advent-of-code/2022/day12.py
Mikael CAPELLE 971c1b0dda Add day 13.
2022-12-13 08:54:15 +01:00

166 lines
4.3 KiB
Python

# -*- encoding: utf-8 -*-
import heapq
import sys
from typing import Callable, Iterator, TypeVar
Node = TypeVar("Node")
def dijkstra(
start: Node,
neighbors: Callable[[Node], Iterator[Node]],
cost: Callable[[Node, Node], float],
) -> tuple[dict[Node, float], dict[Node, Node]]:
"""
Compute shortest paths from one node to all reachable ones.
Args:
start: Starting node.
neighbors: Function returning the neighbors of a node.
cost: Function to compute the cost of an edge.
Returns:
A tuple (lengths, parents) where lengths is a mapping from Node to distance
(from the starting node) and parents a mapping from parents Node (in the
shortest path). If keyset of lengths and parents is the same. If a Node is not
in the mapping, it cannot be reached from the starting node.
"""
queue: list[tuple[float, Node]] = []
visited: set[Node] = set()
lengths: dict[Node, float] = {start: 0}
parents: dict[Node, Node] = {}
heapq.heappush(queue, (0, start))
while queue:
length, current = heapq.heappop(queue)
if current in visited:
continue
visited.add(current)
for neighbor in neighbors(current):
if neighbor in visited:
continue
neighbor_cost = length + cost(current, neighbor)
if neighbor_cost < lengths.get(neighbor, float("inf")):
lengths[neighbor] = neighbor_cost
parents[neighbor] = current
heapq.heappush(queue, (neighbor_cost, neighbor))
return lengths, parents
def make_path(parents: dict[Node, Node], start: Node, end: Node) -> list[Node] | None:
if end not in parents:
return None
path: list[Node] = [end]
while path[-1] is not start:
path.append(parents[path[-1]])
return list(reversed(path))
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
graph[end[0]][end[1]] = "E"
for i in range(0, len(path) - 1):
cr, cc = path[i]
nr, nc = path[i + 1]
if cr == nr and nc == cc - 1:
graph[cr][cc] = "<"
elif cr == nr and nc == cc + 1:
graph[cr][cc] = ">"
elif cr == nr - 1 and nc == cc:
graph[cr][cc] = "v"
elif cr == nr + 1 and nc == cc:
graph[cr][cc] = "^"
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
print("\n".join("".join(row) for row in graph))
def neighbors(
grid: list[list[int]], node: tuple[int, int], up: bool
) -> Iterator[tuple[int, int]]:
n_rows = len(grid)
n_cols = len(grid[0])
c_row, c_col = node
for n_row, n_col in (
(c_row - 1, c_col),
(c_row + 1, c_col),
(c_row, c_col - 1),
(c_row, c_col + 1),
):
if not (n_row >= 0 and n_row < n_rows and n_col >= 0 and n_col < n_cols):
continue
if up and grid[n_row][n_col] > grid[c_row][c_col] + 1:
continue
elif not up and grid[n_row][n_col] < grid[c_row][c_col] - 1:
continue
yield n_row, n_col
# === main code ===
lines = sys.stdin.read().splitlines()
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
start: tuple[int, int]
end: tuple[int, int]
# for part 2
start_s: list[tuple[int, int]] = []
for i_row, row in enumerate(grid):
for i_col, col in enumerate(row):
if chr(col + ord("a")) == "S":
start = (i_row, i_col)
start_s.append(start)
elif chr(col + ord("a")) == "E":
end = (i_row, i_col)
elif col == 0:
start_s.append((i_row, i_col))
# fix values
grid[start[0]][start[1]] = 0
grid[end[0]][end[1]] = ord("z") - ord("a")
lengths_1, parents_1 = dijkstra(
start=start, neighbors=lambda n: neighbors(grid, n, True), cost=lambda lhs, rhs: 1
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
print(f"answer 1 is {lengths_1[end] - 1}")
lengths_2, parents_2 = dijkstra(
start=end, neighbors=lambda n: neighbors(grid, n, False), cost=lambda lhs, rhs: 1
)
answer_2 = min(lengths_2.get(start, float("inf")) for start in start_s)
print(f"answer 2 is {answer_2}")