, the figure looks like the following:
|
||||
#
|
||||
# I M D
|
||||
# I J A K D
|
||||
# I J A B A K D
|
||||
# H A B A B A L
|
||||
# C E A B A N F
|
||||
# C E A N F
|
||||
# C G F
|
||||
#
|
||||
# the 'radius' of the rhombus is the number of cycles minus 1
|
||||
#
|
||||
# the 4 'corner' (M, H, L, G) are counted once, the blocks with a corner triangle (D, I,
|
||||
# C, B) are each counted radius times, the blocks with everything but one corner (J, K,
|
||||
# E, N) are each counted radius - 1 times
|
||||
#
|
||||
# there are two versions of the whole block, A and B in the above (or odd and even),
|
||||
# depending on the number of cycles, either A or B will be in the center
|
||||
#
|
||||
|
||||
counts = [
|
||||
[
|
||||
sum(
|
||||
(i, j) in tiles
|
||||
for i in range(ci * cycle, (ci + 1) * cycle)
|
||||
for j in range(cj * cycle, (cj + 1) * cycle)
|
||||
)
|
||||
for cj in range(-2, 3)
|
||||
]
|
||||
for ci in range(-2, 3)
|
||||
]
|
||||
|
||||
radius = (26501365 - rhombus) // cycle - 1
|
||||
A = counts[2][2] if radius % 2 == 0 else counts[2][1]
|
||||
B = counts[2][2] if radius % 2 == 1 else counts[2][1]
|
||||
answer_2 = (
|
||||
(radius + 1) * A
|
||||
+ radius * B
|
||||
+ 2 * radius * (radius + 1) // 2 * A
|
||||
+ 2 * radius * (radius - 1) // 2 * B
|
||||
+ sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
|
||||
+ sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
|
||||
* (radius + 1)
|
||||
+ sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
|
||||
)
|
||||
print(f"answer 2 (v1) is {answer_2}")
|
||||
|
||||
# version 2: fitting a polynomial
|
||||
#
|
||||
# the value we are interested in (26501365) can be written as R + K * C where R is the
|
||||
# step at which we find the first rhombus, and K the repeat step, so instead of fitting
|
||||
# for X values (R, R + K, R + 2 K), we are going to fit for (0, 1, 2), giving us much
|
||||
# simpler equation for the a, b and c coefficient
|
||||
#
|
||||
# we get:
|
||||
# - (a * 0² + b * 0 + c) = y1 => c = y1
|
||||
# - (a * 1² + b * 1 + c) = y2 => a + b = y2 - y1
|
||||
# => b = y2 - y1 - a
|
||||
# - (a * 2² + b * 2 + c) = y3 => 4a + 2b = y3 - y1
|
||||
# => 4a + 2(y2 - y1 - a) = y3 - y1
|
||||
# => a = (y1 + y3) / 2 - y2
|
||||
#
|
||||
y1, y2, y3 = values
|
||||
a, b, c = (y1 + y3) // 2 - y2, 2 * y2 - (3 * y1 + y3) // 2, y1
|
||||
|
||||
n = (26501365 - rhombus) // cycle
|
||||
yield a * n * n + b * n + c
|
||||
|
Reference in New Issue
Block a user