advent-of-code/2022/day19.py
Mikaël Capelle fadb2a71c2 Day 19.
2022-12-19 22:09:20 +01:00

188 lines
5.6 KiB
Python

# -*- encoding: utf-8 -*-
import sys
from typing import Literal
import numpy as np
import parse
from tqdm import tqdm
Reagent = Literal["ore", "clay", "obsidian", "geode"]
REAGENTS: tuple[Reagent, ...] = (
"ore",
"clay",
"obsidian",
"geode",
)
IntOfReagent = dict[Reagent, int]
class State:
robots: IntOfReagent
reagents: IntOfReagent
def __init__(
self,
robots: IntOfReagent | None = None,
reagents: IntOfReagent | None = None,
):
if robots is None:
assert reagents is None
self.reagents = {reagent: 0 for reagent in REAGENTS}
self.robots = {reagent: 0 for reagent in REAGENTS}
self.robots["ore"] = 1
else:
assert robots is not None and reagents is not None
self.robots = robots
self.reagents = reagents
def __eq__(self, other) -> bool:
return (
isinstance(other, State)
and self.robots == other.robots
and self.reagents == other.reagents
)
def __hash__(self) -> int:
return hash(tuple((self.robots[r], self.reagents[r]) for r in REAGENTS))
def __str__(self) -> str:
return "State({}, {})".format(
"/".join(str(self.robots[k]) for k in REAGENTS),
"/".join(str(self.reagents[k]) for k in REAGENTS),
)
def __repr__(self) -> str:
return str(self)
def dominates(lhs: State, rhs: State):
return all(
lhs.robots[r] >= rhs.robots[r] and lhs.reagents[r] >= rhs.reagents[r]
for r in REAGENTS
)
lines = sys.stdin.read().splitlines()
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in lines:
r = parse.parse(
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
# since we can only build one robot per time, we do not need more than X robots
# of type K where X is the maximum number of K required among all robots, e.g.,
# in the first toy blueprint, we need at most 4 ore robots, 14 clay ones and 7
# obsidian ones
maximums = {
name: max(blueprint[r].get(name, 0) for r in REAGENTS) for name in REAGENTS
}
state_after_t: dict[int, set[State]] = {0: [State()]}
for t in range(1, max_time + 1):
# list of new states at the end of step t that we are going to prune later
states_for_t: set[State] = set()
for state in state_after_t[t - 1]:
robots_that_can_be_built = [
robot
for robot in REAGENTS
if all(
state.reagents[reagent] >= blueprint[robot].get(reagent, 0)
for reagent in REAGENTS
)
]
states_for_t.add(
State(
robots=state.robots,
reagents={
reagent: state.reagents[reagent] + state.robots[reagent]
for reagent in REAGENTS
},
)
)
# this speeds-up the process and work but I am not 100% sure this is right
if "geode" in robots_that_can_be_built:
robots_that_can_be_built = ["geode"]
else:
robots_that_can_be_built = [
robot
for robot in robots_that_can_be_built
if state.robots[robot] < maximums[robot]
]
for robot in robots_that_can_be_built:
robots = state.robots.copy()
robots[robot] += 1
reagents = {
reagent: state.reagents[reagent]
+ state.robots[reagent]
- blueprint[robot].get(reagent, 0)
for reagent in REAGENTS
}
states_for_t.add(State(robots=robots, reagents=reagents))
# use numpy to switch computation of dominated states -> store each state
# as a 8 array and use numpy broadcasting to find dominated states
states_after = np.asarray(list(states_for_t))
np_states = np.array(
[
[state.robots[r] for r in REAGENTS]
+ [state.reagents[r] for r in REAGENTS]
for state in states_after
]
)
to_keep = []
while len(np_states) > 0:
first_dom = (np_states[1:] >= np_states[0]).all(axis=1).any()
if first_dom:
np_states = np_states[1:]
else:
to_keep.append(np_states[0])
np_states = np_states[1:][~(np_states[1:] <= np_states[0]).all(axis=1)]
state_after_t[t] = {
State(
robots=dict(zip(REAGENTS, row[:4])),
reagents=dict(zip(REAGENTS, row[4:])),
)
for row in to_keep
}
return max(state.reagents["geode"] for state in state_after_t[max_time])
answer_1 = sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(tqdm(blueprints))
)
print(f"answer 1 is {answer_1}")
answer_2 = run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32)
print(f"answer 2 is {answer_2}")