248 lines
5.8 KiB
Python
248 lines
5.8 KiB
Python
# -*- encoding: utf-8 -*-
|
|
|
|
from __future__ import annotations
|
|
|
|
import heapq
|
|
import itertools
|
|
import re
|
|
import sys
|
|
from collections import defaultdict
|
|
from typing import NamedTuple
|
|
|
|
from docplex.mp.model import Model
|
|
from docplex.mp.vartype import BinaryVarType
|
|
|
|
|
|
class Pipe(NamedTuple):
|
|
name: str
|
|
flow: int
|
|
tunnels: list[str]
|
|
|
|
def __lt__(self, other: object) -> bool:
|
|
return isinstance(other, Pipe) and other.name < self.name
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
return isinstance(other, Pipe) and other.name == self.name
|
|
|
|
def __hash__(self) -> int:
|
|
return hash(self.name)
|
|
|
|
def __str__(self) -> str:
|
|
return self.name
|
|
|
|
def __repr__(self) -> str:
|
|
return self.name
|
|
|
|
|
|
def breadth_first_search(pipes: dict[str, Pipe], pipe_1: Pipe, pipe_2: Pipe) -> int:
|
|
queue = [(0, pipe_1)]
|
|
visited = set()
|
|
|
|
while queue:
|
|
distance, current = heapq.heappop(queue)
|
|
|
|
if current in visited:
|
|
continue
|
|
|
|
visited.add(current)
|
|
|
|
if current == pipe_2:
|
|
return distance
|
|
|
|
for tunnel in current.tunnels:
|
|
heapq.heappush(queue, (distance + 1, pipes[tunnel]))
|
|
|
|
return -1
|
|
|
|
|
|
lines = sys.stdin.read().splitlines()
|
|
|
|
|
|
pipes: dict[str, Pipe] = {}
|
|
for line in lines:
|
|
r = re.match(
|
|
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
|
|
line,
|
|
)
|
|
assert r
|
|
|
|
g = r.groups()
|
|
|
|
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
|
|
|
|
# compute distances from one valve to any other
|
|
distances: dict[tuple[Pipe, Pipe], int] = {}
|
|
for pipe_1 in pipes.values():
|
|
for pipe_2 in pipes.values():
|
|
distances[pipe_1, pipe_2] = breadth_first_search(pipes, pipe_1, pipe_2)
|
|
|
|
# valves with flow
|
|
relevant_pipes = [pipe for pipe in pipes.values() if pipe.flow > 0]
|
|
|
|
|
|
# nodes: list[tuple[Pipe, int, int, list[Pipe]]] = [(start_pipe, 0, 0, [])]
|
|
# best_flow: int = 0
|
|
|
|
# while nodes:
|
|
# current, time, flow, flowing = nodes.pop(0)
|
|
|
|
# if time == max_time:
|
|
# if flow > best_flow:
|
|
# best_flow = flow
|
|
# continue
|
|
|
|
# next_nodes: list[tuple[Pipe, int, int, list[Pipe]]] = []
|
|
# for target in relevant_pipes:
|
|
|
|
# if target is current or target in flowing:
|
|
# continue
|
|
|
|
# distance = distances[current, target] + 1
|
|
|
|
# if time + distance >= max_time:
|
|
# continue
|
|
|
|
# next_nodes.append(
|
|
# (
|
|
# target,
|
|
# time + distance,
|
|
# flow + distance * sum(pipe.flow for pipe in flowing) + target.flow,
|
|
# flowing + [target],
|
|
# )
|
|
# )
|
|
|
|
# # print(time, current, flow, next_nodes)
|
|
|
|
# if not next_nodes:
|
|
# next_nodes.append(
|
|
# (
|
|
# current,
|
|
# max_time,
|
|
# flow + sum(pipe.flow for pipe in flowing) * (max_time - time - 1),
|
|
# flowing,
|
|
# )
|
|
# )
|
|
|
|
# nodes.extend(next_nodes)
|
|
|
|
# # if time >= 4:
|
|
# # break
|
|
|
|
# print(best_flow)
|
|
|
|
|
|
# nodes = [best]
|
|
# while nodes[-1].parent is not None:
|
|
# nodes.append(nodes[-1].parent)
|
|
# nodes = list(reversed(nodes))
|
|
|
|
# for node in nodes:
|
|
# print(node.time, node.valve, node.flow, node.flowing)
|
|
|
|
#
|
|
start_pipe = pipes["AA"]
|
|
max_time = 30
|
|
ee = [0]
|
|
|
|
# max_time = 26
|
|
# ee = [0, 1]
|
|
|
|
m = Model()
|
|
|
|
var_out: dict[Pipe, dict[Pipe, BinaryVarType]] = {
|
|
pipe: m.binary_var_dict(relevant_pipes) for pipe in relevant_pipes + [start_pipe]
|
|
}
|
|
var_in: dict[Pipe, dict[Pipe, BinaryVarType]] = {pipe: {} for pipe in relevant_pipes}
|
|
for p1 in var_out:
|
|
for p2 in var_out[p1]:
|
|
var_in[p2][p1] = var_out[p1][p2]
|
|
|
|
open_at: dict[tuple[int, Pipe], BinaryVarType] = m.continuous_var_dict(
|
|
(
|
|
(t, pipe)
|
|
for t, pipe in itertools.product(range(max_time), [start_pipe] + relevant_pipes)
|
|
),
|
|
lb=0,
|
|
ub=1,
|
|
)
|
|
|
|
for time, pipe in itertools.product(range(max_time), relevant_pipes):
|
|
m.add_constraint(open_at[time, pipe] <= m.sum())
|
|
|
|
|
|
for e in ee:
|
|
m.add_constraint(open_at[e, 0, start_pipe] == 1)
|
|
|
|
for e, pipe in itertools.product(ee, relevant_pipes):
|
|
m.add_constraint(open_at[e, 0, pipe] == 0)
|
|
|
|
for e, t, p1 in itertools.product(ee, range(max_time), relevant_pipes):
|
|
from_time_and_pipe = [
|
|
(p2, t - distances[p2, p1] - 1)
|
|
for p2 in relevant_pipes + [start_pipe]
|
|
if t - distances[p2, p1] - 1 >= 0 and p2 is not p1
|
|
]
|
|
|
|
if from_time_and_pipe:
|
|
m.add_constraint(
|
|
open_at[e, t, p1]
|
|
<= m.sum(open_at[e, t2, p2] for p2, t2 in from_time_and_pipe)
|
|
)
|
|
else:
|
|
m.add_constraint(open_at[e, t, p1] == 0)
|
|
|
|
for pipe in relevant_pipes + [start_pipe]:
|
|
m.add_constraint(
|
|
m.sum(open_at[e, t, pipe] for e, t in itertools.product(ee, range(max_time)))
|
|
<= 1
|
|
)
|
|
for e, t in itertools.product(ee, range(max_time)):
|
|
m.add_constraint(
|
|
m.sum(open_at[e, t, pipe] for pipe in relevant_pipes + [start_pipe]) <= 1
|
|
)
|
|
|
|
# keeps flowing
|
|
flowing_at = {
|
|
(t, pipe): m.sum(
|
|
open_at[e, t2, pipe] for e, t2 in itertools.product(ee, range(0, t))
|
|
)
|
|
for t, pipe in itertools.product(range(max_time), relevant_pipes)
|
|
}
|
|
|
|
|
|
# objective
|
|
m.set_objective(
|
|
"max",
|
|
m.sum(
|
|
flowing_at[t, pipe] * pipe.flow
|
|
for t, pipe in itertools.product(range(max_time), relevant_pipes)
|
|
),
|
|
)
|
|
|
|
m.log_output = True
|
|
s = m.solve()
|
|
|
|
print(s.get_objective_value())
|
|
|
|
|
|
for t in range(max_time):
|
|
opent = {
|
|
e: [
|
|
pipe
|
|
for pipe in relevant_pipes + [start_pipe]
|
|
if s.get_value(open_at[e, t, pipe]) > 1e-8
|
|
]
|
|
for e in ee
|
|
}
|
|
flowing = [
|
|
pipe
|
|
for pipe in relevant_pipes
|
|
if any(s.get_value(flowing_at[t, pipe]) > 1e-8 for e in ee)
|
|
]
|
|
|
|
assert all(len(opent[e]) <= 1 for e in ee)
|
|
|
|
o = [opent[e][0] if opent[e] else "-" for e in ee]
|
|
|
|
print(f"t={t}, open={o}, flowing={flowing}")
|