Mikaël Capelle 77b24dd148
Some checks failed
continuous-integration/drone/push Build is failing
2024 day 23.
2024-12-23 11:35:42 +01:00

187 lines
5.2 KiB
Python

import heapq
from typing import (
Callable,
Iterable,
Iterator,
Mapping,
TypeVar,
cast,
overload,
)
_Node = TypeVar("_Node")
def make_neighbors_grid_fn(
rows: int | Iterable[int],
cols: int | Iterable[int],
excluded: Iterable[tuple[int, int]] = set(),
diagonals: bool = False,
):
"""
Create a neighbors function suitable for graph function for a simple grid.
Args:
rows: Rows of the grid. If an int is specified, the rows are assumed to be
numbered from 0 to rows - 1, otherwise the iterable should contain the list
of valid rows.
cols: Columns of the grid. If an int is specified, the columns are assumed to be
numbered from 0 to cols - 1, otherwise the iterable should contain the list
of valid columns.
excluded: Cells of the grid that cannot be used as valid nodes for the graph.
diagonals: If True, neighbors will include diagonal cells, otherwise, only
horizontal and vertical neighbors will be included.
"""
ds = ((-1, 0), (0, 1), (1, 0), (0, -1))
if diagonals:
ds = ds + ((-1, -1), (-1, 1), (1, -1), (1, 1))
if isinstance(rows, int):
rows = range(rows)
elif not isinstance(rows, range):
rows = set(rows)
if isinstance(cols, int):
cols = range(cols)
elif not isinstance(cols, range):
cols = set(cols)
excluded = set(excluded)
def _fn(node: tuple[int, int]):
return (
((row_n, col_n), 1)
for dr, dc in ds
if (row_n := node[0] + dr) in rows
and (col_n := node[1] + dc) in cols
and (row_n, col_n) not in excluded
)
return _fn
@overload
def dijkstra(
start: _Node,
target: None,
neighbors: Callable[[_Node], Iterable[tuple[_Node, float]]],
) -> dict[_Node, tuple[tuple[_Node, ...], float]]: ...
@overload
def dijkstra(
start: _Node,
target: _Node,
neighbors: Callable[[_Node], Iterable[tuple[_Node, float]]],
) -> tuple[tuple[_Node, ...], float] | None: ...
def dijkstra(
start: _Node,
target: _Node | None,
neighbors: Callable[[_Node], Iterable[tuple[_Node, float]]],
) -> (
dict[_Node, tuple[tuple[_Node, ...], float]]
| tuple[tuple[_Node, ...], float]
| None
):
"""
Solve shortest-path problem using simple Dijkstra algorithm from start to target,
using the given neighbors function.
Args:
start: Starting node of the path.
target: Target node for the path.
neighbors: Function that should return, for a given node, the list of
its neighbors with the cost to go from the node to the neighbor.
Returns:
One of the shortest-path from start to target with its associated cost, if one
is found, otherwise None.
"""
queue: list[tuple[float, _Node, tuple[_Node, ...]]] = [(0, start, (start,))]
preds: dict[_Node, tuple[tuple[_Node, ...], float]] = {}
while queue:
dis, node, path = heapq.heappop(queue)
if node in preds:
continue
preds[node] = (path, dis)
if node == target:
break
for neighbor, cost in neighbors(node):
if neighbor in preds:
continue
heapq.heappush(queue, (dis + cost, neighbor, path + (neighbor,)))
if target is None:
return preds
return preds.get(target, None)
def iter_max_cliques(
neighbors: Mapping[_Node, Iterable[_Node]], nodes: Iterable[_Node] | None = None
) -> Iterator[list[_Node]]:
"""
Find max cliques from the given set of neighbors containing the given set of nodes.
This is simply the networkx implementation with typing (and using a simple mapping
to avoid requiring networkx).
"""
if len(neighbors) == 0:
return
# remove the node itself from the neighbors
adj = {u: {v for v in neighbors[u] if v != u} for u in neighbors}
# Initialize Q with the given nodes and subg, cand with their nbrs
Q: list[_Node | None] = list(nodes or [])
cand = set(neighbors)
for node in Q:
if node not in cand:
raise ValueError(f"The given `nodes` {nodes} do not form a clique")
cand &= adj[node]
if not cand:
yield cast(list[_Node], Q[:])
return
subg = cand.copy()
stack: list[tuple[set[_Node], set[_Node], set[_Node]]] = []
Q.append(None)
u = max(subg, key=lambda u: len(cand & adj[u]))
ext_u = cand - adj[u]
try:
while True:
if ext_u:
q = ext_u.pop()
cand.remove(q)
Q[-1] = q
adj_q = adj[q]
subg_q = subg & adj_q
if not subg_q:
yield cast(list[_Node], Q[:])
else:
cand_q = cand & adj_q
if cand_q:
stack.append((subg, cand, ext_u))
Q.append(None)
subg = subg_q
cand = cand_q
u = max(subg, key=lambda u: len(cand & adj[u]))
ext_u = cand - adj[u]
else:
Q.pop()
subg, cand, ext_u = stack.pop()
except IndexError:
pass