2022-12-16 08:21:54 +00:00
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
2022-12-16 17:40:21 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import heapq
|
2022-12-16 08:21:54 +00:00
|
|
|
import itertools
|
|
|
|
import re
|
|
|
|
import sys
|
2023-12-05 19:16:27 +00:00
|
|
|
import time as time_p
|
2022-12-16 17:40:21 +00:00
|
|
|
from collections import defaultdict
|
2022-12-16 21:52:03 +00:00
|
|
|
from typing import FrozenSet, NamedTuple
|
2022-12-16 08:21:54 +00:00
|
|
|
|
2023-12-05 19:16:27 +00:00
|
|
|
from tqdm import tqdm, trange
|
2022-12-16 17:40:21 +00:00
|
|
|
|
|
|
|
|
|
|
|
class Pipe(NamedTuple):
|
|
|
|
name: str
|
|
|
|
flow: int
|
|
|
|
tunnels: list[str]
|
|
|
|
|
|
|
|
def __lt__(self, other: object) -> bool:
|
|
|
|
return isinstance(other, Pipe) and other.name < self.name
|
|
|
|
|
|
|
|
def __eq__(self, other: object) -> bool:
|
|
|
|
return isinstance(other, Pipe) and other.name == self.name
|
|
|
|
|
|
|
|
def __hash__(self) -> int:
|
|
|
|
return hash(self.name)
|
|
|
|
|
|
|
|
def __str__(self) -> str:
|
|
|
|
return self.name
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
|
|
|
return self.name
|
|
|
|
|
|
|
|
|
2022-12-16 21:56:34 +00:00
|
|
|
def breadth_first_search(pipes: dict[str, Pipe], pipe: Pipe) -> dict[Pipe, int]:
|
|
|
|
"""
|
|
|
|
Runs a BFS from the given pipe and return the shortest distance (in term of hops)
|
|
|
|
to all other pipes.
|
|
|
|
"""
|
2022-12-16 17:40:21 +00:00
|
|
|
queue = [(0, pipe_1)]
|
|
|
|
visited = set()
|
2022-12-16 21:56:34 +00:00
|
|
|
distances: dict[Pipe, int] = {}
|
2022-12-16 17:40:21 +00:00
|
|
|
|
2022-12-16 21:56:34 +00:00
|
|
|
while len(distances) < len(pipes):
|
2022-12-16 17:40:21 +00:00
|
|
|
distance, current = heapq.heappop(queue)
|
|
|
|
|
|
|
|
if current in visited:
|
|
|
|
continue
|
|
|
|
|
|
|
|
visited.add(current)
|
2022-12-16 21:56:34 +00:00
|
|
|
distances[current] = distance
|
2022-12-16 17:40:21 +00:00
|
|
|
|
|
|
|
for tunnel in current.tunnels:
|
|
|
|
heapq.heappush(queue, (distance + 1, pipes[tunnel]))
|
|
|
|
|
2022-12-16 21:56:34 +00:00
|
|
|
return distances
|
2022-12-16 17:40:21 +00:00
|
|
|
|
2022-12-16 08:21:54 +00:00
|
|
|
|
2022-12-16 21:52:03 +00:00
|
|
|
def update_with_better(
|
|
|
|
node_at_times: dict[FrozenSet[Pipe], int], flow: int, flowing: FrozenSet[Pipe]
|
|
|
|
) -> None:
|
|
|
|
node_at_times[flowing] = max(node_at_times[flowing], flow)
|
|
|
|
|
|
|
|
|
|
|
|
def part_1(
|
|
|
|
start_pipe: Pipe,
|
|
|
|
max_time: int,
|
|
|
|
distances: dict[tuple[Pipe, Pipe], int],
|
|
|
|
relevant_pipes: FrozenSet[Pipe],
|
|
|
|
):
|
|
|
|
|
|
|
|
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
|
|
|
|
lambda: defaultdict(lambda: defaultdict(lambda: 0))
|
|
|
|
)
|
|
|
|
node_at_times[0] = {start_pipe: {frozenset(): 0}}
|
|
|
|
|
|
|
|
for time in range(max_time):
|
|
|
|
for c_pipe, nodes in node_at_times[time].items():
|
|
|
|
for flowing, flow in nodes.items():
|
|
|
|
for target in relevant_pipes:
|
|
|
|
|
|
|
|
distance = distances[c_pipe, target] + 1
|
|
|
|
if time + distance >= max_time or target in flowing:
|
|
|
|
continue
|
|
|
|
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[time + distance][target],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing) * distance,
|
|
|
|
flowing | {target},
|
|
|
|
)
|
|
|
|
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[max_time][c_pipe],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
|
|
|
|
flowing,
|
|
|
|
)
|
|
|
|
|
|
|
|
return max(
|
|
|
|
flow
|
|
|
|
for nodes_of_pipe in node_at_times[max_time].values()
|
|
|
|
for flow in nodes_of_pipe.values()
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def part_2(
|
|
|
|
start_pipe: Pipe,
|
|
|
|
max_time: int,
|
2023-12-05 19:16:27 +00:00
|
|
|
pipes: dict[str, Pipe],
|
2022-12-16 21:52:03 +00:00
|
|
|
relevant_pipes: FrozenSet[Pipe],
|
2023-12-05 19:16:27 +00:00
|
|
|
distances: dict[tuple[Pipe, Pipe], int],
|
2022-12-16 21:52:03 +00:00
|
|
|
):
|
2023-12-05 19:16:27 +00:00
|
|
|
|
|
|
|
node_at_times: dict[
|
|
|
|
int, dict[tuple[Pipe, Pipe], dict[FrozenSet[Pipe], int]]
|
|
|
|
] = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0)))
|
|
|
|
node_at_times[0] = {(start_pipe, start_pipe): {frozenset(): 0}}
|
|
|
|
|
|
|
|
# map node + distance to
|
|
|
|
d1, d2, d3, d4 = 0, 0, 0, 0
|
|
|
|
best_flow = 0
|
|
|
|
|
|
|
|
for time in range(max_time):
|
|
|
|
print(
|
|
|
|
f"{time + 1:2d}/{max_time} - {best_flow:4d} - "
|
|
|
|
f"{sum(map(len, node_at_times[time].values())):7d} - "
|
|
|
|
f"{d1:.3f} {d2:.3f} {d3:.3f} {d4:.3f}"
|
2022-12-16 21:52:03 +00:00
|
|
|
)
|
|
|
|
|
2023-12-05 19:16:27 +00:00
|
|
|
d1, d2, d3, d4 = 0, 0, 0, 0
|
|
|
|
for (c_pipe, e_pipe), nodes in node_at_times[time].items():
|
|
|
|
for flowing, flow in nodes.items():
|
|
|
|
|
|
|
|
t1 = time_p.time()
|
|
|
|
|
|
|
|
c_best_flow = (
|
|
|
|
flow
|
|
|
|
+ sum(pipe.flow for pipe in flowing) * (max_time - time)
|
|
|
|
+ sum(
|
|
|
|
(
|
|
|
|
pipe.flow
|
|
|
|
* (
|
|
|
|
max_time
|
|
|
|
- time
|
|
|
|
- 1
|
|
|
|
- min(distances[c_pipe, pipe], distances[e_pipe, pipe])
|
|
|
|
)
|
|
|
|
for pipe in relevant_pipes
|
|
|
|
if pipe not in flowing
|
|
|
|
),
|
|
|
|
start=0,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
d1 += time_p.time() - t1
|
|
|
|
|
|
|
|
if c_best_flow < best_flow:
|
|
|
|
continue
|
|
|
|
|
|
|
|
best_flow = max(
|
|
|
|
best_flow,
|
|
|
|
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
|
|
|
|
)
|
|
|
|
|
|
|
|
t1 = time_p.time()
|
|
|
|
|
|
|
|
if flowing != relevant_pipes:
|
|
|
|
for c_next_s, e_next_s in itertools.product(
|
|
|
|
c_pipe.tunnels, e_pipe.tunnels
|
|
|
|
):
|
|
|
|
|
|
|
|
c_next = pipes[c_next_s]
|
|
|
|
e_next = pipes[e_next_s]
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[time + 1][c_next, e_next],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing),
|
|
|
|
flowing,
|
|
|
|
)
|
|
|
|
|
|
|
|
d2 += time_p.time() - t1
|
|
|
|
|
|
|
|
t1 = time_p.time()
|
2022-12-16 21:52:03 +00:00
|
|
|
|
2023-12-05 19:16:27 +00:00
|
|
|
if c_pipe in relevant_pipes and c_pipe not in flowing:
|
|
|
|
for e_next_s in e_pipe.tunnels:
|
|
|
|
|
|
|
|
e_next = pipes[e_next_s]
|
|
|
|
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[time + 1][c_pipe, e_next],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing),
|
|
|
|
flowing | {c_pipe},
|
|
|
|
)
|
|
|
|
|
|
|
|
if e_pipe in relevant_pipes and e_pipe not in flowing:
|
|
|
|
for c_next_s in c_pipe.tunnels:
|
|
|
|
|
|
|
|
c_next = pipes[c_next_s]
|
|
|
|
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[time + 1][c_next, e_pipe],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing),
|
|
|
|
flowing | {e_pipe},
|
|
|
|
)
|
|
|
|
|
|
|
|
if (
|
|
|
|
e_pipe in relevant_pipes
|
|
|
|
and c_pipe in relevant_pipes
|
|
|
|
and e_pipe not in flowing
|
|
|
|
and c_pipe not in flowing
|
|
|
|
):
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[time + 1][c_pipe, e_pipe],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing),
|
|
|
|
flowing | {c_pipe, e_pipe},
|
|
|
|
)
|
|
|
|
|
|
|
|
update_with_better(
|
|
|
|
node_at_times[max_time][c_pipe, e_pipe],
|
|
|
|
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
|
|
|
|
flowing,
|
|
|
|
)
|
|
|
|
|
|
|
|
d3 += time_p.time() - t1
|
|
|
|
|
|
|
|
return max(
|
|
|
|
flow
|
|
|
|
for nodes_of_pipe in node_at_times[max_time].values()
|
|
|
|
for flow in nodes_of_pipe.values()
|
|
|
|
)
|
2022-12-16 21:52:03 +00:00
|
|
|
|
|
|
|
|
|
|
|
# === MAIN ===
|
|
|
|
|
|
|
|
|
2022-12-16 08:21:54 +00:00
|
|
|
lines = sys.stdin.read().splitlines()
|
|
|
|
|
2022-12-16 17:40:21 +00:00
|
|
|
|
|
|
|
pipes: dict[str, Pipe] = {}
|
2022-12-16 08:21:54 +00:00
|
|
|
for line in lines:
|
|
|
|
r = re.match(
|
|
|
|
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
|
|
|
|
line,
|
2022-12-16 17:40:21 +00:00
|
|
|
)
|
|
|
|
assert r
|
2022-12-16 08:21:54 +00:00
|
|
|
|
2022-12-16 17:40:21 +00:00
|
|
|
g = r.groups()
|
2022-12-16 08:21:54 +00:00
|
|
|
|
2022-12-16 17:40:21 +00:00
|
|
|
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
|
2022-12-16 08:21:54 +00:00
|
|
|
|
2022-12-16 17:40:21 +00:00
|
|
|
# compute distances from one valve to any other
|
|
|
|
distances: dict[tuple[Pipe, Pipe], int] = {}
|
|
|
|
for pipe_1 in pipes.values():
|
2022-12-16 21:56:34 +00:00
|
|
|
distances.update(
|
|
|
|
{
|
|
|
|
(pipe_1, pipe_2): distance
|
|
|
|
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
|
|
|
|
}
|
|
|
|
)
|
2022-12-16 17:40:21 +00:00
|
|
|
|
|
|
|
# valves with flow
|
2022-12-16 21:52:03 +00:00
|
|
|
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
|
2022-12-16 17:40:21 +00:00
|
|
|
|
|
|
|
|
2022-12-16 21:52:03 +00:00
|
|
|
# 1651, 1653
|
|
|
|
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
|
2022-12-16 17:40:21 +00:00
|
|
|
|
2022-12-16 21:52:03 +00:00
|
|
|
# 1707, 2223
|
2023-12-05 19:16:27 +00:00
|
|
|
print(part_2(pipes["AA"], 26, pipes, relevant_pipes, distances))
|