Add generic simple dijkstra method.
Some checks failed
continuous-integration/drone/push Build is failing
Some checks failed
continuous-integration/drone/push Build is failing
This commit is contained in:
parent
954ef1e6ce
commit
146d025d41
@ -1,81 +1,58 @@
|
|||||||
import heapq
|
from typing import Any, Iterator
|
||||||
from typing import Any, Iterator, TypeAlias, cast
|
|
||||||
|
|
||||||
from ..base import BaseSolver
|
from ..base import BaseSolver
|
||||||
|
from ..tools import graphs
|
||||||
Node: TypeAlias = tuple[int, int]
|
|
||||||
|
|
||||||
|
|
||||||
def dijkstra(
|
|
||||||
grid: list[Node],
|
|
||||||
n_rows: int,
|
|
||||||
n_cols: int,
|
|
||||||
start: Node = (0, 0),
|
|
||||||
target: Node | None = None,
|
|
||||||
) -> tuple[Node, ...] | None:
|
|
||||||
corrupted = set(grid)
|
|
||||||
target = target or (n_rows - 1, n_cols - 1)
|
|
||||||
|
|
||||||
queue: list[tuple[int, Node, tuple[Node, ...]]] = [(0, start, (start,))]
|
|
||||||
preds: dict[Node, tuple[Node, ...]] = {}
|
|
||||||
|
|
||||||
while queue:
|
|
||||||
dis, node, path = heapq.heappop(queue)
|
|
||||||
|
|
||||||
if node in preds:
|
|
||||||
continue
|
|
||||||
|
|
||||||
preds[node] = path
|
|
||||||
|
|
||||||
if node == target:
|
|
||||||
break
|
|
||||||
|
|
||||||
row, col = node
|
|
||||||
for dr, dc in ((-1, 0), (0, 1), (1, 0), (0, -1)):
|
|
||||||
row_n, col_n = row + dr, col + dc
|
|
||||||
|
|
||||||
if (
|
|
||||||
0 <= row_n < n_rows
|
|
||||||
and 0 <= col_n < n_cols
|
|
||||||
and (row_n, col_n) not in corrupted
|
|
||||||
and (row_n, col_n) not in preds
|
|
||||||
):
|
|
||||||
heapq.heappush(
|
|
||||||
queue, (dis + 1, (row_n, col_n), path + ((row_n, col_n),))
|
|
||||||
)
|
|
||||||
|
|
||||||
return preds.get(target, None)
|
|
||||||
|
|
||||||
|
|
||||||
class Solver(BaseSolver):
|
class Solver(BaseSolver):
|
||||||
def print_grid(self, grid: list[tuple[int, int]], n_rows: int, n_cols: int):
|
def print_grid(self, grid: list[tuple[int, int]], n_rows: int, n_cols: int):
|
||||||
values = set(grid)
|
values = set(grid)
|
||||||
|
if self.files:
|
||||||
|
self.files.create(
|
||||||
|
"graph.txt",
|
||||||
|
"\n".join(
|
||||||
|
"".join(
|
||||||
|
"#" if (row, col) in values else "." for col in range(n_cols)
|
||||||
|
)
|
||||||
|
for row in range(n_rows)
|
||||||
|
).encode(),
|
||||||
|
text=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
for row in range(n_rows):
|
for row in range(n_rows):
|
||||||
self.logger.info(
|
self.logger.info(
|
||||||
"".join("#" if (row, col) in values else "." for col in range(n_cols))
|
"".join(
|
||||||
|
"#" if (row, col) in values else "." for col in range(n_cols)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def dijkstra(self, corrupted: list[tuple[int, int]], n_rows: int, n_cols: int):
|
||||||
|
return graphs.dijkstra(
|
||||||
|
(0, 0),
|
||||||
|
(n_rows - 1, n_cols - 1),
|
||||||
|
graphs.make_neighbors_grid_fn(n_rows, n_cols, set(corrupted)),
|
||||||
)
|
)
|
||||||
|
|
||||||
def solve(self, input: str) -> Iterator[Any]:
|
def solve(self, input: str) -> Iterator[Any]:
|
||||||
values = [
|
values = [
|
||||||
cast(tuple[int, int], tuple(map(int, row.split(","))))
|
(int(p[0]), int(p[1])) for r in input.splitlines() if (p := r.split(","))
|
||||||
for row in input.splitlines()
|
|
||||||
]
|
]
|
||||||
|
|
||||||
n_rows, n_cols = (7, 7) if len(values) < 100 else (71, 71)
|
_is_test = len(values) < 100
|
||||||
|
|
||||||
|
n_rows, n_cols, n_bytes_p1 = (7, 7, 12) if _is_test else (71, 71, 1024)
|
||||||
|
|
||||||
n_bytes_p1 = 12 if len(values) < 100 else 1024
|
|
||||||
bytes_p1 = values[:n_bytes_p1]
|
bytes_p1 = values[:n_bytes_p1]
|
||||||
self.print_grid(bytes_p1, n_rows, n_cols)
|
self.print_grid(bytes_p1, n_rows, n_cols)
|
||||||
|
|
||||||
path_p1 = dijkstra(bytes_p1, n_rows, n_cols)
|
path_p1, cost_p1 = self.dijkstra(bytes_p1, n_rows, n_cols) or ((), -1)
|
||||||
assert path_p1 is not None
|
yield cost_p1
|
||||||
yield len(path_p1) - 1
|
|
||||||
|
|
||||||
path = path_p1
|
path = path_p1
|
||||||
for b in range(n_bytes_p1, len(values)):
|
for b in range(n_bytes_p1, len(values)):
|
||||||
if values[b] not in path:
|
if values[b] not in path:
|
||||||
continue
|
continue
|
||||||
path = dijkstra(values[: b + 1], n_rows, n_cols)
|
path, _ = self.dijkstra(values[: b + 1], n_rows, n_cols) or (None, -1)
|
||||||
if path is None:
|
if path is None:
|
||||||
yield ",".join(map(str, values[b]))
|
yield ",".join(map(str, values[b]))
|
||||||
break
|
break
|
||||||
|
95
src/holt59/aoc/tools/graphs.py
Normal file
95
src/holt59/aoc/tools/graphs.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
import heapq
|
||||||
|
from typing import Callable, Iterable, TypeVar
|
||||||
|
|
||||||
|
_Node = TypeVar("_Node")
|
||||||
|
|
||||||
|
|
||||||
|
def make_neighbors_grid_fn(
|
||||||
|
rows: int | Iterable[int],
|
||||||
|
cols: int | Iterable[int],
|
||||||
|
excluded: Iterable[tuple[int, int]] = set(),
|
||||||
|
diagonals: bool = False,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Create a neighbors function suitable for graph function for a simple grid.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
rows: Rows of the grid. If an int is specified, the rows are assumed to be
|
||||||
|
numbered from 0 to rows - 1, otherwise the iterable should contain the list
|
||||||
|
of valid rows.
|
||||||
|
cols: Columns of the grid. If an int is specified, the columns are assumed to be
|
||||||
|
numbered from 0 to cols - 1, otherwise the iterable should contain the list
|
||||||
|
of valid columns.
|
||||||
|
excluded: Cells of the grid that cannot be used as valid nodes for the graph.
|
||||||
|
diagonals: If True, neighbors will include diagonal cells, otherwise, only
|
||||||
|
horizontal and vertical neighbors will be included.
|
||||||
|
|
||||||
|
"""
|
||||||
|
ds = ((-1, 0), (0, 1), (1, 0), (0, -1))
|
||||||
|
if diagonals:
|
||||||
|
ds = ds + ((-1, -1), (-1, 1), (1, -1), (1, 1))
|
||||||
|
|
||||||
|
if isinstance(rows, int):
|
||||||
|
rows = range(rows)
|
||||||
|
elif not isinstance(rows, range):
|
||||||
|
rows = set(rows)
|
||||||
|
|
||||||
|
if isinstance(cols, int):
|
||||||
|
cols = range(cols)
|
||||||
|
elif not isinstance(cols, range):
|
||||||
|
cols = set(cols)
|
||||||
|
|
||||||
|
excluded = set(excluded)
|
||||||
|
|
||||||
|
def _fn(node: tuple[int, int]):
|
||||||
|
return (
|
||||||
|
((row_n, col_n), 1)
|
||||||
|
for dr, dc in ds
|
||||||
|
if (row_n := node[0] + dr) in rows
|
||||||
|
and (col_n := node[1] + dc) in cols
|
||||||
|
and (row_n, col_n) not in excluded
|
||||||
|
)
|
||||||
|
|
||||||
|
return _fn
|
||||||
|
|
||||||
|
|
||||||
|
def dijkstra(
|
||||||
|
start: _Node,
|
||||||
|
target: _Node,
|
||||||
|
neighbors: Callable[[_Node], Iterable[tuple[_Node, float]]],
|
||||||
|
) -> tuple[tuple[_Node, ...], float] | None:
|
||||||
|
"""
|
||||||
|
Solve shortest-path problem using simple Dijkstra algorithm from start to target,
|
||||||
|
using the given neighbors function.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
start: Starting node of the path.
|
||||||
|
target: Target node for the path.
|
||||||
|
neighbors: Function that should return, for a given node, the list of
|
||||||
|
its neighbors with the cost to go from the node to the neighbor.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
One of the shortest-path from start to target with its associated cost, if one
|
||||||
|
is found, otherwise None.
|
||||||
|
"""
|
||||||
|
queue: list[tuple[float, _Node, tuple[_Node, ...]]] = [(0, start, (start,))]
|
||||||
|
preds: dict[_Node, tuple[tuple[_Node, ...], float]] = {}
|
||||||
|
|
||||||
|
while queue:
|
||||||
|
dis, node, path = heapq.heappop(queue)
|
||||||
|
|
||||||
|
if node in preds:
|
||||||
|
continue
|
||||||
|
|
||||||
|
preds[node] = (path, dis)
|
||||||
|
|
||||||
|
if node == target:
|
||||||
|
break
|
||||||
|
|
||||||
|
for neighbor, cost in neighbors(node):
|
||||||
|
if neighbor in preds:
|
||||||
|
continue
|
||||||
|
|
||||||
|
heapq.heappush(queue, (dis + cost, neighbor, path + (neighbor,)))
|
||||||
|
|
||||||
|
return preds.get(target, None)
|
Loading…
Reference in New Issue
Block a user