2 Commits

Author SHA1 Message Date
Mikael CAPELLE
b21c50562f Refactor 2024 day 3.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-03 15:22:37 +01:00
Mikael CAPELLE
211483f679 Add .drone.yml for CI.
All checks were successful
continuous-integration/drone Build is passing
2024-12-03 14:12:42 +01:00
136 changed files with 3268 additions and 6419 deletions

16
poetry.lock generated
View File

@@ -1245,20 +1245,6 @@ files = [
docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"]
test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"]
[[package]]
name = "types-networkx"
version = "3.4.2.20241115"
description = "Typing stubs for networkx"
optional = false
python-versions = ">=3.8"
files = [
{file = "types-networkx-3.4.2.20241115.tar.gz", hash = "sha256:d669b650cf6c6c9ec879a825449eb04a5c10742f3109177e1683f57ee49e0f59"},
{file = "types_networkx-3.4.2.20241115-py3-none-any.whl", hash = "sha256:f0c382924d6614e06bf0b1ca0b837b8f33faa58982bc086ea762efaf39aa98dd"},
]
[package.dependencies]
numpy = ">=1.20"
[[package]] [[package]]
name = "typing-extensions" name = "typing-extensions"
version = "4.12.2" version = "4.12.2"
@@ -1295,4 +1281,4 @@ files = [
[metadata] [metadata]
lock-version = "2.0" lock-version = "2.0"
python-versions = "^3.10" python-versions = "^3.10"
content-hash = "c91bc307ff4a5b3e8cd1976ebea211c9749fe09d563dd80861f70ce26826cda9" content-hash = "b643261f91a781d77735e05f6d2ac1002867600c2df6393a9d1a15f5e1189109"

View File

@@ -23,7 +23,6 @@ ruff = "^0.8.1"
poethepoet = "^0.31.1" poethepoet = "^0.31.1"
ipykernel = "^6.29.5" ipykernel = "^6.29.5"
networkx-stubs = "^0.0.1" networkx-stubs = "^0.0.1"
types-networkx = "^3.4.2.20241115"
[tool.poetry.scripts] [tool.poetry.scripts]
holt59-aoc = "holt59.aoc.__main__:main" holt59-aoc = "holt59.aoc.__main__:main"

View File

@@ -1,12 +1,10 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver line = sys.stdin.read().strip()
floor = 0
floors = [(floor := floor + (1 if c == "(" else -1)) for c in line]
class Solver(BaseSolver): print(f"answer 1 is {floors[-1]}")
def solve(self, input: str) -> Iterator[Any]: print(f"answer 2 is {floors.index(-1)}")
floor = 0
floors = [(floor := floor + (1 if c == "(" else -1)) for c in input]
yield floors[-1]
yield floors.index(-1)

View File

@@ -1,7 +1,7 @@
import itertools import itertools
from typing import Any, Iterator import sys
from ..base import BaseSolver line = sys.stdin.read().strip()
# see http://www.se16.info/js/lands2.htm for the explanation of 'atoms' (or elements) # see http://www.se16.info/js/lands2.htm for the explanation of 'atoms' (or elements)
# #
@@ -9,7 +9,7 @@ from ..base import BaseSolver
# CodeGolf answer https://codegolf.stackexchange.com/a/8479/42148 # CodeGolf answer https://codegolf.stackexchange.com/a/8479/42148
# fmt: off # fmt: off
ATOMS: list[tuple[str, tuple[int, ...]]] = [ atoms = [
("22", (0, )), # 0 ("22", (0, )), # 0
("13112221133211322112211213322112", (71, 90, 0, 19, 2, )), # 1 ("13112221133211322112211213322112", (71, 90, 0, 19, 2, )), # 1
("312211322212221121123222112", (1, )), # 2 ("312211322212221121123222112", (1, )), # 2
@@ -105,7 +105,7 @@ ATOMS: list[tuple[str, tuple[int, ...]]] = [
] ]
# fmt: on # fmt: on
STARTERS = [ starters = [
"1", "1",
"11", "11",
"21", "21",
@@ -122,26 +122,27 @@ def look_and_say_length(s: str, n: int) -> int:
if n == 0: if n == 0:
return len(s) return len(s)
if s in STARTERS: if s in starters:
return look_and_say_length( return look_and_say_length(
"".join(f"{len(list(g))}{k}" for k, g in itertools.groupby(s)), n - 1 "".join(f"{len(list(g))}{k}" for k, g in itertools.groupby(s)), n - 1
) )
counts = {i: 0 for i in range(len(ATOMS))} counts = {i: 0 for i in range(len(atoms))}
idx = next(i for i, (a, _) in enumerate(ATOMS) if s == a) idx = next(i for i, (a, _) in enumerate(atoms) if s == a)
counts[idx] = 1 counts[idx] = 1
for _ in range(n): for _ in range(n):
c2 = {i: 0 for i in range(len(ATOMS))} c2 = {i: 0 for i in range(len(atoms))}
for i in counts: for i in counts:
for j in ATOMS[i][1]: for j in atoms[i][1]:
c2[j] += counts[i] c2[j] += counts[i]
counts = c2 counts = c2
return sum(counts[i] * len(a[0]) for i, a in enumerate(ATOMS)) return sum(counts[i] * len(a[0]) for i, a in enumerate(atoms))
class Solver(BaseSolver): answer_1 = look_and_say_length(line, 40)
def solve(self, input: str) -> Iterator[Any] | None: print(f"answer 1 is {answer_1}")
yield look_and_say_length(input, 40)
yield look_and_say_length(input, 50) answer_2 = look_and_say_length(line, 50)
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,5 @@
import itertools import itertools
from typing import Any, Iterator import sys
from ..base import BaseSolver
def is_valid(p: str) -> bool: def is_valid(p: str) -> bool:
@@ -42,8 +40,10 @@ def find_next_password(p: str) -> str:
return p return p
class Solver(BaseSolver): line = sys.stdin.read().strip()
def solve(self, input: str) -> Iterator[Any]:
answer_1 = find_next_password(input) answer_1 = find_next_password(line)
yield answer_1 print(f"answer 1 is {answer_1}")
yield find_next_password(increment(answer_1))
answer_2 = find_next_password(increment(answer_1))
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import json import json
from typing import Any, Iterator, TypeAlias import sys
from typing import TypeAlias
from ..base import BaseSolver
JsonObject: TypeAlias = dict[str, "JsonObject"] | list["JsonObject"] | int | str JsonObject: TypeAlias = dict[str, "JsonObject"] | list["JsonObject"] | int | str
@@ -19,9 +18,10 @@ def json_sum(value: JsonObject, ignore: str | None = None) -> int:
return 0 return 0
class Solver(BaseSolver): data: JsonObject = json.load(sys.stdin)
def solve(self, input: str) -> Iterator[Any]:
data: JsonObject = json.loads(input)
yield json_sum(data) answer_1 = json_sum(data)
yield json_sum(data, "red") print(f"answer 1 is {answer_1}")
answer_2 = json_sum(data, "red")
print(f"answer 2 is {answer_2}")

View File

@@ -1,11 +1,10 @@
import itertools import itertools
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator, Literal, cast from typing import Literal, cast
import parse # type: ignore import parse # type: ignore
from ..base import BaseSolver
def max_change_in_happiness(happiness: dict[str, dict[str, int]]) -> int: def max_change_in_happiness(happiness: dict[str, dict[str, int]]) -> int:
guests = list(happiness) guests = list(happiness)
@@ -18,23 +17,25 @@ def max_change_in_happiness(happiness: dict[str, dict[str, int]]) -> int:
) )
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
happiness: dict[str, dict[str, int]] = defaultdict(dict) happiness: dict[str, dict[str, int]] = defaultdict(dict)
for line in lines: for line in lines:
u1, gain_or_loose, hap, u2 = cast( u1, gain_or_loose, hap, u2 = cast(
tuple[str, Literal["gain", "lose"], int, str], tuple[str, Literal["gain", "lose"], int, str],
parse.parse( # type: ignore parse.parse( # type: ignore
"{} would {} {:d} happiness units by sitting next to {}.", line "{} would {} {:d} happiness units by sitting next to {}.", line
), ),
) )
happiness[u1][u2] = hap if gain_or_loose == "gain" else -hap happiness[u1][u2] = hap if gain_or_loose == "gain" else -hap
yield max_change_in_happiness(happiness)
for guest in list(happiness):
happiness["me"][guest] = 0
happiness[guest]["me"] = 0
yield max_change_in_happiness(happiness) answer_1 = max_change_in_happiness(happiness)
print(f"answer 1 is {answer_1}")
for guest in list(happiness):
happiness["me"][guest] = 0
happiness[guest]["me"] = 0
answer_2 = max_change_in_happiness(happiness)
print(f"answer 2 is {answer_2}")

View File

@@ -1,10 +1,9 @@
import sys
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Iterator, Literal, cast from typing import Literal, cast
import parse # type: ignore import parse # type: ignore
from ..base import BaseSolver
@dataclass(frozen=True) @dataclass(frozen=True)
class Reindeer: class Reindeer:
@@ -14,50 +13,50 @@ class Reindeer:
rest_time: int rest_time: int
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
reindeers: list[Reindeer] = [] reindeers: list[Reindeer] = []
for line in lines: for line in lines:
reindeer, speed, speed_time, rest_time = cast( reindeer, speed, speed_time, rest_time = cast(
tuple[str, int, int, int], tuple[str, int, int, int],
parse.parse( # type: ignore parse.parse( # type: ignore
"{} can fly {:d} km/s for {:d} seconds, " "{} can fly {:d} km/s for {:d} seconds, "
"but then must rest for {:d} seconds.", "but then must rest for {:d} seconds.",
line, line,
), ),
) )
reindeers.append( reindeers.append(
Reindeer( Reindeer(name=reindeer, speed=speed, fly_time=speed_time, rest_time=rest_time)
name=reindeer, speed=speed, fly_time=speed_time, rest_time=rest_time )
)
)
target = 1000 if len(reindeers) <= 2 else 2503 target = 1000 if len(reindeers) <= 2 else 2503
states: dict[Reindeer, tuple[Literal["resting", "flying"], int]] = { states: dict[Reindeer, tuple[Literal["resting", "flying"], int]] = {
reindeer: ("resting", 0) for reindeer in reindeers reindeer: ("resting", 0) for reindeer in reindeers
} }
distances: dict[Reindeer, int] = {reindeer: 0 for reindeer in reindeers} distances: dict[Reindeer, int] = {reindeer: 0 for reindeer in reindeers}
points: dict[Reindeer, int] = {reindeer: 0 for reindeer in reindeers} points: dict[Reindeer, int] = {reindeer: 0 for reindeer in reindeers}
for time in self.progress.wrap(range(target)): for time in range(target):
for reindeer in reindeers: for reindeer in reindeers:
if states[reindeer][0] == "flying": if states[reindeer][0] == "flying":
distances[reindeer] += reindeer.speed distances[reindeer] += reindeer.speed
top_distance = max(distances.values()) top_distance = max(distances.values())
for reindeer in reindeers: for reindeer in reindeers:
if distances[reindeer] == top_distance: if distances[reindeer] == top_distance:
points[reindeer] += 1 points[reindeer] += 1
for reindeer in reindeers: for reindeer in reindeers:
if states[reindeer][1] == time: if states[reindeer][1] == time:
if states[reindeer][0] == "resting": if states[reindeer][0] == "resting":
states[reindeer] = ("flying", time + reindeer.fly_time) states[reindeer] = ("flying", time + reindeer.fly_time)
else: else:
states[reindeer] = ("resting", time + reindeer.rest_time) states[reindeer] = ("resting", time + reindeer.rest_time)
yield max(distances.values())
yield max(points.values()) - 1 answer_1 = max(distances.values())
print(f"answer 1 is {answer_1}")
answer_2 = max(points.values()) - 1
print(f"answer 2 is {answer_2}")

View File

@@ -1,10 +1,9 @@
import math import math
from typing import Any, Iterator, Sequence, cast import sys
from typing import Sequence, cast
import parse # type: ignore import parse # type: ignore
from ..base import BaseSolver
def score(ingredients: list[list[int]], teaspoons: Sequence[int]) -> int: def score(ingredients: list[list[int]], teaspoons: Sequence[int]) -> int:
return math.prod( return math.prod(
@@ -19,38 +18,40 @@ def score(ingredients: list[list[int]], teaspoons: Sequence[int]) -> int:
) )
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
ingredients: list[list[int]] = [] ingredients: list[list[int]] = []
for line in lines: for line in lines:
_, *scores = cast( _, *scores = cast(
tuple[str, int, int, int, int, int], tuple[str, int, int, int, int, int],
parse.parse( # type: ignore parse.parse( # type: ignore
"{}: capacity {:d}, durability {:d}, flavor {:d}, " "{}: capacity {:d}, durability {:d}, flavor {:d}, "
"texture {:d}, calories {:d}", "texture {:d}, calories {:d}",
line, line,
), ),
)
ingredients.append(scores)
total_teaspoons = 100
calories: list[int] = []
scores: list[int] = []
for a in range(total_teaspoons + 1):
for b in range(total_teaspoons + 1 - a):
for c in range(total_teaspoons + 1 - a - b):
teaspoons = (a, b, c, total_teaspoons - a - b - c)
scores.append(score(ingredients, teaspoons))
calories.append(
sum(
ingredient[-1] * teaspoon
for ingredient, teaspoon in zip(ingredients, teaspoons)
)
) )
ingredients.append(scores)
total_teaspoons = 100
calories: list[int] = []
scores: list[int] = []
for a in range(total_teaspoons + 1): answer_1 = max(scores)
for b in range(total_teaspoons + 1 - a): print(f"answer 1 is {answer_1}")
for c in range(total_teaspoons + 1 - a - b):
teaspoons = (a, b, c, total_teaspoons - a - b - c)
scores.append(score(ingredients, teaspoons)) answer_2 = max(score for score, calory in zip(scores, calories) if calory == 500)
calories.append( print(f"answer 2 is {answer_2}")
sum(
ingredient[-1] * teaspoon
for ingredient, teaspoon in zip(ingredients, teaspoons)
)
)
yield max(scores)
yield max(score for score, calory in zip(scores, calories) if calory == 500)

View File

@@ -1,9 +1,8 @@
import operator as op import operator as op
import re import re
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Callable, Iterator from typing import Callable
from ..base import BaseSolver
MFCSAM: dict[str, int] = { MFCSAM: dict[str, int] = {
"children": 3, "children": 3,
@@ -18,10 +17,18 @@ MFCSAM: dict[str, int] = {
"perfumes": 1, "perfumes": 1,
} }
lines = sys.stdin.readlines()
def match( aunts: list[dict[str, int]] = [
aunts: list[dict[str, int]], operators: dict[str, Callable[[int, int], bool]] {
) -> int: match[1]: int(match[2])
for match in re.findall(R"((?P<compound>[^:, ]+): (?P<quantity>\d+))", line)
}
for line in lines
]
def match(operators: dict[str, Callable[[int, int], bool]]) -> int:
return next( return next(
i i
for i, aunt in enumerate(aunts, start=1) for i, aunt in enumerate(aunts, start=1)
@@ -29,29 +36,16 @@ def match(
) )
class Solver(BaseSolver): answer_1 = match(defaultdict(lambda: op.eq))
def solve(self, input: str) -> Iterator[Any]: print(f"answer 1 is {answer_1}")
lines = input.splitlines()
aunts: list[dict[str, int]] = [ answer_2 = match(
{ defaultdict(
match[1]: int(match[2]) lambda: op.eq,
for match in re.findall( trees=op.gt,
R"((?P<compound>[^:, ]+): (?P<quantity>\d+))", line cats=op.gt,
) pomeranians=op.lt,
} goldfish=op.lt,
for line in lines )
] )
print(f"answer 2 is {answer_2}")
yield match(aunts, defaultdict(lambda: op.eq))
yield match(
aunts,
defaultdict(
lambda: op.eq,
trees=op.gt,
cats=op.gt,
pomeranians=op.lt,
goldfish=op.lt,
),
)

View File

@@ -1,6 +1,5 @@
from typing import Any, Iterator import sys
from typing import Iterator
from ..base import BaseSolver
def iter_combinations(value: int, containers: list[int]) -> Iterator[tuple[int, ...]]: def iter_combinations(value: int, containers: list[int]) -> Iterator[tuple[int, ...]]:
@@ -17,18 +16,15 @@ def iter_combinations(value: int, containers: list[int]) -> Iterator[tuple[int,
yield (containers[i],) + combination yield (containers[i],) + combination
class Solver(BaseSolver): containers = [int(c) for c in sys.stdin.read().split()]
def solve(self, input: str) -> Iterator[Any]: total = 25 if len(containers) <= 5 else 150
containers = [int(c) for c in input.split()]
total = 25 if len(containers) <= 5 else 150
combinations = [ combinations = [combination for combination in iter_combinations(total, containers)]
combination for combination in iter_combinations(total, containers)
]
yield len(combinations) answer_1 = len(combinations)
print(f"answer 1 is {answer_1}")
min_containers = min(len(combination) for combination in combinations) min_containers = min(len(combination) for combination in combinations)
yield sum(
1 for combination in combinations if len(combination) == min_containers answer_2 = sum(1 for combination in combinations if len(combination) == min_containers)
) print(f"answer 2 is {answer_2}")

View File

@@ -1,66 +1,66 @@
import itertools import itertools
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from ..base import BaseSolver grid0 = np.array([[c == "#" for c in line] for line in sys.stdin.read().splitlines()])
# add an always off circle around
class Solver(BaseSolver): grid0 = np.concatenate(
def solve(self, input: str) -> Iterator[Any]: [
grid0 = np.array([[c == "#" for c in line] for line in input.splitlines()]) np.zeros((grid0.shape[0] + 2, 1), dtype=bool),
np.concatenate(
# add an always off circle around
grid0 = np.concatenate(
[ [
np.zeros((grid0.shape[0] + 2, 1), dtype=bool), np.zeros((1, grid0.shape[1]), dtype=bool),
np.concatenate( grid0,
[ np.zeros((1, grid0.shape[1]), dtype=bool),
np.zeros((1, grid0.shape[1]), dtype=bool), ]
grid0, ),
np.zeros((1, grid0.shape[1]), dtype=bool), np.zeros((grid0.shape[0] + 2, 1), dtype=bool),
] ],
), axis=1,
np.zeros((grid0.shape[0] + 2, 1), dtype=bool), )
],
axis=1,
)
moves = list(itertools.product([-1, 0, 1], repeat=2)) moves = list(itertools.product([-1, 0, 1], repeat=2))
moves.remove((0, 0)) moves.remove((0, 0))
jjs, iis = np.meshgrid( jjs, iis = np.meshgrid(
np.arange(1, grid0.shape[0] - 1, dtype=int), np.arange(1, grid0.shape[0] - 1, dtype=int),
np.arange(1, grid0.shape[1] - 1, dtype=int), np.arange(1, grid0.shape[1] - 1, dtype=int),
) )
iis, jjs = iis.flatten(), jjs.flatten() iis, jjs = iis.flatten(), jjs.flatten()
ins = iis[:, None] + np.array(moves)[:, 0] ins = iis[:, None] + np.array(moves)[:, 0]
jns = jjs[:, None] + np.array(moves)[:, 1] jns = jjs[:, None] + np.array(moves)[:, 1]
def game_of_life(grid: NDArray[np.bool_]) -> NDArray[np.bool_]:
neighbors_on = grid[ins, jns].sum(axis=1)
cells_on = grid[iis, jjs]
grid = np.zeros_like(grid) def game_of_life(grid: NDArray[np.bool_]) -> NDArray[np.bool_]:
grid[iis, jjs] = (neighbors_on == 3) | (cells_on & (neighbors_on == 2)) neighbors_on = grid[ins, jns].sum(axis=1)
cells_on = grid[iis, jjs]
return grid grid = np.zeros_like(grid)
grid[iis, jjs] = (neighbors_on == 3) | (cells_on & (neighbors_on == 2))
grid = grid0 return grid
n_steps = 4 if len(grid) < 10 else 100
for _ in range(n_steps):
grid = game_of_life(grid)
yield grid.sum()
n_steps = 5 if len(grid) < 10 else 100 grid = grid0
grid = grid0 n_steps = 4 if len(grid) < 10 else 100
for _ in range(n_steps): for _ in range(n_steps):
grid[[1, 1, -2, -2], [1, -2, 1, -2]] = True grid = game_of_life(grid)
grid = game_of_life(grid)
grid[[1, 1, -2, -2], [1, -2, 1, -2]] = True answer_1 = grid.sum()
print(f"answer 1 is {answer_1}")
yield sum(cell for line in grid for cell in line)
n_steps = 5 if len(grid) < 10 else 100
grid = grid0
for _ in range(n_steps):
grid[[1, 1, -2, -2], [1, -2, 1, -2]] = True
grid = game_of_life(grid)
grid[[1, 1, -2, -2], [1, -2, 1, -2]] = True
answer_2 = sum(cell for line in grid for cell in line)
print(f"answer 2 is {answer_2}")

View File

@@ -1,58 +1,56 @@
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver replacements_s, molecule = sys.stdin.read().split("\n\n")
REPLACEMENTS: dict[str, list[str]] = defaultdict(list)
for replacement_s in replacements_s.splitlines():
p = replacement_s.split(" => ")
REPLACEMENTS[p[0]].append(p[1])
molecule = molecule.strip()
generated = [
molecule[:i] + replacement + molecule[i + len(symbol) :]
for symbol, replacements in REPLACEMENTS.items()
for replacement in replacements
for i in range(len(molecule))
if molecule[i:].startswith(symbol)
]
answer_1 = len(set(generated))
print(f"answer 1 is {answer_1}")
inversion: dict[str, str] = {
replacement: symbol
for symbol, replacements in REPLACEMENTS.items()
for replacement in replacements
}
# there is actually only one way to create the molecule, and we can greedily replace
# tokens with their replacements, e.g., if H => OH then we can replace OH by H directly
# without thinking
count = 0
while molecule != "e":
i = 0
m2 = ""
while i < len(molecule):
found = False
for replacement in inversion:
if molecule[i:].startswith(replacement):
m2 += inversion[replacement]
i += len(replacement)
count += 1
found = True
break
if not found:
m2 += molecule[i]
i += 1
# print(m2)
molecule = m2
class Solver(BaseSolver): answer_2 = count
def solve(self, input: str) -> Iterator[Any]: print(f"answer 2 is {count}")
replacements_s, molecule = input.split("\n\n")
REPLACEMENTS: dict[str, list[str]] = defaultdict(list)
for replacement_s in replacements_s.splitlines():
p = replacement_s.split(" => ")
REPLACEMENTS[p[0]].append(p[1])
molecule = molecule.strip()
generated = [
molecule[:i] + replacement + molecule[i + len(symbol) :]
for symbol, replacements in REPLACEMENTS.items()
for replacement in replacements
for i in range(len(molecule))
if molecule[i:].startswith(symbol)
]
yield len(set(generated))
inversion: dict[str, str] = {
replacement: symbol
for symbol, replacements in REPLACEMENTS.items()
for replacement in replacements
}
# there is actually only one way to create the molecule, and we can greedily replace
# tokens with their replacements, e.g., if H => OH then we can replace OH by H directly
# without thinking
count = 0
while molecule != "e":
i = 0
m2 = ""
while i < len(molecule):
found = False
for replacement in inversion:
if molecule[i:].startswith(replacement):
m2 += inversion[replacement]
i += len(replacement)
count += 1
found = True
break
if not found:
m2 += molecule[i]
i += 1
# print(m2)
molecule = m2
yield count

View File

@@ -1,24 +1,20 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
length, width, height = np.array(
[[int(c) for c in line.split("x")] for line in lines]
).T
class Solver(BaseSolver): lw, wh, hl = (length * width, width * height, height * length)
def solve(self, input: str) -> Iterator[Any]:
length, width, height = np.array(
[[int(c) for c in line.split("x")] for line in input.splitlines()]
).T
lw, wh, hl = (length * width, width * height, height * length) answer_1 = np.sum(2 * (lw + wh + hl) + np.min(np.stack([lw, wh, hl]), axis=0))
print(f"answer 1 is {answer_1}")
yield np.sum(2 * (lw + wh + hl) + np.min(np.stack([lw, wh, hl]), axis=0)) answer_2 = np.sum(
length * width * height
yield np.sum( + 2 * np.min(np.stack([length + width, length + height, height + width]), axis=0)
length * width * height )
+ 2 print(f"answer 2 is {answer_2}")
* np.min(
np.stack([length + width, length + height, height + width]), axis=0
)
)

View File

@@ -1,10 +1,10 @@
import itertools import itertools
from typing import Any, Iterator import sys
from ..base import BaseSolver target = int(sys.stdin.read())
def presents(n: int, elf: int, max: int) -> int: def presents(n: int, elf: int, max: int = target) -> int:
count = 0 count = 0
k = 1 k = 1
while k * k < n: while k * k < n:
@@ -21,9 +21,8 @@ def presents(n: int, elf: int, max: int) -> int:
return count return count
class Solver(BaseSolver): answer_1 = next(n for n in itertools.count(1) if presents(n, 10) >= target)
def solve(self, input: str) -> Iterator[Any]: print(f"answer 1 is {answer_1}")
target = int(input)
yield next(n for n in itertools.count(1) if presents(n, 10, target) >= target) answer_2 = next(n for n in itertools.count(1) if presents(n, 11, 50) >= target)
yield next(n for n in itertools.count(1) if presents(n, 11, 50) >= target) print(f"answer 2 is {answer_2}")

View File

@@ -1,8 +1,7 @@
import itertools import itertools
import sys
from math import ceil from math import ceil
from typing import Any, Iterator, TypeAlias from typing import TypeAlias
from ..base import BaseSolver
Modifier: TypeAlias = tuple[str, int, int, int] Modifier: TypeAlias = tuple[str, int, int, int]
@@ -34,31 +33,34 @@ RINGS: list[Modifier] = [
] ]
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
player_hp = 100 player_hp = 100
boss_attack = int(lines[1].split(":")[1].strip()) boss_attack = int(lines[1].split(":")[1].strip())
boss_armor = int(lines[2].split(":")[1].strip()) boss_armor = int(lines[2].split(":")[1].strip())
boss_hp = int(lines[0].split(":")[1].strip()) boss_hp = int(lines[0].split(":")[1].strip())
min_cost, max_cost = 1_000_000, 0
for equipments in itertools.product(WEAPONS, ARMORS, RINGS, RINGS):
if equipments[-1][0] != "" and equipments[-2] == equipments[-1]:
continue
cost, player_attack, player_armor = ( min_cost, max_cost = 1_000_000, 0
sum(equipment[1:][k] for equipment in equipments) for k in range(3) for equipments in itertools.product(WEAPONS, ARMORS, RINGS, RINGS):
) if equipments[-1][0] != "" and equipments[-2] == equipments[-1]:
continue
if ceil(boss_hp / max(1, player_attack - boss_armor)) <= ceil( cost, player_attack, player_armor = (
player_hp / max(1, boss_attack - player_armor) sum(equipment[1:][k] for equipment in equipments) for k in range(3)
): )
min_cost = min(cost, min_cost)
else:
max_cost = max(cost, max_cost)
yield min_cost if ceil(boss_hp / max(1, player_attack - boss_armor)) <= ceil(
yield max_cost player_hp / max(1, boss_attack - player_armor)
):
min_cost = min(cost, min_cost)
else:
max_cost = max(cost, max_cost)
answer_1 = min_cost
print(f"answer 1 is {answer_1}")
answer_2 = max_cost
print(f"answer 2 is {answer_2}")

View File

@@ -1,9 +1,8 @@
from __future__ import annotations from __future__ import annotations
import heapq import heapq
from typing import Any, Iterator, Literal, TypeAlias, cast import sys
from typing import Literal, TypeAlias, cast
from ..base import BaseSolver
PlayerType: TypeAlias = Literal["player", "boss"] PlayerType: TypeAlias = Literal["player", "boss"]
SpellType: TypeAlias = Literal["magic missile", "drain", "shield", "poison", "recharge"] SpellType: TypeAlias = Literal["magic missile", "drain", "shield", "poison", "recharge"]
@@ -63,6 +62,17 @@ def play(
continue continue
visited.add((player, player_hp, player_mana, player_armor, boss_hp, buffs)) visited.add((player, player_hp, player_mana, player_armor, boss_hp, buffs))
if hard_mode and player == "player":
player_hp = max(0, player_hp - 1)
if player_hp == 0:
continue
if boss_hp == 0:
winning_node = spells
continue
new_buffs: list[tuple[BuffType, int]] = [] new_buffs: list[tuple[BuffType, int]] = []
for buff, length in buffs: for buff, length in buffs:
length = length - 1 length = length - 1
@@ -78,16 +88,6 @@ def play(
if length > 0: if length > 0:
new_buffs.append((buff, length)) new_buffs.append((buff, length))
if hard_mode and player == "player":
player_hp = player_hp - 1
if player_hp <= 0:
continue
if boss_hp <= 0:
winning_node = spells
continue
buffs = tuple(new_buffs) buffs = tuple(new_buffs)
if player == "boss": if player == "boss":
@@ -155,28 +155,23 @@ def play(
return winning_node return winning_node
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
player_hp = 50 player_hp = 50
player_mana = 500 player_mana = 500
player_armor = 0 player_armor = 0
boss_hp = int(lines[0].split(":")[1].strip()) boss_hp = int(lines[0].split(":")[1].strip())
boss_attack = int(lines[1].split(":")[1].strip()) boss_attack = int(lines[1].split(":")[1].strip())
yield sum( answer_1 = sum(
c c
for _, c in play( for _, c in play(player_hp, player_mana, player_armor, boss_hp, boss_attack, False)
player_hp, player_mana, player_armor, boss_hp, boss_attack, False )
) print(f"answer 1 is {answer_1}")
)
# 1242 (not working) # 1242 (not working)
yield sum( answer_2 = sum(
c c for _, c in play(player_hp, player_mana, player_armor, boss_hp, boss_attack, True)
for _, c in play( )
player_hp, player_mana, player_armor, boss_hp, boss_attack, True print(f"answer 2 is {answer_2}")
)
)

View File

@@ -1,7 +1,7 @@
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver line = sys.stdin.read().strip()
def process(directions: str) -> dict[tuple[int, int], int]: def process(directions: str) -> dict[tuple[int, int], int]:
@@ -27,7 +27,8 @@ def process(directions: str) -> dict[tuple[int, int], int]:
return counts return counts
class Solver(BaseSolver): answer_1 = len(process(line))
def solve(self, input: str) -> Iterator[Any]: print(f"answer 1 is {answer_1}")
yield len(process(input))
yield len(process(input[::2]) | process(input[1::2])) answer_2 = len(process(line[::2]) | process(line[1::2]))
print(f"answer 2 is {answer_2}")

View File

@@ -1,20 +1,16 @@
import hashlib import hashlib
import itertools import itertools
from typing import Any, Iterator import sys
from ..base import BaseSolver line = sys.stdin.read().strip()
it = iter(itertools.count(1))
answer_1 = next(
i for i in it if hashlib.md5(f"{line}{i}".encode()).hexdigest().startswith("00000")
)
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): answer_2 = next(
def solve(self, input: str) -> Iterator[Any]: i for i in it if hashlib.md5(f"{line}{i}".encode()).hexdigest().startswith("000000")
it = iter(itertools.count(1)) )
yield next( print(f"answer 2 is {answer_2}")
i
for i in it
if hashlib.md5(f"{input}{i}".encode()).hexdigest().startswith("00000")
)
yield next(
i
for i in it
if hashlib.md5(f"{input}{i}".encode()).hexdigest().startswith("000000")
)

View File

@@ -1,6 +1,4 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver
VOWELS = "aeiou" VOWELS = "aeiou"
FORBIDDEN = {"ab", "cd", "pq", "xy"} FORBIDDEN = {"ab", "cd", "pq", "xy"}
@@ -29,8 +27,10 @@ def is_nice_2(s: str) -> bool:
return True return True
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines() answer_1 = sum(map(is_nice_1, lines))
yield sum(map(is_nice_1, lines)) print(f"answer 1 is {answer_1}")
yield sum(map(is_nice_2, lines))
answer_2 = sum(map(is_nice_2, lines))
print(f"answer 2 is {answer_2}")

View File

@@ -1,32 +1,33 @@
from typing import Any, Iterator, Literal, cast import sys
from typing import Literal, cast
import numpy as np import numpy as np
import parse # type: ignore import parse # type: ignore
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
lights_1 = np.zeros((1000, 1000), dtype=bool)
lights_2 = np.zeros((1000, 1000), dtype=int)
for line in lines:
action, sx, sy, ex, ey = cast(
tuple[Literal["turn on", "turn off", "toggle"], int, int, int, int],
parse.parse("{} {:d},{:d} through {:d},{:d}", line), # type: ignore
)
ex, ey = ex + 1, ey + 1
class Solver(BaseSolver): match action:
def solve(self, input: str) -> Iterator[Any]: case "turn on":
lights_1 = np.zeros((1000, 1000), dtype=bool) lights_1[sx:ex, sy:ey] = True
lights_2 = np.zeros((1000, 1000), dtype=int) lights_2[sx:ex, sy:ey] += 1
for line in input.splitlines(): case "turn off":
action, sx, sy, ex, ey = cast( lights_1[sx:ex, sy:ey] = False
tuple[Literal["turn on", "turn off", "toggle"], int, int, int, int], lights_2[sx:ex, sy:ey] = np.maximum(lights_2[sx:ex, sy:ey] - 1, 0)
parse.parse("{} {:d},{:d} through {:d},{:d}", line), # type: ignore case "toggle":
) lights_1[sx:ex, sy:ey] = ~lights_1[sx:ex, sy:ey]
ex, ey = ex + 1, ey + 1 lights_2[sx:ex, sy:ey] += 2
match action: answer_1 = lights_1.sum()
case "turn on": print(f"answer 1 is {answer_1}")
lights_1[sx:ex, sy:ey] = True
lights_2[sx:ex, sy:ey] += 1
case "turn off":
lights_1[sx:ex, sy:ey] = False
lights_2[sx:ex, sy:ey] = np.maximum(lights_2[sx:ex, sy:ey] - 1, 0)
case "toggle":
lights_1[sx:ex, sy:ey] = ~lights_1[sx:ex, sy:ey]
lights_2[sx:ex, sy:ey] += 2
yield lights_1.sum() answer_2 = lights_2.sum()
yield lights_2.sum() print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
import logging
import operator import operator
from typing import Any, Callable, Iterator import os
import sys
from typing import Callable
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
OPERATORS = { OPERATORS = {
"AND": operator.and_, "AND": operator.and_,
@@ -32,6 +36,48 @@ def value_of(key: str) -> tuple[str, Callable[[dict[str, int]], int]]:
return key, lambda values: values[key] return key, lambda values: values[key]
lines = sys.stdin.read().splitlines()
signals: Signals = {}
values: dict[str, int] = {"": 0}
for line in lines:
command, signal = line.split(" -> ")
if command.startswith("NOT"):
name = command.split(" ")[1]
signals[signal] = (
(name, ""),
(lambda values, _n=name: values[_n], lambda _v: 0),
lambda a, _b: ~a,
)
elif not any(command.find(name) >= 0 for name in OPERATORS):
try:
values[signal] = int(command)
except ValueError:
signals[signal] = (
(command, ""),
(lambda values, _c=command: values[_c], lambda _v: 0),
lambda a, _b: a,
)
else:
op: Callable[[int, int], int] = zero_op
lhs_s, rhs_s = "", ""
for name in OPERATORS:
if command.find(name) >= 0:
op = OPERATORS[name]
lhs_s, rhs_s = command.split(f" {name} ")
break
lhs_s, lhs_fn = value_of(lhs_s)
rhs_s, rhs_fn = value_of(rhs_s)
signals[signal] = ((lhs_s, rhs_s), (lhs_fn, rhs_fn), op)
def process( def process(
signals: Signals, signals: Signals,
values: dict[str, int], values: dict[str, int],
@@ -45,52 +91,11 @@ def process(
return values return values
class Solver(BaseSolver): values_1 = process(signals.copy(), values.copy())
def solve(self, input: str) -> Iterator[Any] | None: logging.info("\n" + "\n".join(f"{k}: {values_1[k]}" for k in sorted(values_1)))
lines = input.splitlines() answer_1 = values_1["a"]
print(f"answer 1 is {answer_1}")
signals: Signals = {} values_2 = process(signals.copy(), values | {"b": values_1["a"]})
values: dict[str, int] = {"": 0} answer_2 = values_2["a"]
print(f"answer 2 is {answer_2}")
for line in lines:
command, signal = line.split(" -> ")
if command.startswith("NOT"):
name = command.split(" ")[1]
signals[signal] = (
(name, ""),
(lambda values, _n=name: values[_n], lambda _v: 0),
lambda a, _b: ~a,
)
elif not any(command.find(name) >= 0 for name in OPERATORS):
try:
values[signal] = int(command)
except ValueError:
signals[signal] = (
(command, ""),
(lambda values, _c=command: values[_c], lambda _v: 0),
lambda a, _b: a,
)
else:
op: Callable[[int, int], int] = zero_op
lhs_s, rhs_s = "", ""
for name in OPERATORS:
if command.find(name) >= 0:
op = OPERATORS[name]
lhs_s, rhs_s = command.split(f" {name} ")
break
lhs_s, lhs_fn = value_of(lhs_s)
rhs_s, rhs_fn = value_of(rhs_s)
signals[signal] = ((lhs_s, rhs_s), (lhs_fn, rhs_fn), op)
values_1 = process(signals.copy(), values.copy())
for k in sorted(values_1):
self.logger.info(f"{k}: {values_1[k]}")
yield values_1["a"]
yield process(signals.copy(), values | {"b": values_1["a"]})["a"]

View File

@@ -1,32 +1,35 @@
from typing import Any, Iterator import logging
import os
import sys
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
yield sum( answer_1 = sum(
# left and right quotes (not in memory) # left and right quotes (not in memory)
2 2
# each \\ adds one character in the literals (compared to memory) # each \\ adds one character in the literals (compared to memory)
+ line.count(R"\\") + line.count(R"\\")
# each \" adds one character in the literals (compared to memory) # each \" adds one character in the literals (compared to memory)
+ line[1:-1].count(R"\"") + line[1:-1].count(R"\"")
# each \xFF adds 3 characters in the literals (compared to memory), but we must not # each \xFF adds 3 characters in the literals (compared to memory), but we must not
# count A\\x (A != \), but we must count A\\\x (A != \) - in practice we should also # count A\\x (A != \), but we must count A\\\x (A != \) - in practice we should also
# avoid \\\\x, etc., but this does not occur in the examples and the actual input # avoid \\\\x, etc., but this does not occur in the examples and the actual input
+ 3 * (line.count(R"\x") - line.count(R"\\x") + line.count(R"\\\x")) + 3 * (line.count(R"\x") - line.count(R"\\x") + line.count(R"\\\x"))
for line in lines for line in lines
) )
print(f"answer 1 is {answer_1}")
yield sum( answer_2 = sum(
# needs to wrap in quotes (2 characters) # needs to wrap in quotes (2 characters)
2 2
# needs to escape every \ with an extra \ # needs to escape every \ with an extra \
+ line.count("\\") + line.count("\\")
# needs to escape every " with an extra \ (including the first and last ones) # needs to escape every " with an extra \ (including the first and last ones)
+ line.count('"') + line.count('"')
for line in lines for line in lines
) )
print(f"answer 2 is {answer_2}")

View File

@@ -1,28 +1,27 @@
import itertools import itertools
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator, cast from typing import cast
import parse # type: ignore import parse # type: ignore
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
distances: dict[str, dict[str, int]] = defaultdict(dict)
for line in lines:
origin, destination, length = cast(
tuple[str, str, int],
parse.parse("{} to {} = {:d}", line), # type: ignore
)
distances[origin][destination] = distances[destination][origin] = length
class Solver(BaseSolver): distance_of_routes = {
def solve(self, input: str) -> Iterator[Any]: route: sum(distances[o][d] for o, d in zip(route[:-1], route[1:]))
lines = input.splitlines() for route in map(tuple, itertools.permutations(distances))
}
distances: dict[str, dict[str, int]] = defaultdict(dict) answer_1 = min(distance_of_routes.values())
for line in lines: print(f"answer 1 is {answer_1}")
origin, destination, length = cast(
tuple[str, str, int],
parse.parse("{} to {} = {:d}", line), # type: ignore
)
distances[origin][destination] = distances[destination][origin] = length
distance_of_routes = { answer_2 = max(distance_of_routes.values())
route: sum(distances[o][d] for o, d in zip(route[:-1], route[1:])) print(f"answer 2 is {answer_2}")
for route in map(tuple, itertools.permutations(distances))
}
yield min(distance_of_routes.values())
yield max(distance_of_routes.values())

View File

@@ -1,17 +1,14 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
values = [int(line) for line in lines]
class Solver(BaseSolver): # part 1
def solve(self, input: str) -> Iterator[Any]: answer_1 = sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:]))
lines = input.splitlines() print(f"answer 1 is {answer_1}")
values = [int(line) for line in lines] # part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
# part 1 answer_2 = sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))
yield sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:])) print(f"answer 2 is {answer_2}")
# part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
yield sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,38 +1,41 @@
import sys
from math import prod from math import prod
from typing import Any, Iterator, Literal, TypeAlias, cast from typing import Literal, TypeAlias, cast
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
Command: TypeAlias = Literal["forward", "up", "down"] Command: TypeAlias = Literal["forward", "up", "down"]
commands: list[tuple[Command, int]] = [
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
commands: list[tuple[Command, int]] = [ def depth_and_position(use_aim: bool):
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines aim, pos, depth = 0, 0, 0
] for command, value in commands:
d_depth = 0
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
def depth_and_position(use_aim: bool): if use_aim:
aim, pos, depth = 0, 0, 0 aim += d_depth
for command, value in commands: else:
d_depth = 0 depth += value
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
if use_aim: return depth, pos
aim += d_depth
else:
depth += value
return depth, pos
yield prod(depth_and_position(False)) # part 1
yield prod(depth_and_position(True)) answer_1 = prod(depth_and_position(False))
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = prod(depth_and_position(True))
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): # part 2
def solve(self, input: str) -> Iterator[Any]: ... answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import sys
from collections import Counter from collections import Counter
from typing import Any, Iterator, Literal from typing import Literal
from ..base import BaseSolver
def generator_rating( def generator_rating(
@@ -21,23 +20,20 @@ def generator_rating(
return values[0] return values[0]
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1
most_and_least_common = [
tuple(
Counter(line[col] for line in lines).most_common(2)[m][0]
for m in range(2)
)
for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
yield gamma_rate * epsilon_rate
# part 2 # part 1
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2) most_and_least_common = [
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2) tuple(Counter(line[col] for line in lines).most_common(2)[m][0] for m in range(2))
yield oxygen_generator_rating * co2_scrubber_rating for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
print(f"answer 1 is {gamma_rate * epsilon_rate}")
# part 2
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2)
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2)
answer_2 = oxygen_generator_rating * co2_scrubber_rating
print(f"answer 2 is {answer_2}")

View File

@@ -1,52 +1,45 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
numbers = [int(c) for c in lines[0].split(",")]
class Solver(BaseSolver): boards = np.asarray(
def solve(self, input: str) -> Iterator[Any]: [
lines = input.splitlines() [[int(c) for c in line.split()] for line in lines[start : start + 5]]
for start in range(2, len(lines), 6)
]
)
numbers = [int(c) for c in lines[0].split(",")] # (round, score) for each board (-1 when not found)
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))]
marked = np.zeros_like(boards, dtype=bool)
boards = np.asarray( for round, number in enumerate(numbers):
[ # mark boards
[[int(c) for c in line.split()] for line in lines[start : start + 5]] marked[boards == number] = True
for start in range(2, len(lines), 6)
]
)
# (round, score) for each board (-1 when not found) # check each board for winning
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))] for index in range(len(boards)):
marked = np.zeros_like(boards, dtype=bool) if winning_rounds[index][0] > 0:
continue
for round, number in enumerate(numbers): if np.any(np.all(marked[index], axis=0) | np.all(marked[index], axis=1)):
# mark boards winning_rounds[index] = (
marked[boards == number] = True round,
number * int(np.sum(boards[index][~marked[index]])),
)
# check each board for winning # all boards are winning - break
for index in range(len(boards)): if np.all(marked.all(axis=1) | marked.all(axis=2)):
if winning_rounds[index][0] > 0: break
continue
if np.any( # part 1
np.all(marked[index], axis=0) | np.all(marked[index], axis=1) (_, score) = min(winning_rounds, key=lambda w: w[0])
): print(f"answer 1 is {score}")
winning_rounds[index] = (
round,
number * int(np.sum(boards[index][~marked[index]])),
)
# all boards are winning - break # part 2
if np.all(marked.all(axis=1) | marked.all(axis=2)): (_, score) = max(winning_rounds, key=lambda w: w[0])
break print(f"answer 2 is {score}")
# part 1
(_, score) = min(winning_rounds, key=lambda w: w[0])
yield score
# part 2
(_, score) = max(winning_rounds, key=lambda w: w[0])
yield score

View File

@@ -1,48 +1,48 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from ..base import BaseSolver lines: list[str] = sys.stdin.read().splitlines()
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
(
(
int(line.split(" -> ")[0].split(",")[0]),
int(line.split(" -> ")[0].split(",")[1]),
),
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
class Solver(BaseSolver): np_sections = np.array(sections).reshape(-1, 4)
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [ x_min, x_max, y_min, y_max = (
( min(np_sections[:, 0].min(), np_sections[:, 2].min()),
( max(np_sections[:, 0].max(), np_sections[:, 2].max()),
int(line.split(" -> ")[0].split(",")[0]), min(np_sections[:, 1].min(), np_sections[:, 3].min()),
int(line.split(" -> ")[0].split(",")[1]), max(np_sections[:, 1].max(), np_sections[:, 3].max()),
), )
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
np_sections = np.array(sections).reshape(-1, 4) counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
counts_2 = counts_1.copy()
x_max, y_max = ( for (x1, y1), (x2, y2) in sections:
max(np_sections[:, 0].max(), np_sections[:, 2].max()), x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
max(np_sections[:, 1].max(), np_sections[:, 3].max()), y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
)
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int) if x1 == x2 or y1 == y2:
counts_2 = counts_1.copy() counts_1[list(y_rng), list(x_rng)] += 1
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
for (x1, y1), (x2, y2) in sections: answer_1 = (counts_1 >= 2).sum()
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1) print(f"answer 1 is {answer_1}")
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
if x1 == x2 or y1 == y2: answer_2 = (counts_2 >= 2).sum()
counts_1[list(y_rng), list(x_rng)] += 1 print(f"answer 2 is {answer_2}")
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
yield (counts_1 >= 2).sum()
yield (counts_2 >= 2).sum()

View File

@@ -1,21 +1,21 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver values = [int(c) for c in sys.stdin.read().strip().split(",")]
days = 256
lanterns = {day: 0 for day in range(days)}
for value in values:
for day in range(value, days, 7):
lanterns[day] += 1
class Solver(BaseSolver): for day in range(days):
def solve(self, input: str) -> Iterator[Any]: for day2 in range(day + 9, days, 7):
values = [int(c) for c in input.split(",")] lanterns[day2] += lanterns[day]
days = 256 # part 1
lanterns = {day: 0 for day in range(days)} answer_1 = sum(v for k, v in lanterns.items() if k < 80) + len(values)
for value in values: print(f"answer 1 is {answer_1}")
for day in range(value, days, 7):
lanterns[day] += 1
for day in range(days): # part 2
for day2 in range(day + 9, days, 7): answer_2 = sum(lanterns.values()) + len(values)
lanterns[day2] += lanterns[day] print(f"answer 2 is {answer_2}")
yield sum(v for k, v in lanterns.items() if k < 80) + len(values)
yield sum(lanterns.values()) + len(values)

View File

@@ -1,22 +1,19 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver positions = [int(c) for c in sys.stdin.read().strip().split(",")]
min_position, max_position = min(positions), max(positions)
class Solver(BaseSolver): # part 1
def solve(self, input: str) -> Iterator[Any]: answer_1 = min(
positions = [int(c) for c in input.split(",")] sum(abs(p - position) for p in positions)
for position in range(min_position, max_position + 1)
)
print(f"answer 1 is {answer_1}")
min_position, max_position = min(positions), max(positions) # part 2
answer_2 = min(
# part 1 sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
yield min( for position in range(min_position, max_position + 1)
sum(abs(p - position) for p in positions) )
for position in range(min_position, max_position + 1) print(f"answer 2 is {answer_2}")
)
# part 2
yield min(
sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
for position in range(min_position, max_position + 1)
)

View File

@@ -1,7 +1,8 @@
import itertools import itertools
from typing import Any, Iterator import os
import sys
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
digits = { digits = {
"abcefg": 0, "abcefg": 0,
@@ -16,74 +17,71 @@ digits = {
"abcdfg": 9, "abcdfg": 9,
} }
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver): # part 1
def solve(self, input: str) -> Iterator[Any]: lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)}
lines = input.splitlines() answer_1 = sum(
len(p) in lengths for line in lines for p in line.split("|")[1].strip().split()
)
print(f"answer 1 is {answer_1}")
# part 1 # part 2
lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)} values: list[int] = []
yield sum(
len(p) in lengths
for line in lines
for p in line.split("|")[1].strip().split()
)
# part 2 for line in lines:
values: list[int] = [] parts = line.split("|")
broken_digits = sorted(parts[0].strip().split(), key=len)
for line in lines: per_length = {
parts = line.split("|") k: list(v)
broken_digits = sorted(parts[0].strip().split(), key=len) for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
per_length = { # a can be found immediately
k: list(v) a = next(u for u in per_length[3][0] if u not in per_length[2][0])
for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
# a can be found immediately # c and f have only two possible values corresponding to the single entry of
a = next(u for u in per_length[3][0] if u not in per_length[2][0]) # length 2
cf = list(per_length[2][0])
# c and f have only two possible values corresponding to the single entry of # the only digit of length 4 contains bcdf, so we can deduce bd by removing cf
# length 2 bd = [u for u in per_length[4][0] if u not in cf]
cf = list(per_length[2][0])
# the only digit of length 4 contains bcdf, so we can deduce bd by removing cf # the 3 digits of length 5 have a, d and g in common
bd = [u for u in per_length[4][0] if u not in cf] adg = [u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])]
# the 3 digits of length 5 have a, d and g in common # we can remove a
adg = [ dg = [u for u in adg if u != a]
u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])
]
# we can remove a # we can deduce d and g
dg = [u for u in adg if u != a] d = next(u for u in dg if u in bd)
g = next(u for u in dg if u != d)
# we can deduce d and g # then b
d = next(u for u in dg if u in bd) b = next(u for u in bd if u != d)
g = next(u for u in dg if u != d)
# then b # f is in the three 6-length digits, while c is only in 2
b = next(u for u in bd if u != d) f = next(u for u in cf if all(u in p for p in per_length[6]))
# f is in the three 6-length digits, while c is only in 2 # c is not f
f = next(u for u in cf if all(u in p for p in per_length[6])) c = next(u for u in cf if u != f)
# c is not f # e is the last one
c = next(u for u in cf if u != f) e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
# e is the last one mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg"))
e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg")) value = 0
for number in parts[1].strip().split():
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
value = 0 if VERBOSE:
for number in parts[1].strip().split(): print(value)
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
self.logger.info(f"value for '{line}' is {value}") values.append(value)
values.append(value)
yield sum(values) answer_2 = sum(values)
print(f"answer 2 is {answer_2}")

View File

@@ -1,18 +1,18 @@
import sys
from math import prod from math import prod
from typing import Any, Iterator
from ..base import BaseSolver values = [[int(c) for c in row] for row in sys.stdin.read().splitlines()]
n_rows, n_cols = len(values), len(values[0])
def neighbors(point: tuple[int, int], n_rows: int, n_cols: int): def neighbors(point: tuple[int, int]):
i, j = point i, j = point
for di, dj in ((-1, 0), (+1, 0), (0, -1), (0, +1)): for di, dj in ((-1, 0), (+1, 0), (0, -1), (0, +1)):
if 0 <= i + di < n_rows and 0 <= j + dj < n_cols: if 0 <= i + di < n_rows and 0 <= j + dj < n_cols:
yield (i + di, j + dj) yield (i + di, j + dj)
def basin(values: list[list[int]], start: tuple[int, int]) -> set[tuple[int, int]]: def basin(start: tuple[int, int]) -> set[tuple[int, int]]:
n_rows, n_cols = len(values), len(values[0])
visited: set[tuple[int, int]] = set() visited: set[tuple[int, int]] = set()
queue = [start] queue = [start]
@@ -23,25 +23,22 @@ def basin(values: list[list[int]], start: tuple[int, int]) -> set[tuple[int, int
continue continue
visited.add((i, j)) visited.add((i, j))
queue.extend(neighbors((i, j), n_rows, n_cols)) queue.extend(neighbors((i, j)))
return visited return visited
class Solver(BaseSolver): low_points = [
def solve(self, input: str) -> Iterator[Any]: (i, j)
values = [[int(c) for c in row] for row in input.splitlines()] for i in range(n_rows)
n_rows, n_cols = len(values), len(values[0]) for j in range(n_cols)
if all(values[ti][tj] > values[i][j] for ti, tj in neighbors((i, j)))
]
low_points = [ # part 1
(i, j) answer_1 = sum(values[i][j] + 1 for i, j in low_points)
for i in range(n_rows) print(f"answer 1 is {answer_1}")
for j in range(n_cols)
if all(
values[ti][tj] > values[i][j]
for ti, tj in neighbors((i, j), n_rows, n_cols)
)
]
yield sum(values[i][j] + 1 for i, j in low_points) # part 2
yield prod(sorted(len(basin(values, point)) for point in low_points)[-3:]) answer_2 = prod(sorted(len(basin(point)) for point in low_points)[-3:])
print(f"answer 2 is {answer_2}")

View File

@@ -1,12 +1,7 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver blocks = sys.stdin.read().split("\n\n")
values = sorted(sum(map(int, block.split())) for block in blocks)
print(f"answer 1 is {values[-1]}")
class Solver(BaseSolver): print(f"answer 2 is {sum(values[-3:])}")
def solve(self, input: str) -> Iterator[Any]:
blocks = input.split("\n\n")
values = sorted(sum(map(int, block.split())) for block in blocks)
yield values[-1]
yield sum(values[-3:])

View File

@@ -1,43 +1,38 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
cycle = 1
x = 1
values = {cycle: x}
for line in lines:
cycle += 1
if line == "noop":
pass
else:
r = int(line.split()[1])
values[cycle] = x
cycle += 1
x += r
values[cycle] = x
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver): for i in range(6):
def solve(self, input: str) -> Iterator[Any]: for j in range(40):
lines = [line.strip() for line in input.splitlines()] v = values[1 + i * 40 + j]
cycle, x = 1, 1 if j >= v - 1 and j <= v + 1:
values = {cycle: x} print("#", end="")
else:
print(".", end="")
for line in lines: print()
cycle += 1
if line == "noop":
pass
else:
r = int(line.split()[1])
values[cycle] = x
cycle += 1
x += r
values[cycle] = x
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
yield answer_1
yield (
"\n"
+ "\n".join(
"".join(
"#"
if j >= (v := values[1 + i * 40 + j]) - 1 and j <= v + 1
else "."
for j in range(40)
)
for i in range(6)
)
+ "\n"
)

View File

@@ -1,8 +1,7 @@
import copy import copy
import sys
from functools import reduce from functools import reduce
from typing import Any, Callable, Final, Iterator, Mapping, Sequence from typing import Callable, Final, Mapping, Sequence
from ..base import BaseSolver
class Monkey: class Monkey:
@@ -120,28 +119,24 @@ def monkey_business(inspects: dict[Monkey, int]) -> int:
return sorted_levels[-2] * sorted_levels[-1] return sorted_levels[-2] * sorted_levels[-1]
class Solver(BaseSolver): monkeys = [parse_monkey(block.splitlines()) for block in sys.stdin.read().split("\n\n")]
def solve(self, input: str) -> Iterator[Any]:
monkeys = [parse_monkey(block.splitlines()) for block in input.split("\n\n")]
# case 1: we simply divide the worry by 3 after applying the monkey worry operation # case 1: we simply divide the worry by 3 after applying the monkey worry operation
yield monkey_business( answer_1 = monkey_business(
run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3) run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3)
) )
print(f"answer 1 is {answer_1}")
# case 2: to keep reasonable level values, we can use a modulo operation, we need to # case 2: to keep reasonable level values, we can use a modulo operation, we need to
# use the product of all "divisible by" test so that the test remains valid # use the product of all "divisible by" test so that the test remains valid
# #
# (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value # (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value
# #
# (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here # (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here
# we use the product of all test value # we use the product of all test value
# #
total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1) total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1)
yield monkey_business( answer_2 = monkey_business(
run( run(copy.deepcopy(monkeys), 10_000, me_worry_fn=lambda w: w % total_test_value)
copy.deepcopy(monkeys), )
10_000, print(f"answer 2 is {answer_2}")
me_worry_fn=lambda w: w % total_test_value,
)
)

View File

@@ -1,7 +1,6 @@
import heapq import heapq
from typing import Any, Callable, Iterator, TypeVar import sys
from typing import Callable, Iterator, TypeVar
from ..base import BaseSolver
Node = TypeVar("Node") Node = TypeVar("Node")
@@ -69,6 +68,30 @@ def make_path(parents: dict[Node, Node], start: Node, end: Node) -> list[Node] |
return list(reversed(path)) return list(reversed(path))
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
graph[end[0]][end[1]] = "E"
for i in range(0, len(path) - 1):
cr, cc = path[i]
nr, nc = path[i + 1]
if cr == nr and nc == cc - 1:
graph[cr][cc] = "<"
elif cr == nr and nc == cc + 1:
graph[cr][cc] = ">"
elif cr == nr - 1 and nc == cc:
graph[cr][cc] = "v"
elif cr == nr + 1 and nc == cc:
graph[cr][cc] = "^"
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
print("\n".join("".join(row) for row in graph))
def neighbors( def neighbors(
grid: list[list[int]], node: tuple[int, int], up: bool grid: list[list[int]], node: tuple[int, int], up: bool
) -> Iterator[tuple[int, int]]: ) -> Iterator[tuple[int, int]]:
@@ -95,74 +118,46 @@ def neighbors(
# === main code === # === main code ===
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver): grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
def print_path(self, path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)] start: tuple[int, int] | None = None
graph[end[0]][end[1]] = "E" end: tuple[int, int] | None = None
for i in range(0, len(path) - 1): # for part 2
cr, cc = path[i] start_s: list[tuple[int, int]] = []
nr, nc = path[i + 1]
if cr == nr and nc == cc - 1: for i_row, row in enumerate(grid):
graph[cr][cc] = "<" for i_col, col in enumerate(row):
elif cr == nr and nc == cc + 1: if chr(col + ord("a")) == "S":
graph[cr][cc] = ">" start = (i_row, i_col)
elif cr == nr - 1 and nc == cc: start_s.append(start)
graph[cr][cc] = "v" elif chr(col + ord("a")) == "E":
elif cr == nr + 1 and nc == cc: end = (i_row, i_col)
graph[cr][cc] = "^" elif col == 0:
else: start_s.append((i_row, i_col))
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
for row in graph: assert start is not None
self.logger.info("".join(row)) assert end is not None
def solve(self, input: str) -> Iterator[Any]: # fix values
lines = input.splitlines() grid[start[0]][start[1]] = 0
grid[end[0]][end[1]] = ord("z") - ord("a")
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
start: tuple[int, int] | None = None lengths_1, parents_1 = dijkstra(
end: tuple[int, int] | None = None start=start, neighbors=lambda n: neighbors(grid, n, True), cost=lambda lhs, rhs: 1
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
# for part 2 print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
start_s: list[tuple[int, int]] = []
for i_row, row in enumerate(grid): print(f"answer 1 is {lengths_1[end] - 1}")
for i_col, col in enumerate(row):
if chr(col + ord("a")) == "S":
start = (i_row, i_col)
start_s.append(start)
elif chr(col + ord("a")) == "E":
end = (i_row, i_col)
elif col == 0:
start_s.append((i_row, i_col))
assert start is not None lengths_2, parents_2 = dijkstra(
assert end is not None start=end, neighbors=lambda n: neighbors(grid, n, False), cost=lambda lhs, rhs: 1
)
# fix values answer_2 = min(lengths_2.get(start, float("inf")) for start in start_s)
grid[start[0]][start[1]] = 0 print(f"answer 2 is {answer_2}")
grid[end[0]][end[1]] = ord("z") - ord("a")
lengths_1, parents_1 = dijkstra(
start=start,
neighbors=lambda n: neighbors(grid, n, True),
cost=lambda lhs, rhs: 1,
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
self.print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
yield lengths_1[end] - 1
lengths_2, _ = dijkstra(
start=end,
neighbors=lambda n: neighbors(grid, n, False),
cost=lambda lhs, rhs: 1,
)
yield min(lengths_2.get(start, float("inf")) for start in start_s)

View File

@@ -1,8 +1,11 @@
import json import json
import sys
from functools import cmp_to_key from functools import cmp_to_key
from typing import Any, Iterator, TypeAlias, cast from typing import TypeAlias, cast
from ..base import BaseSolver blocks = sys.stdin.read().strip().split("\n\n")
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
Packet: TypeAlias = list[int | list["Packet"]] Packet: TypeAlias = list[int | list["Packet"]]
@@ -25,18 +28,14 @@ def compare(lhs: Packet, rhs: Packet) -> int:
return len(rhs) - len(lhs) return len(rhs) - len(lhs)
class Solver(BaseSolver): answer_1 = sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0)
def solve(self, input: str) -> Iterator[Any]: print(f"answer_1 is {answer_1}")
blocks = input.split("\n\n")
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
yield sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0) dividers = [[[2]], [[6]]]
dividers = [[[2]], [[6]]] packets = [packet for packets in pairs for packet in packets]
packets.extend(dividers)
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
packets = [packet for packets in pairs for packet in packets] d_index = [packets.index(d) + 1 for d in dividers]
packets.extend(dividers) print(f"answer 2 is {d_index[0] * d_index[1]}")
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
d_index = [packets.index(d) + 1 for d in dividers]
yield d_index[0] * d_index[1]

View File

@@ -1,7 +1,6 @@
import sys
from enum import Enum, auto from enum import Enum, auto
from typing import Any, Callable, Iterator, cast from typing import Callable, cast
from ..base import BaseSolver
class Cell(Enum): class Cell(Enum):
@@ -13,6 +12,26 @@ class Cell(Enum):
return {Cell.AIR: ".", Cell.ROCK: "#", Cell.SAND: "O"}[self] return {Cell.AIR: ".", Cell.ROCK: "#", Cell.SAND: "O"}[self]
def print_blocks(blocks: dict[tuple[int, int], Cell]):
"""
Print the given set of blocks on a grid.
Args:
blocks: Set of blocks to print.
"""
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
for y in range(y_min, y_max + 1):
print(
"".join(str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1))
)
def flow( def flow(
blocks: dict[tuple[int, int], Cell], blocks: dict[tuple[int, int], Cell],
stop_fn: Callable[[int, int], bool], stop_fn: Callable[[int, int], bool],
@@ -65,75 +84,57 @@ def flow(
# === inputs === # === inputs ===
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver): paths: list[list[tuple[int, int]]] = []
def print_blocks(self, blocks: dict[tuple[int, int], Cell]): for line in lines:
""" parts = line.split(" -> ")
Print the given set of blocks on a grid. paths.append(
[
cast(tuple[int, int], tuple(int(c.strip()) for c in part.split(",")))
for part in parts
]
)
Args:
blocks: Set of blocks to print.
"""
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
for y in range(y_min, y_max + 1): blocks: dict[tuple[int, int], Cell] = {}
self.logger.info( for path in paths:
"".join( for start, end in zip(path[:-1], path[1:]):
str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1) x_start = min(start[0], end[0])
) x_end = max(start[0], end[0]) + 1
) y_start = min(start[1], end[1])
y_end = max(start[1], end[1]) + 1
def solve(self, input: str) -> Iterator[Any]: for x in range(x_start, x_end):
lines = [line.strip() for line in input.splitlines()] for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
paths: list[list[tuple[int, int]]] = [] print_blocks(blocks)
for line in lines: print()
parts = line.split(" -> ")
paths.append(
[
cast(
tuple[int, int], tuple(int(c.strip()) for c in part.split(","))
)
for part in parts
]
)
blocks: dict[tuple[int, int], Cell] = {} x_min, y_min, x_max, y_max = (
for path in paths: min(x for x, _ in blocks),
for start, end in zip(path[:-1], path[1:]): 0,
x_start = min(start[0], end[0]) max(x for x, _ in blocks),
x_end = max(start[0], end[0]) + 1 max(y for _, y in blocks),
y_start = min(start[1], end[1]) )
y_end = max(start[1], end[1]) + 1
for x in range(x_start, x_end): # === part 1 ===
for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
self.print_blocks(blocks) blocks_1 = flow(
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
)
print_blocks(blocks_1)
print(f"answer 1 is {sum(v == Cell.SAND for v in blocks_1.values())}")
print()
y_max = max(y for _, y in blocks) # === part 2 ===
# === part 1 === blocks_2 = flow(
blocks.copy(),
blocks_1 = flow( stop_fn=lambda x, y: x == 500 and y == 0,
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
) )
self.print_blocks(blocks_1) blocks_2[500, 0] = Cell.SAND
yield sum(v == Cell.SAND for v in blocks_1.values()) print_blocks(blocks_2)
print(f"answer 2 is {sum(v == Cell.SAND for v in blocks_2.values())}")
# === part 2 ===
blocks_2 = flow(
blocks.copy(),
stop_fn=lambda x, y: x == 500 and y == 0,
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
)
blocks_2[500, 0] = Cell.SAND
self.print_blocks(blocks_2)
yield sum(v == Cell.SAND for v in blocks_2.values())

View File

@@ -1,95 +1,90 @@
import itertools as it import sys
from typing import Any, Iterator from typing import Any
import numpy as np import numpy as np
import parse # type: ignore import parse # type: ignore
from numpy.typing import NDArray from numpy.typing import NDArray
from ..base import BaseSolver
def part1(sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], row: int) -> int:
no_beacons_row_l: list[NDArray[np.floating[Any]]] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by) # closest
no_beacons_row_l.append(sx - np.arange(0, d - abs(sy - row) + 1)) # type: ignore
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1)) # type: ignore
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
no_beacons_row = set(np.concatenate(no_beacons_row_l)).difference(beacons_at_row) # type: ignore
return len(no_beacons_row)
class Solver(BaseSolver): def part2_intervals(
def part1( sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
self, sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], row: int ) -> tuple[int, int, int]:
) -> int: from tqdm import trange
no_beacons_row_l: list[NDArray[np.floating[Any]]] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by) # closest
no_beacons_row_l.append(sx - np.arange(0, d - abs(sy - row) + 1)) # type: ignore
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1)) # type: ignore
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
no_beacons_row = set(it.chain(*no_beacons_row_l)).difference(beacons_at_row) # type: ignore
return len(no_beacons_row)
def part2_intervals(
self, sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
) -> tuple[int, int, int]:
for y in self.progress.wrap(range(xy_max + 1)):
its: list[tuple[int, int]] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by)
dx = d - abs(sy - y)
if dx >= 0:
its.append((max(0, sx - dx), min(sx + dx, xy_max)))
its = sorted(its)
_, e = its[0]
for si, ei in its[1:]:
if si > e + 1:
return si - 1, y, 4_000_000 * (si - 1) + y
if ei > e:
e = ei
return (0, 0, 0)
def part2_cplex(
self, sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
) -> tuple[int, int, int]:
from docplex.mp.model import Model
m = Model()
x, y = m.continuous_var_list(2, ub=xy_max, name=["x", "y"])
for y in trange(xy_max + 1):
its: list[tuple[int, int]] = []
for (sx, sy), (bx, by) in sensor_to_beacon.items(): for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by) d = abs(sx - bx) + abs(sy - by)
m.add_constraint( dx = d - abs(sy - y)
m.abs(x - sx) + m.abs(y - sy) >= d + 1, # type: ignore
ctname=f"ct_{sx}_{sy}",
)
m.set_objective("min", x + y) if dx >= 0:
its.append((max(0, sx - dx), min(sx + dx, xy_max)))
s = m.solve() its = sorted(its)
assert s is not None _, e = its[0]
vx = int(s.get_value(x)) for si, ei in its[1:]:
vy = int(s.get_value(y)) if si > e + 1:
return vx, vy, 4_000_000 * vx + vy return si - 1, y, 4_000_000 * (si - 1) + y
if ei > e:
e = ei
def solve(self, input: str) -> Iterator[Any]: return (0, 0, 0)
lines = input.splitlines()
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]] = {}
for line in lines: def part2_cplex(
r: dict[str, str] = parse.parse( # type: ignore sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
"Sensor at x={sx}, y={sy}: closest beacon is at x={bx}, y={by}", line ) -> tuple[int, int, int]:
) from docplex.mp.model import Model
sensor_to_beacon[int(r["sx"]), int(r["sy"])] = (int(r["bx"]), int(r["by"]))
xy_max = 4_000_000 if max(sensor_to_beacon) > (1_000, 0) else 20 m = Model()
row = 2_000_000 if max(sensor_to_beacon) > (1_000, 0) else 10
yield self.part1(sensor_to_beacon, row) x, y = m.continuous_var_list(2, ub=xy_max, name=["x", "y"])
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max) for (sx, sy), (bx, by) in sensor_to_beacon.items():
x, y, a2 = self.part2_intervals(sensor_to_beacon, xy_max) d = abs(sx - bx) + abs(sy - by)
self.logger.info(f"answer 2 is {a2} (x={x}, y={y})") m.add_constraint(m.abs(x - sx) + m.abs(y - sy) >= d + 1, ctname=f"ct_{sx}_{sy}") # type: ignore
yield a2
m.set_objective("min", x + y)
s = m.solve()
assert s is not None
vx = int(s.get_value(x))
vy = int(s.get_value(y))
return vx, vy, 4_000_000 * vx + vy
lines = sys.stdin.read().splitlines()
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]] = {}
for line in lines:
r: dict[str, str] = parse.parse( # type: ignore
"Sensor at x={sx}, y={sy}: closest beacon is at x={bx}, y={by}", line
)
sensor_to_beacon[int(r["sx"]), int(r["sy"])] = (int(r["bx"]), int(r["by"]))
xy_max = 4_000_000 if max(sensor_to_beacon) > (1_000, 0) else 20
row = 2_000_000 if max(sensor_to_beacon) > (1_000, 0) else 10
print(f"answer 1 is {part1(sensor_to_beacon, row)}")
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max)
x, y, a2 = part2_intervals(sensor_to_beacon, xy_max)
print(f"answer 2 is {a2} (x={x}, y={y})")

View File

@@ -3,13 +3,12 @@ from __future__ import annotations
import heapq import heapq
import itertools import itertools
import re import re
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, FrozenSet, Iterator, NamedTuple from typing import FrozenSet, NamedTuple
from tqdm import tqdm from tqdm import tqdm
from ..base import BaseSolver
class Pipe(NamedTuple): class Pipe(NamedTuple):
name: str name: str
@@ -37,8 +36,8 @@ def breadth_first_search(pipes: dict[str, Pipe], pipe: Pipe) -> dict[Pipe, int]:
Runs a BFS from the given pipe and return the shortest distance (in term of hops) Runs a BFS from the given pipe and return the shortest distance (in term of hops)
to all other pipes. to all other pipes.
""" """
queue = [(0, pipe)] queue = [(0, pipe_1)]
visited: set[Pipe] = set() visited = set()
distances: dict[Pipe, int] = {} distances: dict[Pipe, int] = {}
while len(distances) < len(pipes): while len(distances) < len(pipes):
@@ -123,37 +122,37 @@ def part_2(
# === MAIN === # === MAIN ===
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
g = r.groups() pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", ")) g = r.groups()
# compute distances from one valve to any other pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
# valves with flow # compute distances from one valve to any other
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0) distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
# 1651, 1653 # valves with flow
yield part_1(pipes["AA"], 30, distances, relevant_pipes) relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
# 1707, 2223
yield part_2(pipes["AA"], 26, distances, relevant_pipes) # 1651, 1653
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
# 1707, 2223
print(part_2(pipes["AA"], 26, distances, relevant_pipes))

View File

@@ -1,16 +1,12 @@
from typing import Any, Iterator, Sequence, TypeAlias, TypeVar import sys
from typing import Sequence, TypeVar
import numpy as np import numpy as np
from numpy.typing import NDArray
from ..base import BaseSolver
T = TypeVar("T") T = TypeVar("T")
Tower: TypeAlias = NDArray[np.bool]
def print_tower(tower: np.ndarray, out: str = "#"):
def print_tower(tower: Tower, out: str = "#"):
print("-" * (tower.shape[1] + 2)) print("-" * (tower.shape[1] + 2))
non_empty = False non_empty = False
for row in reversed(range(1, tower.shape[0])): for row in reversed(range(1, tower.shape[0])):
@@ -21,7 +17,7 @@ def print_tower(tower: Tower, out: str = "#"):
print("+" + "-" * tower.shape[1] + "+") print("+" + "-" * tower.shape[1] + "+")
def tower_height(tower: Tower) -> int: def tower_height(tower: np.ndarray) -> int:
return int(tower.shape[0] - tower[::-1, :].argmax(axis=0).min() - 1) return int(tower.shape[0] - tower[::-1, :].argmax(axis=0).min() - 1)
@@ -49,8 +45,8 @@ def build_tower(
n_rocks: int, n_rocks: int,
jets: str, jets: str,
early_stop: bool = False, early_stop: bool = False,
init: Tower = np.ones(WIDTH, dtype=bool), init: np.ndarray = np.ones(WIDTH, dtype=bool),
) -> tuple[Tower, int, int, dict[int, int]]: ) -> tuple[np.ndarray, int, int, dict[int, int]]:
tower = EMPTY_BLOCKS.copy() tower = EMPTY_BLOCKS.copy()
tower[0, :] = init tower[0, :] = init
@@ -99,24 +95,26 @@ def build_tower(
return tower, rock_count, done_at.get((i_rock, i_jet), -1), heights return tower, rock_count, done_at.get((i_rock, i_jet), -1), heights
class Solver(BaseSolver): line = sys.stdin.read().strip()
def solve(self, input: str) -> Iterator[Any]:
tower, *_ = build_tower(2022, input)
yield tower_height(tower)
TOTAL_ROCKS = 1_000_000_000_000 tower, *_ = build_tower(2022, line)
_tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, input, True) answer_1 = tower_height(tower)
assert prev_1 > 0 print(f"answer 1 is {answer_1}")
# 2767 1513 TOTAL_ROCKS = 1_000_000_000_000
remaining_rocks = TOTAL_ROCKS - n_rocks_1 tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, line, True)
n_repeat_rocks = n_rocks_1 - prev_1 assert prev_1 > 0
n_repeat_towers = remaining_rocks // n_repeat_rocks
base_height = heights_1[prev_1] # 2767 1513
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1] remaining_rocks = TOTAL_ROCKS - n_rocks_1
remaining_height = ( n_repeat_rocks = n_rocks_1 - prev_1
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1] n_repeat_towers = remaining_rocks // n_repeat_rocks
)
yield base_height + (n_repeat_towers + 1) * repeat_height + remaining_height base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
answer_2 = base_height + (n_repeat_towers + 1) * repeat_height + remaining_height
print(f"answer 2 is {answer_2}")

View File

@@ -1,58 +1,50 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from ..base import BaseSolver xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in sys.stdin.read().splitlines()
]
)
xyz = xyz - xyz.min(axis=0) + 1
class Solver(BaseSolver): cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
def solve(self, input: str) -> Iterator[Any]: cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in input.splitlines()
]
)
xyz = xyz - xyz.min(axis=0) + 1 n_dims = len(cubes.shape)
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool) faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)] answer_1 = sum(
1 for x, y, z in xyz for dx, dy, dz in faces if not cubes[x + dx, y + dy, z + dz]
)
print(f"answer 1 is {answer_1}")
yield sum( visited = np.zeros_like(cubes, dtype=bool)
1 queue = [(0, 0, 0)]
for x, y, z in xyz
for dx, dy, dz in faces
if not cubes[x + dx, y + dy, z + dz]
)
visited = np.zeros_like(cubes, dtype=bool) n_faces = 0
queue = [(0, 0, 0)] while queue:
x, y, z = queue.pop(0)
n_faces = 0 if visited[x, y, z]:
while queue: continue
x, y, z = queue.pop(0)
if visited[x, y, z]: visited[x, y, z] = True
continue
visited[x, y, z] = True for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))):
continue
for dx, dy, dz in faces: if visited[nx, ny, nz]:
nx, ny, nz = x + dx, y + dy, z + dz continue
if not all(
n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))
):
continue
if visited[nx, ny, nz]: if cubes[nx, ny, nz]:
continue n_faces += 1
else:
if cubes[nx, ny, nz]: queue.append((nx, ny, nz))
n_faces += 1 print(f"answer 2 is {n_faces}")
else:
queue.append((nx, ny, nz))
yield n_faces

View File

@@ -1,11 +1,10 @@
from typing import Any, Iterator, Literal import sys
from typing import Any, Literal
import numpy as np import numpy as np
import parse # pyright: ignore[reportMissingTypeStubs] import parse # pyright: ignore[reportMissingTypeStubs]
from numpy.typing import NDArray from numpy.typing import NDArray
from ..base import BaseSolver
Reagent = Literal["ore", "clay", "obsidian", "geode"] Reagent = Literal["ore", "clay", "obsidian", "geode"]
REAGENTS: tuple[Reagent, ...] = ( REAGENTS: tuple[Reagent, ...] = (
"ore", "ore",
@@ -63,6 +62,29 @@ def dominates(lhs: State, rhs: State):
) )
lines = sys.stdin.read().splitlines()
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in lines:
r: list[int] = parse.parse( # type: ignore
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int: def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
# since we can only build one robot per time, we do not need more than X robots # since we can only build one robot per time, we do not need more than X robots
# of type K where X is the maximum number of K required among all robots, e.g., # of type K where X is the maximum number of K required among all robots, e.g.,
@@ -151,31 +173,11 @@ def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
return max(state.reagents["geode"] for state in state_after_t[max_time]) return max(state.reagents["geode"] for state in state_after_t[max_time])
class Solver(BaseSolver): answer_1 = sum(
def solve(self, input: str) -> Iterator[Any]: (i_blueprint + 1) * run(blueprint, 24)
blueprints: list[dict[Reagent, IntOfReagent]] = [] for i_blueprint, blueprint in enumerate(blueprints)
for line in input.splitlines(): )
r: list[int] = parse.parse( # type: ignore print(f"answer 1 is {answer_1}")
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append( answer_2 = run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32)
{ print(f"answer 2 is {answer_2}")
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
yield sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
yield (run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32))

View File

@@ -1,6 +1,4 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver
def score_1(ux: int, vx: int) -> int: def score_1(ux: int, vx: int) -> int:
@@ -35,23 +33,21 @@ def score_2(ux: int, vx: int) -> int:
return (ux + vx - 1) % 3 + 1 + vx * 3 return (ux + vx - 1) % 3 + 1 + vx * 3
class Solver(BaseSolver): lines = sys.stdin.readlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using # the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using
# modulo-3 arithmetic # modulo-3 arithmetic
# #
# in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move # in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move
# if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3))) # if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3)))
# #
# we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for # we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for
# easier manipulation # easier manipulation
values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines] values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines]
# part 1 - 13526 # part 1 - 13526
yield sum(score_1(*v) for v in values) print(f"answer 1 is {sum(score_1(*v) for v in values)}")
# part 2 - 14204 # part 2 - 14204
yield sum(score_2(*v) for v in values) print(f"answer 2 is {sum(score_2(*v) for v in values)}")

View File

@@ -1,8 +1,6 @@
from __future__ import annotations from __future__ import annotations
from typing import Any, Iterator import sys
from ..base import BaseSolver
class Number: class Number:
@@ -67,9 +65,10 @@ def decrypt(numbers: list[Number], key: int, rounds: int) -> int:
) )
class Solver(BaseSolver): numbers = [Number(int(x)) for i, x in enumerate(sys.stdin.readlines())]
def solve(self, input: str) -> Iterator[Any]:
numbers = [Number(int(x)) for x in input.splitlines()]
yield decrypt(numbers, 1, 1) answer_1 = decrypt(numbers, 1, 1)
yield decrypt(numbers, 811589153, 10) print(f"answer 1 is {answer_1}")
answer_2 = decrypt(numbers, 811589153, 10)
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import operator import operator
from typing import Any, Callable, Iterator import sys
from typing import Callable
from ..base import BaseSolver
def compute(monkeys: dict[str, int | tuple[str, str, str]], monkey: str) -> int: def compute(monkeys: dict[str, int | tuple[str, str, str]], monkey: str) -> int:
@@ -78,31 +77,31 @@ def invert(
return monkeys return monkeys
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
monkeys: dict[str, int | tuple[str, str, str]] = {} monkeys: dict[str, int | tuple[str, str, str]] = {}
op_monkeys: set[str] = set() op_monkeys: set[str] = set()
for line in lines: for line in lines:
parts = line.split(":") parts = line.split(":")
name = parts[0].strip() name = parts[0].strip()
try: try:
value = int(parts[1].strip()) value = int(parts[1].strip())
monkeys[name] = value monkeys[name] = value
except ValueError: except ValueError:
op1, ope, op2 = parts[1].strip().split() op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2) monkeys[name] = (op1, ope, op2)
op_monkeys.add(name) op_monkeys.add(name)
yield compute(monkeys.copy(), "root")
# assume the second operand of 'root' can be computed, and the first one depends on answer_1 = compute(monkeys.copy(), "root")
# humn, which is the case is my input and the test input print(f"answer 1 is {answer_1}")
assert isinstance(monkeys["root"], tuple)
p1, _, p2 = monkeys["root"] # type: ignore # assume the second operand of 'root' can be computed, and the first one depends on
yield compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn") # humn, which is the case is my input and the test input
p1, _, p2 = monkeys["root"] # type: ignore
answer_2 = compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")
print(f"answer 2 is {answer_2}")

View File

@@ -1,243 +1,223 @@
import re import re
from typing import Any, Callable, Iterator import sys
from typing import Callable
import numpy as np import numpy as np
from ..base import BaseSolver
VOID, EMPTY, WALL = 0, 1, 2 VOID, EMPTY, WALL = 0, 1, 2
TILE_FROM_CHAR = {" ": VOID, ".": EMPTY, "#": WALL} TILE_FROM_CHAR = {" ": VOID, ".": EMPTY, "#": WALL}
SCORES = {"E": 0, "S": 1, "W": 2, "N": 3} SCORES = {"E": 0, "S": 1, "W": 2, "N": 3}
class Solver(BaseSolver): board_map_s, direction_s = sys.stdin.read().split("\n\n")
def solve(self, input: str) -> Iterator[Any]:
board_map_s, direction_s = input.split("\n\n")
# board # board
board_lines = board_map_s.splitlines() board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines) max_line = max(len(line) for line in board_lines)
board = np.array( board = np.array(
[ [
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row)) [TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines() for row in board_map_s.splitlines()
] ]
) )
directions = [ directions = [
int(p1) if p2 else p1 int(p1) if p2 else p1 for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s) ]
]
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = (
board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
)
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = (
board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
)
faces = np.zeros_like(board) # find on each row and column the first and last non-void
size = np.gcd(board.shape[0], board.shape[1]) row_first_non_void = np.argmax(board != VOID, axis=1)
for row in range(0, board.shape[0], size): row_last_non_void = board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
for col in range(row_first_non_void[row], row_last_non_void[row], size): col_first_non_void = np.argmax(board != VOID, axis=0)
faces[row : row + size, col : col + size] = faces.max() + 1 col_last_non_void = board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
SIZE = np.gcd(*board.shape)
# TODO: deduce this from the actual cube... faces = np.zeros_like(board)
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]] size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
if board.shape == (12, 16): # example SIZE = np.gcd(*board.shape)
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
else:
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
def run(wrap: Callable[[int, int, str], tuple[int, int, str]]) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(board[y0, x0 + 1 : x0 + direction + 1] == WALL)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = direction - (row_last_non_void[y0] - x0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(board[y0 + 1 : y0 + direction + 1, x0] == WALL)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = direction - (col_last_non_void[x0] - y0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif x0 - direction >= 0 and board[y0, x0 - direction] == EMPTY:
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = direction - (x0 - row_first_non_void[y0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif y0 - direction >= 0 and board[y0 - direction, x0] == EMPTY:
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = direction - (y0 - col_first_non_void[x0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
else: else:
faces_wrap = { r0 = {
1: { "E": {"L": "N", "R": "S"},
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W "N": {"L": "W", "R": "E"},
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W "W": {"L": "S", "R": "N"},
}, "S": {"L": "E", "R": "W"},
2: { }[r0][direction]
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]: return y0, x0, r0
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]: y1, x1, r1 = run(wrap_part_1)
cube = faces[y0, x0] answer_1 = 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
assert r0 in faces_wrap[cube] print(f"answer 1 is {answer_1}")
return faces_wrap[cube][r0](y0, x0)
def run( y2, x2, r2 = run(wrap_part_2)
wrap: Callable[[int, int, str], tuple[int, int, str]], answer_2 = 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]
) -> tuple[int, int, str]: print(f"answer 2 is {answer_2}")
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(
board[y0, x0 + 1 : x0 + direction + 1] == WALL
)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = (
direction - (row_last_non_void[y0] - x0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(
board[y0 + 1 : y0 + direction + 1, x0] == WALL
)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = (
direction - (col_last_non_void[x0] - y0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif (
x0 - direction >= 0
and board[y0, x0 - direction] == EMPTY
):
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = (
direction - (x0 - row_first_non_void[y0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif (
y0 - direction >= 0
and board[y0 - direction, x0] == EMPTY
):
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = (
direction - (y0 - col_first_non_void[x0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
else:
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
return y0, x0, r0
y1, x1, r1 = run(wrap_part_1)
yield 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
y2, x2, r2 = run(wrap_part_2)
yield 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]

View File

@@ -1,8 +1,6 @@
import itertools import itertools
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
Directions = list[ Directions = list[
tuple[ tuple[
@@ -20,7 +18,7 @@ DIRECTIONS: Directions = [
def min_max_yx(positions: set[tuple[int, int]]) -> tuple[int, int, int, int]: def min_max_yx(positions: set[tuple[int, int]]) -> tuple[int, int, int, int]:
ys, xs = {y for y, _x in positions}, {x for _y, x in positions} ys, xs = {y for y, x in positions}, {x for y, x in positions}
return min(ys), min(xs), max(ys), max(xs) return min(ys), min(xs), max(ys), max(xs)
@@ -71,38 +69,35 @@ def round(
directions.append(directions.pop(0)) directions.append(directions.pop(0))
class Solver(BaseSolver): POSITIONS = {
def solve(self, input: str) -> Iterator[Any]: (i, j)
POSITIONS = { for i, row in enumerate(sys.stdin.read().splitlines())
(i, j) for j, col in enumerate(row)
for i, row in enumerate(input.splitlines()) if col == "#"
for j, col in enumerate(row) }
if col == "#"
}
# === part 1 === # === part 1 ===
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy() p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for _ in range(10): for r in range(10):
round(p1, d1) round(p1, d1)
min_y, min_x, max_y, max_x = min_max_yx(p1) min_y, min_x, max_y, max_x = min_max_yx(p1)
yield sum( answer_1 = sum(
(y, x) not in p1 (y, x) not in p1 for y in range(min_y, max_y + 1) for x in range(min_x, max_x + 1)
for y in range(min_y, max_y + 1) )
for x in range(min_x, max_x + 1) print(f"answer 1 is {answer_1}")
)
# === part 2 === # === part 2 ===
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy() p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0 answer_2 = 0
while True: while True:
answer_2 += 1 answer_2 += 1
backup = p2.copy() backup = p2.copy()
round(p2, d2) round(p2, d2)
if backup == p2: if backup == p2:
break break
yield answer_2 print(f"answer 2 is {answer_2}")

View File

@@ -1,117 +1,98 @@
import heapq import heapq
import math import math
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
east_winds = [{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)]
west_winds = [{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
class Solver(BaseSolver): def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def solve(self, input: str) -> Iterator[Any]: def heuristic(y: int, x: int) -> int:
lines = [line.strip() for line in input.splitlines()] return abs(end[0] - y) + abs(end[1] - x)
winds = { # (distance + heuristic, distance, (start_pos, cycle))
(i - 1, j - 1, lines[i][j]) queue = [(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))]
for i in range(1, len(lines) - 1) visited: set[tuple[tuple[int, int], int]] = set()
for j in range(1, len(lines[i]) - 1) distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
if lines[i][j] != "."
}
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2 while queue:
CYCLE = math.lcm(n_rows, n_cols) _, distance, ((y, x), cycle) = heapq.heappop(queue)
east_winds = [ if ((y, x), cycle) in visited:
{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows) continue
]
west_winds = [
{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)
]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]): distances[y, x][cycle] = distance
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
# (distance + heuristic, distance, (start_pos, cycle)) visited.add(((y, x), cycle))
queue = [
(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))
]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
while queue: if (y, x) == (end[0], end[1]):
_, distance, ((y, x), cycle) = heapq.heappop(queue) break
if ((y, x), cycle) in visited: for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
n_cycle = (cycle + 1) % CYCLE
if (ty, tx) == end:
heapq.heappush(queue, (distance + 1, distance + 1, ((ty, tx), n_cycle)))
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue continue
distances[y, x][cycle] = distance heapq.heappush(
queue,
((heuristic(ty, tx) + distance + 1, distance + 1, ((ty, tx), n_cycle))),
)
visited.add(((y, x), cycle)) return distances, next(iter(distances[end].values()))
if (y, x) == (end[0], end[1]):
break
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1): start = (
ty = y + dy -1,
tx = x + dx next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
n_cycle = (cycle + 1) % CYCLE distances_1, forward_1 = run(start, 0, end)
print(f"answer 1 is {forward_1}")
if (ty, tx) == end: distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
heapq.heappush( distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
queue, (distance + 1, distance + 1, ((ty, tx), n_cycle)) print(f"answer 2 is {forward_1 + return_1 + forward_2}")
)
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (
ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols
):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue
heapq.heappush(
queue,
(
(
heuristic(ty, tx) + distance + 1,
distance + 1,
((ty, tx), n_cycle),
)
),
)
return distances, next(iter(distances[end].values()))
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
distances_1, forward_1 = run(start, 0, end)
yield forward_1
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
_distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
yield forward_1 + return_1 + forward_2

View File

@@ -1,28 +1,27 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
class Solver(BaseSolver): def snafu2number(number: str) -> int:
def solve(self, input: str) -> Iterator[Any]: value = 0
lines = [line.strip() for line in input.splitlines()] for c in number:
value *= 5
value += coeffs[c]
return value
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
def snafu2number(number: str) -> int: def number2snafu(number: int) -> str:
value = 0 values = ["0", "1", "2", "=", "-"]
for c in number: res = ""
value *= 5 while number > 0:
value += coeffs[c] mod = number % 5
return value res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
yield number2snafu(sum(map(snafu2number, lines))) answer_1 = number2snafu(sum(map(snafu2number, lines)))
print(f"answer 1 is {answer_1}")

View File

@@ -1,28 +1,23 @@
import string import string
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = [line.strip() for line in sys.stdin.readlines()]
# extract content of each part
parts = [(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines]
class Solver(BaseSolver): # priorities
def solve(self, input: str) -> Iterator[Any]: priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)}
lines = [line.strip() for line in input.splitlines()]
# extract content of each part # part 1
parts = [ part1 = sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2))
(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines print(f"answer 1 is {part1}")
]
# priorities # part 2
priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)} n_per_group = 3
part2 = sum(
# part 1 priorities[c]
yield sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2)) for i in range(0, len(lines), n_per_group)
for c in set(lines[i]).intersection(*lines[i + 1 : i + n_per_group])
# part 2 )
n_per_group = 3 print(f"answer 2 is {part2}")
yield sum(
priorities[c]
for i in range(0, len(lines), n_per_group)
for c in set(lines[i]).intersection(*lines[i + 1 : i + n_per_group])
)

View File

@@ -1,6 +1,6 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = [line.strip() for line in sys.stdin.readlines()]
def make_range(value: str) -> set[int]: def make_range(value: str) -> set[int]:
@@ -8,13 +8,10 @@ def make_range(value: str) -> set[int]:
return set(range(int(parts[0]), int(parts[1]) + 1)) return set(range(int(parts[0]), int(parts[1]) + 1))
class Solver(BaseSolver): sections = [tuple(make_range(part) for part in line.split(",")) for line in lines]
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
sections = [ answer_1 = sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections)
tuple(make_range(part) for part in line.split(",")) for line in lines print(f"answer 1 is {answer_1}")
]
yield sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections) answer_2 = sum(bool(s1.intersection(s2)) for s1, s2 in sections)
yield sum(bool(s1.intersection(s2)) for s1, s2 in sections) print(f"answer 1 is {answer_2}")

View File

@@ -1,43 +1,41 @@
import copy import copy
from typing import Any, Iterator import sys
from ..base import BaseSolver blocks_s, moves_s = (part.splitlines() for part in sys.stdin.read().split("\n\n"))
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()}
class Solver(BaseSolver): # this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the
def solve(self, input: str) -> Iterator[Any]: # form of '[X] ' (including the trailing space)
blocks_s, moves_s = (part.splitlines() for part in input.split("\n\n")) #
for block in blocks_s[-2::-1]:
for stack, index in zip(blocks, range(0, len(block), 4)):
crate = block[index + 1 : index + 2].strip()
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()} if crate:
blocks[stack].append(crate)
# this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the # part 1 - deep copy for part 2
# form of '[X] ' (including the trailing space) blocks_1 = copy.deepcopy(blocks)
#
for block in blocks_s[-2::-1]:
for stack, index in zip(blocks, range(0, len(block), 4)):
crate = block[index + 1 : index + 2].strip()
if crate: for move in moves_s:
blocks[stack].append(crate) _, count_s, _, from_, _, to_ = move.strip().split()
# part 1 - deep copy for part 2 for _i in range(int(count_s)):
blocks_1 = copy.deepcopy(blocks) blocks_1[to_].append(blocks_1[from_].pop())
for move in moves_s: # part 2
_, count_s, _, from_, _, to_ = move.strip().split() blocks_2 = copy.deepcopy(blocks)
for _i in range(int(count_s)): for move in moves_s:
blocks_1[to_].append(blocks_1[from_].pop()) _, count_s, _, from_, _, to_ = move.strip().split()
count = int(count_s)
# part 2 blocks_2[to_].extend(blocks_2[from_][-count:])
blocks_2 = copy.deepcopy(blocks) del blocks_2[from_][-count:]
for move in moves_s: answer_1 = "".join(s[-1] for s in blocks_1.values())
_, count_s, _, from_, _, to_ = move.strip().split() print(f"answer 1 is {answer_1}")
count = int(count_s)
blocks_2[to_].extend(blocks_2[from_][-count:]) answer_2 = "".join(s[-1] for s in blocks_2.values())
del blocks_2[from_][-count:] print(f"answer 2 is {answer_2}")
yield "".join(s[-1] for s in blocks_1.values())
yield "".join(s[-1] for s in blocks_2.values())

View File

@@ -1,6 +1,4 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver
def index_of_first_n_differents(data: str, n: int) -> int: def index_of_first_n_differents(data: str, n: int) -> int:
@@ -10,7 +8,8 @@ def index_of_first_n_differents(data: str, n: int) -> int:
return -1 return -1
class Solver(BaseSolver): data = sys.stdin.read().strip()
def solve(self, input: str) -> Iterator[Any]:
yield index_of_first_n_differents(input, 4)
yield index_of_first_n_differents(input, 14) print(f"answer 1 is {index_of_first_n_differents(data, 4)}")
print(f"answer 2 is {index_of_first_n_differents(data, 14)}")

View File

@@ -1,81 +1,80 @@
import sys
from pathlib import Path from pathlib import Path
from typing import Any, Iterator
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
# we are going to use Path to create path and go up/down in the file tree since it
# implements everything we need
#
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
# on Windows but that is not an issue since only the sizes matter
#
# mapping from path to list of files or directories
trees: dict[Path, list[Path]] = {}
# mapping from paths to either size (for file) or -1 for directory
sizes: dict[Path, int] = {}
# first line must be a cd otherwise we have no idea where we are
assert lines[0].startswith("$ cd")
base_path = Path(lines[0].strip("$").split()[1]).resolve()
cur_path = base_path
trees[cur_path] = []
sizes[cur_path] = -1
for line in lines[1:]:
# command
if line.startswith("$"):
parts = line.strip("$").strip().split()
command = parts[0]
if command == "cd":
cur_path = cur_path.joinpath(parts[1]).resolve()
# just initialize the lis of files if not already done
if cur_path not in trees:
trees[cur_path] = []
else:
# nothing to do here
pass
# fill the current path
else:
parts = line.split()
name: str = parts[1]
if line.startswith("dir"):
size = -1
else:
size = int(parts[0])
path = cur_path.joinpath(name)
trees[cur_path].append(path)
sizes[path] = size
class Solver(BaseSolver): def compute_size(path: Path) -> int:
def solve(self, input: str) -> Iterator[Any]: size = sizes[path]
lines = [line.strip() for line in input.splitlines()]
# we are going to use Path to create path and go up/down in the file tree since it if size >= 0:
# implements everything we need return size
#
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
# on Windows but that is not an issue since only the sizes matter
#
# mapping from path to list of files or directories return sum(compute_size(sub) for sub in trees[path])
trees: dict[Path, list[Path]] = {}
# mapping from paths to either size (for file) or -1 for directory
sizes: dict[Path, int] = {}
# first line must be a cd otherwise we have no idea where we are acc_sizes = {path: compute_size(path) for path in trees}
assert lines[0].startswith("$ cd")
base_path = Path(lines[0].strip("$").split()[1]).resolve()
cur_path = base_path
trees[cur_path] = [] # part 1
sizes[cur_path] = -1 answer_1 = sum(size for size in acc_sizes.values() if size <= 100_000)
print(f"answer 1 is {answer_1}")
for line in lines[1:]: # part 2
# command total_space = 70_000_000
if line.startswith("$"): update_space = 30_000_000
parts = line.strip("$").strip().split() free_space = total_space - acc_sizes[base_path]
command = parts[0]
if command == "cd": to_free_space = update_space - free_space
cur_path = cur_path.joinpath(parts[1]).resolve()
# just initialize the lis of files if not already done answer_2 = min(size for size in acc_sizes.values() if size >= to_free_space)
if cur_path not in trees: print(f"answer 2 is {answer_2}")
trees[cur_path] = []
else:
# nothing to do here
pass
# fill the current path
else:
parts = line.split()
name: str = parts[1]
if line.startswith("dir"):
size = -1
else:
size = int(parts[0])
path = cur_path.joinpath(name)
trees[cur_path].append(path)
sizes[path] = size
def compute_size(path: Path) -> int:
size = sizes[path]
if size >= 0:
return size
return sum(compute_size(sub) for sub in trees[path])
acc_sizes = {path: compute_size(path) for path in trees}
# part 1
yield sum(size for size in acc_sizes.values() if size <= 100_000)
# part 2
total_space = 70_000_000
update_space = 30_000_000
free_space = total_space - acc_sizes[base_path]
to_free_space = update_space - free_space
yield min(size for size in acc_sizes.values() if size >= to_free_space)

View File

@@ -1,54 +1,53 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from numpy.typing import NDArray from numpy.typing import NDArray
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
trees = np.array([[int(x) for x in row] for row in lines])
class Solver(BaseSolver): # answer 1
def solve(self, input: str) -> Iterator[Any]: highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1
lines = [line.strip() for line in input.splitlines()] highest_trees[1:-1, 1:-1] = [
[
trees = np.array([[int(x) for x in row] for row in lines]) [
trees[:i, j].max(),
# answer 1 trees[i + 1 :, j].max(),
highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1 trees[i, :j].max(),
highest_trees[1:-1, 1:-1] = [ trees[i, j + 1 :].max(),
[
[
trees[:i, j].max(),
trees[i + 1 :, j].max(),
trees[i, :j].max(),
trees[i, j + 1 :].max(),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
] ]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
yield (highest_trees.min(axis=2) < trees).sum() answer_1 = (highest_trees.min(axis=2) < trees).sum()
print(f"answer 1 is {answer_1}")
def viewing_distance(row_of_trees: NDArray[np.int_], value: int) -> int:
w = np.where(row_of_trees >= value)[0]
if not w.size: def viewing_distance(row_of_trees: NDArray[np.int_], value: int) -> int:
return len(row_of_trees) w = np.where(row_of_trees >= value)[0]
return w[0] + 1 if not w.size:
return len(row_of_trees)
# answer 2 return w[0] + 1
v_distances = np.zeros(trees.shape + (4,), dtype=int)
v_distances[1:-1, 1:-1, :] = [
[ # answer 2
[ v_distances = np.zeros(trees.shape + (4,), dtype=int)
viewing_distance(trees[i - 1 :: -1, j], trees[i, j]), v_distances[1:-1, 1:-1, :] = [
viewing_distance(trees[i, j - 1 :: -1], trees[i, j]), [
viewing_distance(trees[i, j + 1 :], trees[i, j]), [
viewing_distance(trees[i + 1 :, j], trees[i, j]), viewing_distance(trees[i - 1 :: -1, j], trees[i, j]),
] viewing_distance(trees[i, j - 1 :: -1], trees[i, j]),
for j in range(1, trees.shape[1] - 1) viewing_distance(trees[i, j + 1 :], trees[i, j]),
] viewing_distance(trees[i + 1 :, j], trees[i, j]),
for i in range(1, trees.shape[0] - 1)
] ]
yield np.prod(v_distances, axis=2).max() for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
answer_2 = np.prod(v_distances, axis=2).max()
print(f"answer 2 is {answer_2}")

View File

@@ -1,10 +1,7 @@
import itertools as it import sys
from typing import Any, Iterator
import numpy as np import numpy as np
from ..base import BaseSolver
def move(head: tuple[int, int], command: str) -> tuple[int, int]: def move(head: tuple[int, int], command: str) -> tuple[int, int]:
h_col, h_row = head h_col, h_row = head
@@ -46,14 +43,17 @@ def run(commands: list[str], n_blocks: int) -> list[tuple[int, int]]:
return visited return visited
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
# flatten the commands # flatten the commands
commands = list( commands: list[str] = []
it.chain(*(p[0] * int(p[1]) for line in lines if (p := line.split()))) for line in lines:
) d, c = line.split()
commands.extend(d * int(c))
yield len(set(run(commands, n_blocks=2)))
yield len(set(run(commands, n_blocks=10))) visited_1 = run(commands, n_blocks=2)
print(f"answer 1 is {len(set(visited_1))}")
visited_2 = run(commands, n_blocks=10)
print(f"answer 2 is {len(set(visited_2))}")

View File

@@ -1,9 +1,27 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
lookups_1 = {str(d): d for d in range(1, 10)}
lookups_2 = lookups_1 | {
d: i + 1
for i, d in enumerate(
(
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
)
)
}
def find_values(lines: list[str], lookups: dict[str, int]) -> list[int]: def find_values(lookups: dict[str, int]) -> list[int]:
values: list[int] = [] values: list[int] = []
for line in filter(bool, lines): for line in filter(bool, lines):
@@ -23,27 +41,5 @@ def find_values(lines: list[str], lookups: dict[str, int]) -> list[int]:
return values return values
class Solver(BaseSolver): print(f"answer 1 is {sum(find_values(lookups_1))}")
def solve(self, input: str) -> Iterator[Any]: print(f"answer 2 is {sum(find_values(lookups_2))}")
lookups_1 = {str(d): d for d in range(1, 10)}
lookups_2 = lookups_1 | {
d: i + 1
for i, d in enumerate(
(
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
)
)
}
lines = input.splitlines()
yield sum(find_values(lines, lookups_1))
yield sum(find_values(lines, lookups_2))

View File

@@ -1,100 +1,100 @@
from typing import Any, Iterator, Literal, cast import os
import sys
from typing import Literal, cast
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
Symbol = Literal["|", "-", "L", "J", "7", "F", ".", "S"] Symbol = Literal["|", "-", "L", "J", "7", "F", ".", "S"]
lines: list[list[Symbol]] = [
[cast(Symbol, symbol) for symbol in line] for line in sys.stdin.read().splitlines()
]
class Solver(BaseSolver): # find starting point
def solve(self, input: str) -> Iterator[Any]: si, sj = next(
lines: list[list[Symbol]] = [ (i, j)
[cast(Symbol, symbol) for symbol in line] for line in input.splitlines() for i in range(len(lines))
] for j in range(len(lines[0]))
if lines[i][j] == "S"
)
# find starting point # find one of the two outputs
si, sj = next( ni, nj = si, sj
(i, j) for ni, nj, chars in (
for i in range(len(lines)) (si - 1, sj, "|7F"),
for j in range(len(lines[0])) (si + 1, sj, "|LJ"),
if lines[i][j] == "S" (si, sj - 1, "-LF"),
) (si, sj + 1, "-J7"),
):
if lines[ni][nj] in chars:
break
# find one of the two outputs # part 1 - find the loop (re-used in part 2)
ni, nj = si, sj loop = [(si, sj), (ni, nj)]
for ni, nj, chars in ( while True:
(si - 1, sj, "|7F"), pi, pj = loop[-2]
(si + 1, sj, "|LJ"), i, j = loop[-1]
(si, sj - 1, "-LF"),
(si, sj + 1, "-J7"),
):
if lines[ni][nj] in chars:
break
# part 1 - find the loop (re-used in part 2) sym = lines[i][j]
loop = [(si, sj), (ni, nj)]
while True:
pi, pj = loop[-2]
i, j = loop[-1]
sym = lines[i][j] if sym == "|" and pi > i or sym in "JL" and pi == i:
i -= 1
elif sym == "|" and pi < i or sym in "7F" and pi == i:
i += 1
elif sym == "-" and pj > j or sym in "J7" and pj == j:
j -= 1
elif sym == "-" and pj < j or sym in "LF" and pj == j:
j += 1
if sym == "|" and pi > i or sym in "JL" and pi == i: if (i, j) == (si, sj):
i -= 1 break
elif sym == "|" and pi < i or sym in "7F" and pi == i:
i += 1
elif sym == "-" and pj > j or sym in "J7" and pj == j:
j -= 1
elif sym == "-" and pj < j or sym in "LF" and pj == j:
j += 1
loop.append((i, j))
answer_1 = len(loop) // 2
print(f"answer 1 is {answer_1}")
# part 2
# replace S by an appropriate character for the loop below
di1, dj1 = loop[1][0] - loop[0][0], loop[1][1] - loop[0][1]
di2, dj2 = loop[0][0] - loop[-1][0], loop[0][1] - loop[-1][1]
mapping: dict[tuple[int, int], dict[tuple[int, int], Symbol]] = {
(0, 1): {(0, 1): "-", (-1, 0): "F", (1, 0): "L"},
(0, -1): {(0, -1): "-", (-1, 0): "7", (1, 0): "J"},
(1, 0): {(1, 0): "|", (0, 1): "7", (0, -1): "F"},
(-1, 0): {(-1, 0): "|", (0, -1): "L", (0, 1): "J"},
}
lines[si][sj] = mapping[di1, dj1][di2, dj2]
# find the points inside the loop using an adaptation of ray casting for a discrete
# grid (https://stackoverflow.com/a/218081/2666289)
#
# use a set for faster '... in loop' check
#
loop_s = set(loop)
inside: set[tuple[int, int]] = set()
for i in range(len(lines)):
cnt = 0
for j in range(len(lines[0])):
if (i, j) not in loop_s and cnt % 2 == 1:
inside.add((i, j))
if (i, j) in loop_s and lines[i][j] in "|LJ":
cnt += 1
if VERBOSE:
for i in range(len(lines)):
for j in range(len(lines[0])):
if (i, j) == (si, sj): if (i, j) == (si, sj):
break print("\033[91mS\033[0m", end="")
elif (i, j) in loop:
print(lines[i][j], end="")
elif (i, j) in inside:
print("\033[92mI\033[0m", end="")
else:
print(".", end="")
print()
loop.append((i, j)) answer_2 = len(inside)
print(f"answer 2 is {answer_2}")
yield len(loop) // 2
# part 2
# replace S by an appropriate character for the loop below
di1, dj1 = loop[1][0] - loop[0][0], loop[1][1] - loop[0][1]
di2, dj2 = loop[0][0] - loop[-1][0], loop[0][1] - loop[-1][1]
mapping: dict[tuple[int, int], dict[tuple[int, int], Symbol]] = {
(0, 1): {(0, 1): "-", (-1, 0): "F", (1, 0): "L"},
(0, -1): {(0, -1): "-", (-1, 0): "7", (1, 0): "J"},
(1, 0): {(1, 0): "|", (0, 1): "7", (0, -1): "F"},
(-1, 0): {(-1, 0): "|", (0, -1): "L", (0, 1): "J"},
}
lines[si][sj] = mapping[di1, dj1][di2, dj2]
# find the points inside the loop using an adaptation of ray casting for a discrete
# grid (https://stackoverflow.com/a/218081/2666289)
#
# use a set for faster '... in loop' check
#
loop_s = set(loop)
inside: set[tuple[int, int]] = set()
for i in range(len(lines)):
cnt = 0
for j in range(len(lines[0])):
if (i, j) not in loop_s and cnt % 2 == 1:
inside.add((i, j))
if (i, j) in loop_s and lines[i][j] in "|LJ":
cnt += 1
if self.verbose:
for i in range(len(lines)):
s = ""
for j in range(len(lines[0])):
if (i, j) == (si, sj):
s += "\033[91mS\033[0m"
elif (i, j) in loop:
s += lines[i][j]
elif (i, j) in inside:
s += "\033[92mI\033[0m"
else:
s += "."
self.logger.info(s)
yield len(inside)

View File

@@ -1,42 +1,41 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
data = np.array([[c == "#" for c in line] for line in lines])
rows = {c for c in range(data.shape[0]) if not data[c, :].any()}
columns = {c for c in range(data.shape[1]) if not data[:, c].any()}
galaxies_y, galaxies_x = np.where(data) # type: ignore
class Solver(BaseSolver): def compute_total_distance(expansion: int) -> int:
def solve(self, input: str) -> Iterator[Any]: distances: list[int] = []
lines = input.splitlines() for g1 in range(len(galaxies_y)):
x1, y1 = int(galaxies_x[g1]), int(galaxies_y[g1])
for g2 in range(g1 + 1, len(galaxies_y)):
x2, y2 = int(galaxies_x[g2]), int(galaxies_y[g2])
data = np.array([[c == "#" for c in line] for line in lines]) dx = sum(
1 + (expansion - 1) * (x in columns)
for x in range(min(x1, x2), max(x1, x2))
)
dy = sum(
1 + (expansion - 1) * (y in rows)
for y in range(min(y1, y2), max(y1, y2))
)
rows = {c for c in range(data.shape[0]) if not data[c, :].any()} distances.append(dx + dy)
columns = {c for c in range(data.shape[1]) if not data[:, c].any()} return sum(distances)
galaxies_y, galaxies_x = np.where(data) # type: ignore
def compute_total_distance(expansion: int) -> int: # part 1
distances: list[int] = [] answer_1 = compute_total_distance(2)
for g1 in range(len(galaxies_y)): print(f"answer 1 is {answer_1}")
x1, y1 = int(galaxies_x[g1]), int(galaxies_y[g1])
for g2 in range(g1 + 1, len(galaxies_y)):
x2, y2 = int(galaxies_x[g2]), int(galaxies_y[g2])
dx = sum( # part 2
1 + (expansion - 1) * (x in columns) answer_2 = compute_total_distance(1000000)
for x in range(min(x1, x2), max(x1, x2)) print(f"answer 2 is {answer_2}")
)
dy = sum(
1 + (expansion - 1) * (y in rows)
for y in range(min(y1, y2), max(y1, y2))
)
distances.append(dx + dy)
return sum(distances)
# part 1
yield compute_total_distance(2)
# part 2
yield compute_total_distance(1000000)

View File

@@ -1,7 +1,9 @@
import os
import sys
from functools import lru_cache from functools import lru_cache
from typing import Any, Iterable, Iterator from typing import Iterable
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
@lru_cache @lru_cache
@@ -75,29 +77,31 @@ def compute_possible_arrangements(
) )
class Solver(BaseSolver): def compute_all_possible_arrangements(lines: Iterable[str], repeat: int) -> int:
def compute_all_possible_arrangements( count = 0
self, lines: Iterable[str], repeat: int
) -> int:
count = 0
for i_line, line in enumerate(lines): if VERBOSE:
self.logger.info(f"processing line {i_line}: {line}...") from tqdm import tqdm
parts = line.split(" ")
count += compute_possible_arrangements(
tuple(
filter(len, "?".join(parts[0] for _ in range(repeat)).split("."))
),
tuple(int(c) for c in parts[1].split(",")) * repeat,
)
return count lines = tqdm(lines)
def solve(self, input: str) -> Iterator[Any]: for line in lines:
lines = input.splitlines() parts = line.split(" ")
count += compute_possible_arrangements(
tuple(filter(len, "?".join(parts[0] for _ in range(repeat)).split("."))),
tuple(int(c) for c in parts[1].split(",")) * repeat,
)
# part 1 return count
yield self.compute_all_possible_arrangements(lines, 1)
# part 2
yield self.compute_all_possible_arrangements(lines, 5) lines = sys.stdin.read().splitlines()
# part 1
answer_1 = compute_all_possible_arrangements(lines, 1)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = compute_all_possible_arrangements(lines, 5)
print(f"answer 2 is {answer_2}")

View File

@@ -1,6 +1,5 @@
from typing import Any, Callable, Iterator, Literal import sys
from typing import Callable, Literal
from ..base import BaseSolver
def split(block: list[str], axis: Literal[0, 1], count: int) -> int: def split(block: list[str], axis: Literal[0, 1], count: int) -> int:
@@ -26,18 +25,19 @@ def split(block: list[str], axis: Literal[0, 1], count: int) -> int:
return 0 return 0
class Solver(BaseSolver): blocks = [block.splitlines() for block in sys.stdin.read().split("\n\n")]
def solve(self, input: str) -> Iterator[Any]:
blocks = [block.splitlines() for block in input.split("\n\n")]
# part 1
yield sum(
split(block, axis=1, count=0) + 100 * split(block, axis=0, count=0)
for block in blocks
)
# part 2 # part 1
yield sum( answer_1 = sum(
split(block, axis=1, count=1) + 100 * split(block, axis=0, count=1) split(block, axis=1, count=0) + 100 * split(block, axis=0, count=0)
for block in blocks for block in blocks
) )
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = sum(
split(block, axis=1, count=1) + 100 * split(block, axis=0, count=1)
for block in blocks
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,9 +1,10 @@
from typing import Any, Iterator, TypeAlias import sys
from typing import TypeAlias
from ..base import BaseSolver
RockGrid: TypeAlias = list[list[str]] RockGrid: TypeAlias = list[list[str]]
rocks0 = [list(line) for line in sys.stdin.read().splitlines()]
def slide_rocks_top(rocks: RockGrid) -> RockGrid: def slide_rocks_top(rocks: RockGrid) -> RockGrid:
top = [0 if c == "." else 1 for c in rocks[0]] top = [0 if c == "." else 1 for c in rocks[0]]
@@ -33,38 +34,35 @@ def cycle(rocks: RockGrid) -> RockGrid:
return rocks return rocks
class Solver(BaseSolver): rocks = slide_rocks_top([[c for c in r] for r in rocks0])
def solve(self, input: str) -> Iterator[Any]:
rocks0 = [list(line) for line in input.splitlines()]
rocks = slide_rocks_top([[c for c in r] for r in rocks0]) # part 1
answer_1 = sum(
(len(rocks) - i) * sum(1 for c in row if c == "O") for i, row in enumerate(rocks)
)
print(f"answer 1 is {answer_1}")
# part 1 # part 2
yield sum( rocks = rocks0
(len(rocks) - i) * sum(1 for c in row if c == "O")
for i, row in enumerate(rocks)
)
# part 2 N = 1000000000
rocks = rocks0 cycles: list[RockGrid] = []
i_cycle: int = -1
for i_cycle in range(N):
rocks = cycle(rocks)
N = 1000000000 if any(rocks == c for c in cycles):
cycles: list[RockGrid] = [] break
i_cycle: int = -1
for i_cycle in range(N):
rocks = cycle(rocks)
if any(rocks == c for c in cycles): cycles.append([[c for c in r] for r in rocks])
break
cycles.append([[c for c in r] for r in rocks]) cycle_start = next(i for i in range(len(cycles)) if (rocks == cycles[i]))
cycle_length = i_cycle - cycle_start
cycle_start = next(i for i in range(len(cycles)) if (rocks == cycles[i])) ci = cycle_start + (N - cycle_start) % cycle_length - 1
cycle_length = i_cycle - cycle_start
ci = cycle_start + (N - cycle_start) % cycle_length - 1 answer_2 = sum(
(len(rocks) - i) * sum(1 for c in row if c == "O")
yield sum( for i, row in enumerate(cycles[ci])
(len(rocks) - i) * sum(1 for c in row if c == "O") )
for i, row in enumerate(cycles[ci]) print(f"answer 2 is {answer_2}")
)

View File

@@ -1,33 +1,31 @@
import sys
from functools import reduce from functools import reduce
from typing import Any, Iterator
from ..base import BaseSolver steps = sys.stdin.read().strip().split(",")
def _hash(s: str) -> int: def _hash(s: str) -> int:
return reduce(lambda v, u: ((v + ord(u)) * 17) % 256, s, 0) return reduce(lambda v, u: ((v + ord(u)) * 17) % 256, s, 0)
class Solver(BaseSolver): # part 1
def solve(self, input: str) -> Iterator[Any]: answer_1 = sum(map(_hash, steps))
steps = input.split(",") print(f"answer 1 is {answer_1}")
# part 1 # part 2
yield sum(map(_hash, steps)) boxes: list[dict[str, int]] = [{} for _ in range(256)]
# part 2 for step in steps:
boxes: list[dict[str, int]] = [{} for _ in range(256)] if (i := step.find("=")) >= 0:
label, length = step[:i], int(step[i + 1 :])
boxes[_hash(label)][label] = length
else:
label = step[:-1]
boxes[_hash(label)].pop(label, None)
for step in steps: answer_2 = sum(
if (i := step.find("=")) >= 0: i_box * i_lens * length
label, length = step[:i], int(step[i + 1 :]) for i_box, box in enumerate(boxes, start=1)
boxes[_hash(label)][label] = length for i_lens, length in enumerate(box.values(), start=1)
else: )
label = step[:-1] print(f"answer 2 is {answer_2}")
boxes[_hash(label)].pop(label, None)
yield sum(
i_box * i_lens * length
for i_box, box in enumerate(boxes, start=1)
for i_lens, length in enumerate(box.values(), start=1)
)

View File

@@ -1,6 +1,8 @@
from typing import Any, Iterator, Literal, TypeAlias, cast import os
import sys
from typing import Literal, TypeAlias, cast
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
CellType: TypeAlias = Literal[".", "|", "-", "\\", "/"] CellType: TypeAlias = Literal[".", "|", "-", "\\", "/"]
Direction: TypeAlias = Literal["R", "L", "U", "D"] Direction: TypeAlias = Literal["R", "L", "U", "D"]
@@ -76,33 +78,33 @@ def propagate(
return beams return beams
class Solver(BaseSolver): layout: list[list[CellType]] = [
def solve(self, input: str) -> Iterator[Any]: [cast(CellType, col) for col in row] for row in sys.stdin.read().splitlines()
layout: list[list[CellType]] = [ ]
[cast(CellType, col) for col in row] for row in input.splitlines()
]
beams = propagate(layout, (0, 0), "R")
if self.verbose: beams = propagate(layout, (0, 0), "R")
for row in beams:
self.logger.info("".join("#" if col else "." for col in row))
# part 1 if VERBOSE:
yield sum(sum(map(bool, row)) for row in beams) print("\n".join(["".join("#" if col else "." for col in row) for row in beams]))
# part 2 # part 1
n_rows, n_cols = len(layout), len(layout[0]) answer_1 = sum(sum(map(bool, row)) for row in beams)
cases: list[tuple[tuple[int, int], Direction]] = [] print(f"answer 1 is {answer_1}")
for row in range(n_rows): # part 2
cases.append(((row, 0), "R")) n_rows, n_cols = len(layout), len(layout[0])
cases.append(((row, n_cols - 1), "L")) cases: list[tuple[tuple[int, int], Direction]] = []
for col in range(n_cols):
cases.append(((0, col), "D"))
cases.append(((n_rows - 1, col), "U"))
yield max( for row in range(n_rows):
sum(sum(map(bool, row)) for row in propagate(layout, start, direction)) cases.append(((row, 0), "R"))
for start, direction in cases cases.append(((row, n_cols - 1), "L"))
) for col in range(n_cols):
cases.append(((0, col), "D"))
cases.append(((n_rows - 1, col), "U"))
answer_2 = max(
sum(sum(map(bool, row)) for row in propagate(layout, start, direction))
for start, direction in cases
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,11 +1,13 @@
from __future__ import annotations from __future__ import annotations
import heapq import heapq
import os
import sys
from collections import defaultdict from collections import defaultdict
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Iterator, Literal, TypeAlias from typing import Literal, TypeAlias
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
Direction: TypeAlias = Literal[">", "<", "^", "v"] Direction: TypeAlias = Literal[">", "<", "^", "v"]
@@ -30,204 +32,202 @@ MAPPINGS: dict[Direction, tuple[int, int, Direction]] = {
} }
class Solver(BaseSolver): def print_shortest_path(
def print_shortest_path( grid: list[list[int]],
self, target: tuple[int, int],
grid: list[list[int]], per_cell: dict[tuple[int, int], list[tuple[Label, int]]],
target: tuple[int, int], ):
per_cell: dict[tuple[int, int], list[tuple[Label, int]]], assert len(per_cell[target]) == 1
): label = per_cell[target][0][0]
assert len(per_cell[target]) == 1
label = per_cell[target][0][0]
path: list[Label] = [] path: list[Label] = []
while True: while True:
path.insert(0, label) path.insert(0, label)
if label.parent is None: if label.parent is None:
break break
label = label.parent label = label.parent
p_grid = [[str(c) for c in r] for r in grid] p_grid = [[str(c) for c in r] for r in grid]
for i in range(len(grid)): for i in range(len(grid)):
for j in range(len(grid[0])): for j in range(len(grid[0])):
if per_cell[i, j]: if per_cell[i, j]:
p_grid[i][j] = f"\033[94m{grid[i][j]}\033[0m" p_grid[i][j] = f"\033[94m{grid[i][j]}\033[0m"
prev_label = path[0] prev_label = path[0]
for label in path[1:]: for label in path[1:]:
for r in range( for r in range(
min(prev_label.row, label.row), max(prev_label.row, label.row) + 1 min(prev_label.row, label.row), max(prev_label.row, label.row) + 1
):
for c in range(
min(prev_label.col, label.col),
max(prev_label.col, label.col) + 1,
): ):
for c in range( if (r, c) != (prev_label.row, prev_label.col):
min(prev_label.col, label.col), p_grid[r][c] = f"\033[93m{grid[r][c]}\033[0m"
max(prev_label.col, label.col) + 1,
):
if (r, c) != (prev_label.row, prev_label.col):
p_grid[r][c] = f"\033[93m{grid[r][c]}\033[0m"
p_grid[label.row][label.col] = ( p_grid[label.row][label.col] = f"\033[91m{grid[label.row][label.col]}\033[0m"
f"\033[91m{grid[label.row][label.col]}\033[0m"
)
prev_label = label prev_label = label
p_grid[0][0] = f"\033[92m{grid[0][0]}\033[0m" p_grid[0][0] = f"\033[92m{grid[0][0]}\033[0m"
for row in p_grid: print("\n".join("".join(row) for row in p_grid))
self.logger.info("".join(row))
def shortest_many_paths(self, grid: list[list[int]]) -> dict[tuple[int, int], int]:
n_rows, n_cols = len(grid), len(grid[0])
visited: dict[tuple[int, int], tuple[Label, int]] = {} def shortest_many_paths(grid: list[list[int]]) -> dict[tuple[int, int], int]:
n_rows, n_cols = len(grid), len(grid[0])
queue: list[tuple[int, Label]] = [ visited: dict[tuple[int, int], tuple[Label, int]] = {}
(0, Label(row=n_rows - 1, col=n_cols - 1, direction="^", count=0))
]
while queue and len(visited) != n_rows * n_cols: queue: list[tuple[int, Label]] = [
distance, label = heapq.heappop(queue) (0, Label(row=n_rows - 1, col=n_cols - 1, direction="^", count=0))
]
if (label.row, label.col) in visited: while queue and len(visited) != n_rows * n_cols:
distance, label = heapq.heappop(queue)
if (label.row, label.col) in visited:
continue
visited[label.row, label.col] = (label, distance)
for direction, (c_row, c_col, i_direction) in MAPPINGS.items():
if label.direction == i_direction:
continue
else:
row, col = (label.row + c_row, label.col + c_col)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue continue
visited[label.row, label.col] = (label, distance) heapq.heappush(
queue,
for direction, (c_row, c_col, i_direction) in MAPPINGS.items(): (
if label.direction == i_direction:
continue
else:
row, col = (label.row + c_row, label.col + c_col)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue
heapq.heappush(
queue,
(
distance
+ sum(
grid[r][c]
for r in range(min(row, label.row), max(row, label.row) + 1)
for c in range(min(col, label.col), max(col, label.col) + 1)
)
- grid[row][col],
Label(
row=row,
col=col,
direction=direction,
count=0,
parent=label,
),
),
)
return {(r, c): visited[r, c][1] for r in range(n_rows) for c in range(n_cols)}
def shortest_path(
self,
grid: list[list[int]],
min_straight: int,
max_straight: int,
lower_bounds: dict[tuple[int, int], int],
) -> int:
n_rows, n_cols = len(grid), len(grid[0])
target = (len(grid) - 1, len(grid[0]) - 1)
# for each tuple (row, col, direction, count), the associated label when visited
visited: dict[tuple[int, int, str, int], Label] = {}
# list of all visited labels for a cell (with associated distance)
per_cell: dict[tuple[int, int], list[tuple[Label, int]]] = defaultdict(list)
# need to add two start labels, otherwise one of the two possible direction will
# not be possible
queue: list[tuple[int, int, Label]] = [
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="^", count=0)),
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="<", count=0)),
]
while queue:
_, distance, label = heapq.heappop(queue)
if (label.row, label.col, label.direction, label.count) in visited:
continue
visited[label.row, label.col, label.direction, label.count] = label
per_cell[label.row, label.col].append((label, distance))
if (label.row, label.col) == target:
break
for direction, (c_row, c_col, i_direction) in MAPPINGS.items():
# cannot move in the opposite direction
if label.direction == i_direction:
continue
# other direction, move 'min_straight' in the new direction
elif label.direction != direction:
row, col, count = (
label.row + min_straight * c_row,
label.col + min_straight * c_col,
min_straight,
)
# same direction, too many count
elif label.count == max_straight:
continue
# same direction, keep going and increment count
else:
row, col, count = (
label.row + c_row,
label.col + c_col,
label.count + 1,
)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue
distance_to = (
distance distance
+ sum( + sum(
grid[r][c] grid[r][c]
for r in range(min(row, label.row), max(row, label.row) + 1) for r in range(min(row, label.row), max(row, label.row) + 1)
for c in range(min(col, label.col), max(col, label.col) + 1) for c in range(min(col, label.col), max(col, label.col) + 1)
) )
- grid[label.row][label.col] - grid[row][col],
) Label(
row=row,
heapq.heappush( col=col,
queue, direction=direction,
( count=0,
distance_to + lower_bounds[row, col], parent=label,
distance_to,
Label(
row=row,
col=col,
direction=direction,
count=count,
parent=label,
),
), ),
),
)
return {(r, c): visited[r, c][1] for r in range(n_rows) for c in range(n_cols)}
def shortest_path(
grid: list[list[int]],
min_straight: int,
max_straight: int,
lower_bounds: dict[tuple[int, int], int],
) -> int:
n_rows, n_cols = len(grid), len(grid[0])
target = (len(grid) - 1, len(grid[0]) - 1)
# for each tuple (row, col, direction, count), the associated label when visited
visited: dict[tuple[int, int, str, int], Label] = {}
# list of all visited labels for a cell (with associated distance)
per_cell: dict[tuple[int, int], list[tuple[Label, int]]] = defaultdict(list)
# need to add two start labels, otherwise one of the two possible direction will
# not be possible
queue: list[tuple[int, int, Label]] = [
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="^", count=0)),
(lower_bounds[0, 0], 0, Label(row=0, col=0, direction="<", count=0)),
]
while queue:
_, distance, label = heapq.heappop(queue)
if (label.row, label.col, label.direction, label.count) in visited:
continue
visited[label.row, label.col, label.direction, label.count] = label
per_cell[label.row, label.col].append((label, distance))
if (label.row, label.col) == target:
break
for direction, (c_row, c_col, i_direction) in MAPPINGS.items():
# cannot move in the opposite direction
if label.direction == i_direction:
continue
# other direction, move 'min_straight' in the new direction
elif label.direction != direction:
row, col, count = (
label.row + min_straight * c_row,
label.col + min_straight * c_col,
min_straight,
) )
if self.verbose: # same direction, too many count
self.print_shortest_path(grid, target, per_cell) elif label.count == max_straight:
continue
return per_cell[target][0][1] # same direction, keep going and increment count
else:
row, col, count = (
label.row + c_row,
label.col + c_col,
label.count + 1,
)
# exclude labels outside the grid or with too many moves in the same
# direction
if row not in range(0, n_rows) or col not in range(0, n_cols):
continue
def solve(self, input: str) -> Iterator[Any]: distance_to = (
data = [[int(c) for c in r] for r in input.splitlines()] distance
estimates = self.shortest_many_paths(data) + sum(
grid[r][c]
for r in range(min(row, label.row), max(row, label.row) + 1)
for c in range(min(col, label.col), max(col, label.col) + 1)
)
- grid[label.row][label.col]
)
# part 1 heapq.heappush(
yield self.shortest_path(data, 1, 3, lower_bounds=estimates) queue,
(
distance_to + lower_bounds[row, col],
distance_to,
Label(
row=row,
col=col,
direction=direction,
count=count,
parent=label,
),
),
)
# part 2 if VERBOSE:
yield self.shortest_path(data, 4, 10, lower_bounds=estimates) print_shortest_path(grid, target, per_cell)
return per_cell[target][0][1]
data = [[int(c) for c in r] for r in sys.stdin.read().splitlines()]
estimates = shortest_many_paths(data)
# part 1
answer_1 = shortest_path(data, 1, 3, lower_bounds=estimates)
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = shortest_path(data, 4, 10, lower_bounds=estimates)
print(f"answer 2 is {answer_2}")

View File

@@ -1,6 +1,5 @@
from typing import Any, Iterator, Literal, TypeAlias, cast import sys
from typing import Literal, TypeAlias, cast
from ..base import BaseSolver
Direction: TypeAlias = Literal["R", "L", "U", "D"] Direction: TypeAlias = Literal["R", "L", "U", "D"]
@@ -34,23 +33,22 @@ def polygon(values: list[tuple[Direction, int]]) -> tuple[list[tuple[int, int]],
return corners, perimeter return corners, perimeter
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1
yield area(
*polygon(
[(cast(Direction, (p := line.split())[0]), int(p[1])) for line in lines]
)
)
# part 2 # part 1
yield area( answer_1 = area(
*polygon( *polygon([(cast(Direction, (p := line.split())[0]), int(p[1])) for line in lines])
[ )
(DIRECTIONS[int((h := line.split()[-1])[-2])], int(h[2:-2], 16)) print(f"answer 1 is {answer_1}")
for line in lines
] # part 2
) answer_2 = area(
) *polygon(
[
(DIRECTIONS[int((h := line.split()[-1])[-2])], int(h[2:-2], 16))
for line in lines
]
)
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,8 +1,13 @@
import logging
import operator import operator
import os
import sys
from math import prod from math import prod
from typing import Any, Iterator, Literal, TypeAlias, cast from typing import Literal, TypeAlias, cast
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
Category: TypeAlias = Literal["x", "m", "a", "s"] Category: TypeAlias = Literal["x", "m", "a", "s"]
Part: TypeAlias = dict[Category, int] Part: TypeAlias = dict[Category, int]
@@ -17,118 +22,119 @@ Check: TypeAlias = tuple[Category, Literal["<", ">"], int] | None
Workflow: TypeAlias = list[tuple[Check, str]] Workflow: TypeAlias = list[tuple[Check, str]]
class Solver(BaseSolver): def accept(workflows: dict[str, Workflow], part: Part) -> bool:
def accept(self, workflows: dict[str, Workflow], part: Part) -> bool: workflow = "in"
workflow = "in" decision: bool | None = None
decision: bool | None = None
while decision is None:
for check, target in workflows[workflow]:
passed = check is None
if check is not None:
category, sense, value = check
passed = OPERATORS[sense](part[category], value)
if passed:
if target in workflows:
workflow = target
else:
decision = target == "A"
break
return decision
def propagate(self, workflows: dict[str, Workflow], start: PartWithBounds) -> int:
def _fmt(meta: PartWithBounds) -> str:
return "{" + ", ".join(f"{k}={v}" for k, v in meta.items()) + "}"
def transfer_or_accept(
target: str, meta: PartWithBounds, queue: list[tuple[PartWithBounds, str]]
) -> int:
count = 0
if target in workflows:
self.logger.info(f" transfer to {target}")
queue.append((meta, target))
elif target == "A":
count = prod((high - low + 1) for low, high in meta.values())
self.logger.info(f" accepted ({count})")
else:
self.logger.info(" rejected")
return count
accepted = 0
queue: list[tuple[PartWithBounds, str]] = [(start, "in")]
n_iterations = 0
while queue:
n_iterations += 1
meta, workflow = queue.pop()
self.logger.info(f"{workflow}: {_fmt(meta)}")
for check, target in workflows[workflow]:
if check is None:
self.logger.info(" end-of-workflow")
accepted += transfer_or_accept(target, meta, queue)
continue
while decision is None:
for check, target in workflows[workflow]:
passed = check is None
if check is not None:
category, sense, value = check category, sense, value = check
bounds, op = meta[category], OPERATORS[sense] passed = OPERATORS[sense](part[category], value)
self.logger.info( if passed:
f" checking {_fmt(meta)} against {category} {sense} {value}" if target in workflows:
) workflow = target
if not op(bounds[0], value) and not op(bounds[1], value):
self.logger.info(" reject, always false")
continue
if op(meta[category][0], value) and op(meta[category][1], value):
self.logger.info(" accept, always true")
accepted += transfer_or_accept(target, meta, queue)
break
meta2 = meta.copy()
low, high = meta[category]
if sense == "<":
meta[category], meta2[category] = (value, high), (low, value - 1)
else: else:
meta[category], meta2[category] = (low, value), (value + 1, high) decision = target == "A"
self.logger.info(f" split {_fmt(meta2)} ({target}), {_fmt(meta)}") break
accepted += transfer_or_accept(target, meta2, queue) return decision
self.logger.info(f"run took {n_iterations} iterations")
return accepted
def solve(self, input: str) -> Iterator[Any]: def propagate(workflows: dict[str, Workflow], start: PartWithBounds) -> int:
workflows_s, parts_s = input.split("\n\n") def _fmt(meta: PartWithBounds) -> str:
return "{" + ", ".join(f"{k}={v}" for k, v in meta.items()) + "}"
workflows: dict[str, Workflow] = {} def transfer_or_accept(
for workflow_s in workflows_s.split("\n"): target: str, meta: PartWithBounds, queue: list[tuple[PartWithBounds, str]]
name, block_s = workflow_s.split("{") ) -> int:
workflows[name] = [] count = 0
if target in workflows:
logging.info(f" transfer to {target}")
queue.append((meta, target))
elif target == "A":
count = prod((high - low + 1) for low, high in meta.values())
logging.info(f" accepted ({count})")
else:
logging.info(" rejected")
return count
for block in block_s[:-1].split(","): accepted = 0
check: Check queue: list[tuple[PartWithBounds, str]] = [(start, "in")]
if (i := block.find(":")) >= 0:
check = (
cast(Category, block[0]),
cast(Literal["<", ">"], block[1]),
int(block[2:i]),
)
target = block[i + 1 :]
else:
check, target = None, block
workflows[name].append((check, target))
# part 1 n_iterations = 0
parts: list[Part] = [
{cast(Category, s[0]): int(s[2:]) for s in part_s[1:-1].split(",")}
for part_s in parts_s.split("\n")
]
yield sum(sum(part.values()) for part in parts if self.accept(workflows, part))
# part 2 while queue:
yield self.propagate( n_iterations += 1
workflows, {cast(Category, c): (1, 4000) for c in ["x", "m", "a", "s"]} meta, workflow = queue.pop()
) logging.info(f"{workflow}: {_fmt(meta)}")
for check, target in workflows[workflow]:
if check is None:
logging.info(" end-of-workflow")
accepted += transfer_or_accept(target, meta, queue)
continue
category, sense, value = check
bounds, op = meta[category], OPERATORS[sense]
logging.info(f" checking {_fmt(meta)} against {category} {sense} {value}")
if not op(bounds[0], value) and not op(bounds[1], value):
logging.info(" reject, always false")
continue
if op(meta[category][0], value) and op(meta[category][1], value):
logging.info(" accept, always true")
accepted += transfer_or_accept(target, meta, queue)
break
meta2 = meta.copy()
low, high = meta[category]
if sense == "<":
meta[category], meta2[category] = (value, high), (low, value - 1)
else:
meta[category], meta2[category] = (low, value), (value + 1, high)
logging.info(f" split {_fmt(meta2)} ({target}), {_fmt(meta)}")
accepted += transfer_or_accept(target, meta2, queue)
logging.info(f"run took {n_iterations} iterations")
return accepted
workflows_s, parts_s = sys.stdin.read().strip().split("\n\n")
workflows: dict[str, Workflow] = {}
for workflow_s in workflows_s.split("\n"):
name, block_s = workflow_s.split("{")
workflows[name] = []
for block in block_s[:-1].split(","):
check: Check
if (i := block.find(":")) >= 0:
check = (
cast(Category, block[0]),
cast(Literal["<", ">"], block[1]),
int(block[2:i]),
)
target = block[i + 1 :]
else:
check, target = None, block
workflows[name].append((check, target))
# part 1
parts: list[Part] = [
{cast(Category, s[0]): int(s[2:]) for s in part_s[1:-1].split(",")}
for part_s in parts_s.split("\n")
]
answer_1 = sum(sum(part.values()) for part in parts if accept(workflows, part))
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = propagate(
workflows, {cast(Category, c): (1, 4000) for c in ["x", "m", "a", "s"]}
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,43 +1,43 @@
import math import math
from typing import Any, Iterator, Literal, TypeAlias, cast import sys
from typing import Literal, TypeAlias, cast
from ..base import BaseSolver
CubeType: TypeAlias = Literal["red", "blue", "green"] CubeType: TypeAlias = Literal["red", "blue", "green"]
MAX_CUBES: dict[CubeType, int] = {"red": 12, "green": 13, "blue": 14} MAX_CUBES: dict[CubeType, int] = {"red": 12, "green": 13, "blue": 14}
# parse games
lines = sys.stdin.read().splitlines()
games: dict[int, list[dict[CubeType, int]]] = {}
for line in filter(bool, lines):
id_part, sets_part = line.split(":")
class Solver(BaseSolver): games[int(id_part.split(" ")[-1])] = [
def solve(self, input: str) -> Iterator[Any]: {
lines = input.splitlines() cast(CubeType, s[1]): int(s[0])
games: dict[int, list[dict[CubeType, int]]] = {} for cube_draw in cube_set_s.strip().split(", ")
for line in filter(bool, lines): if (s := cube_draw.split(" "))
id_part, sets_part = line.split(":") }
for cube_set_s in sets_part.strip().split(";")
]
games[int(id_part.split(" ")[-1])] = [ # part 1
{ answer_1 = sum(
cast(CubeType, s[1]): int(s[0]) id
for cube_draw in cube_set_s.strip().split(", ") for id, set_of_cubes in games.items()
if (s := cube_draw.split(" ")) if all(
} n_cubes <= MAX_CUBES[cube]
for cube_set_s in sets_part.strip().split(";") for cube_set in set_of_cubes
] for cube, n_cubes in cube_set.items()
)
)
print(f"answer 1 is {answer_1}")
yield sum( # part 2
id answer_2 = sum(
for id, set_of_cubes in games.items() math.prod(
if all( max(cube_set.get(cube, 0) for cube_set in set_of_cubes) for cube in MAX_CUBES
n_cubes <= MAX_CUBES[cube] )
for cube_set in set_of_cubes for set_of_cubes in games.values()
for cube, n_cubes in cube_set.items() )
) print(f"answer 2 is {answer_2}")
)
yield sum(
math.prod(
max(cube_set.get(cube, 0) for cube_set in set_of_cubes)
for cube in MAX_CUBES
)
for set_of_cubes in games.values()
)

View File

@@ -1,172 +1,161 @@
import logging
import os
import sys import sys
from collections import defaultdict from collections import defaultdict
from math import lcm from math import lcm
from typing import Any, Iterator, Literal, TypeAlias from typing import Literal, TypeAlias
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
from ..base import BaseSolver
ModuleType: TypeAlias = Literal["broadcaster", "conjunction", "flip-flop"] ModuleType: TypeAlias = Literal["broadcaster", "conjunction", "flip-flop"]
PulseType: TypeAlias = Literal["high", "low"] PulseType: TypeAlias = Literal["high", "low"]
modules: dict[str, tuple[ModuleType, list[str]]] = {}
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
_modules: dict[str, tuple[ModuleType, list[str]]]
def _process( for line in lines:
self, name, outputs_s = line.split(" -> ")
start: tuple[str, str, PulseType], outputs = outputs_s.split(", ")
flip_flop_states: dict[str, Literal["on", "off"]], if name == "broadcaster":
conjunction_states: dict[str, dict[str, PulseType]], modules["broadcaster"] = ("broadcaster", outputs)
) -> tuple[dict[PulseType, int], dict[str, dict[PulseType, int]]]: else:
pulses: list[tuple[str, str, PulseType]] = [start] modules[name[1:]] = (
counts: dict[PulseType, int] = {"low": 0, "high": 0} "conjunction" if name.startswith("&") else "flip-flop",
inputs: dict[str, dict[PulseType, int]] = defaultdict( outputs,
lambda: {"low": 0, "high": 0}
) )
self.logger.info("starting process... ")
while pulses: def process(
input, name, pulse = pulses.pop(0) start: tuple[str, str, PulseType],
self.logger.info(f"{input} -{pulse}-> {name}") flip_flop_states: dict[str, Literal["on", "off"]],
counts[pulse] += 1 conjunction_states: dict[str, dict[str, PulseType]],
) -> tuple[dict[PulseType, int], dict[str, dict[PulseType, int]]]:
pulses: list[tuple[str, str, PulseType]] = [start]
counts: dict[PulseType, int] = {"low": 0, "high": 0}
inputs: dict[str, dict[PulseType, int]] = defaultdict(lambda: {"low": 0, "high": 0})
inputs[name][pulse] += 1 logging.info("starting process... ")
if name not in self._modules: while pulses:
input, name, pulse = pulses.pop(0)
logging.info(f"{input} -{pulse}-> {name}")
counts[pulse] += 1
inputs[name][pulse] += 1
if name not in modules:
continue
type, outputs = modules[name]
if type == "broadcaster":
...
elif type == "flip-flop":
if pulse == "high":
continue continue
type, outputs = self._modules[name] if flip_flop_states[name] == "off":
flip_flop_states[name] = "on"
if type == "broadcaster": pulse = "high"
...
elif type == "flip-flop":
if pulse == "high":
continue
if flip_flop_states[name] == "off":
flip_flop_states[name] = "on"
pulse = "high"
else:
flip_flop_states[name] = "off"
pulse = "low"
else: else:
conjunction_states[name][input] = pulse flip_flop_states[name] = "off"
pulse = "low"
if all(state == "high" for state in conjunction_states[name].values()): else:
pulse = "low" conjunction_states[name][input] = pulse
else:
pulse = "high"
pulses.extend((name, output, pulse) for output in outputs) if all(state == "high" for state in conjunction_states[name].values()):
pulse = "low"
return counts, inputs
def solve(self, input: str) -> Iterator[Any]:
self._modules = {}
lines = sys.stdin.read().splitlines()
for line in lines:
name, outputs_s = line.split(" -> ")
outputs = outputs_s.split(", ")
if name == "broadcaster":
self._modules["broadcaster"] = ("broadcaster", outputs)
else: else:
self._modules[name[1:]] = ( pulse = "high"
"conjunction" if name.startswith("&") else "flip-flop",
outputs,
)
if self.outputs: pulses.extend((name, output, pulse) for output in outputs)
with open("./day20.dot", "w") as fp:
fp.write("digraph G {\n")
fp.write("rx [shape=circle, color=red, style=filled];\n")
for name, (type, outputs) in self._modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
fp.write(f"{name} [shape={shape}];\n")
for name, (type, outputs) in self._modules.items():
for output in outputs:
fp.write(f"{name} -> {output};\n")
fp.write("}\n")
# part 1 return counts, inputs
flip_flop_states: dict[str, Literal["on", "off"]] = {
name: "off"
for name, (type, _) in self._modules.items()
if type == "flip-flop"
}
conjunction_states: dict[str, dict[str, PulseType]] = {
name: {
input: "low"
for input, (_, outputs) in self._modules.items()
if name in outputs
}
for name, (type, _) in self._modules.items()
if type == "conjunction"
}
counts: dict[PulseType, int] = {"low": 0, "high": 0}
for _ in range(1000):
result, _ = self._process(
("button", "broadcaster", "low"), flip_flop_states, conjunction_states
)
for pulse in ("low", "high"):
counts[pulse] += result[pulse]
yield counts["low"] * counts["high"]
# part 2
# reset states with open("./day20.dot", "w") as fp:
for name in flip_flop_states: fp.write("digraph G {\n")
flip_flop_states[name] = "off" fp.write("rx [shape=circle, color=red, style=filled];\n")
for name, (type, outputs) in modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
fp.write(f"{name} [shape={shape}];\n")
for name, (type, outputs) in modules.items():
for output in outputs:
fp.write(f"{name} -> {output};\n")
fp.write("}\n")
for name in conjunction_states: # part 1
for input in conjunction_states[name]: flip_flop_states: dict[str, Literal["on", "off"]] = {
conjunction_states[name][input] = "low" name: "off" for name, (type, _) in modules.items() if type == "flip-flop"
}
conjunction_states: dict[str, dict[str, PulseType]] = {
name: {input: "low" for input, (_, outputs) in modules.items() if name in outputs}
for name, (type, _) in modules.items()
if type == "conjunction"
}
counts: dict[PulseType, int] = {"low": 0, "high": 0}
for _ in range(1000):
result, _ = process(
("button", "broadcaster", "low"), flip_flop_states, conjunction_states
)
for pulse in ("low", "high"):
counts[pulse] += result[pulse]
answer_1 = counts["low"] * counts["high"]
print(f"answer 1 is {answer_1}")
# find the conjunction connected to rx # part 2
to_rx = [
name for name, (_, outputs) in self._modules.items() if "rx" in outputs
]
assert len(to_rx) == 1, "cannot handle multiple module inputs for rx"
assert (
self._modules[to_rx[0]][0] == "conjunction"
), "can only handle conjunction as input to rx"
to_rx_inputs = [ # reset states
name for name, (_, outputs) in self._modules.items() if to_rx[0] in outputs for name in flip_flop_states:
] flip_flop_states[name] = "off"
assert all(
self._modules[i][0] == "conjunction" and len(self._modules[i][1]) == 1
for i in to_rx_inputs
), "can only handle inversion as second-order inputs to rx"
count = 1 for name in conjunction_states:
cycles: dict[str, int] = {} for input in conjunction_states[name]:
second: dict[str, int] = {} conjunction_states[name][input] = "low"
while len(second) != len(to_rx_inputs):
_, inputs = self._process(
("button", "broadcaster", "low"), flip_flop_states, conjunction_states
)
for node in to_rx_inputs: # find the conjunction connected to rx
if inputs[node]["low"] == 1: to_rx = [name for name, (_, outputs) in modules.items() if "rx" in outputs]
if node not in cycles: assert len(to_rx) == 1, "cannot handle multiple module inputs for rx"
cycles[node] = count assert (
elif node not in second: modules[to_rx[0]][0] == "conjunction"
second[node] = count ), "can only handle conjunction as input to rx"
count += 1 to_rx_inputs = [name for name, (_, outputs) in modules.items() if to_rx[0] in outputs]
assert all(
modules[i][0] == "conjunction" and len(modules[i][1]) == 1 for i in to_rx_inputs
), "can only handle inversion as second-order inputs to rx"
assert all(
second[k] == cycles[k] * 2 for k in to_rx_inputs
), "cannot only handle cycles starting at the beginning"
yield lcm(*cycles.values()) count = 1
cycles: dict[str, int] = {}
second: dict[str, int] = {}
while len(second) != len(to_rx_inputs):
_, inputs = process(
("button", "broadcaster", "low"), flip_flop_states, conjunction_states
)
for node in to_rx_inputs:
if inputs[node]["low"] == 1:
if node not in cycles:
cycles[node] = count
elif node not in second:
second[node] = count
count += 1
assert all(
second[k] == cycles[k] * 2 for k in to_rx_inputs
), "cannot only handle cycles starting at the beginning"
answer_2 = lcm(*cycles.values())
print(f"answer 2 is {answer_2}")

View File

@@ -1,6 +1,9 @@
from typing import Any, Iterator import logging
import os
import sys
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
def reachable( def reachable(
@@ -18,133 +21,129 @@ def reachable(
return tiles return tiles
class Solver(BaseSolver): map = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]: start = next(
map = input.splitlines() (i, j) for i in range(len(map)) for j in range(len(map[i])) if map[i][j] == "S"
start = next( )
(i, j)
for i in range(len(map))
for j in range(len(map[i]))
if map[i][j] == "S"
)
# part 1 # part 1
yield len(reachable(map, {start}, 6 if len(map) < 20 else 64)) answer_1 = len(reachable(map, {start}, 6 if len(map) < 20 else 64))
print(f"answer 1 is {answer_1}")
# part 2 # part 2
# the initial map is a square and contains an empty rhombus whose diameter is # the initial map is a square and contains an empty rhombus whose diameter is the size
# the size of the map, and has only empty cells around the middle row and column # of the map, and has only empty cells around the middle row and column
# #
# after ~n/2 steps, the first map is filled with a rhombus, after that we get a # after ~n/2 steps, the first map is filled with a rhombus, after that we get a bigger
# bigger rhombus every n steps # rhombus every n steps
# #
# we are going to find the number of cells reached for the initial rhombus, n # we are going to find the number of cells reached for the initial rhombus, n steps
# steps after and n * 2 steps after # after and n * 2 steps after
# #
cycle = len(map) cycle = len(map)
rhombus = (len(map) - 3) // 2 + 1 rhombus = (len(map) - 3) // 2 + 1
values: list[int] = [] values: list[int] = []
values.append(len(tiles := reachable(map, {start}, rhombus))) values.append(len(tiles := reachable(map, {start}, rhombus)))
values.append(len(tiles := reachable(map, tiles, cycle))) values.append(len(tiles := reachable(map, tiles, cycle)))
values.append(len(tiles := reachable(map, tiles, cycle))) values.append(len(tiles := reachable(map, tiles, cycle)))
if self.verbose: if logging.root.getEffectiveLevel() == logging.INFO:
n_rows, n_cols = len(map), len(map[0]) n_rows, n_cols = len(map), len(map[0])
rows = [ rows = [
[ [
map[i % n_rows][j % n_cols] if (i, j) not in tiles else "O" map[i % n_rows][j % n_cols] if (i, j) not in tiles else "O"
for j in range(-2 * cycle, 3 * cycle) for j in range(-2 * cycle, 3 * cycle)
]
for i in range(-2 * cycle, 3 * cycle)
]
for i in range(len(rows)):
for j in range(len(rows[i])):
if (i // cycle) % 2 == (j // cycle) % 2:
rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
for row in rows:
self.logger.info("".join(row))
self.logger.info(f"values to fit: {values}")
# version 1:
#
# after 3 cycles, the figure looks like the following:
#
# I M D
# I J A K D
# H A F A L
# C E A K B
# C G B
#
# after 4 cycles, the figure looks like the following:
#
# I M D
# I J A K D
# I J A B A K D
# H A B A B A L
# C E A B A N F
# C E A N F
# C G F
#
# the 'radius' of the rhombus is the number of cycles minus 1
#
# the 4 'corner' (M, H, L, G) are counted once, the blocks with a corner triangle (D, I,
# C, B) are each counted radius times, the blocks with everything but one corner (J, K,
# E, N) are each counted radius - 1 times
#
# there are two versions of the whole block, A and B in the above (or odd and even),
# depending on the number of cycles, either A or B will be in the center
#
counts = [
[
sum(
(i, j) in tiles
for i in range(ci * cycle, (ci + 1) * cycle)
for j in range(cj * cycle, (cj + 1) * cycle)
)
for cj in range(-2, 3)
]
for ci in range(-2, 3)
] ]
for i in range(-2 * cycle, 3 * cycle)
]
radius = (26501365 - rhombus) // cycle - 1 for i in range(len(rows)):
A = counts[2][2] if radius % 2 == 0 else counts[2][1] for j in range(len(rows[i])):
B = counts[2][2] if radius % 2 == 1 else counts[2][1] if (i // cycle) % 2 == (j // cycle) % 2:
answer_2 = ( rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
(radius + 1) * A
+ radius * B print("\n".join("".join(row) for row in rows))
+ 2 * radius * (radius + 1) // 2 * A
+ 2 * radius * (radius - 1) // 2 * B
+ sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1))) logging.info(f"values to fit: {values}")
+ sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
* (radius + 1) # version 1:
+ sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius #
# after 3 cycles, the figure looks like the following:
#
# I M D
# I J A K D
# H A F A L
# C E A K B
# C G B
#
# after 4 cycles, the figure looks like the following:
#
# I M D
# I J A K D
# I J A B A K D
# H A B A B A L
# C E A B A N F
# C E A N F
# C G F
#
# the 'radius' of the rhombus is the number of cycles minus 1
#
# the 4 'corner' (M, H, L, G) are counted once, the blocks with a corner triangle (D, I,
# C, B) are each counted radius times, the blocks with everything but one corner (J, K,
# E, N) are each counted radius - 1 times
#
# there are two versions of the whole block, A and B in the above (or odd and even),
# depending on the number of cycles, either A or B will be in the center
#
counts = [
[
sum(
(i, j) in tiles
for i in range(ci * cycle, (ci + 1) * cycle)
for j in range(cj * cycle, (cj + 1) * cycle)
) )
print(f"answer 2 (v1) is {answer_2}") for cj in range(-2, 3)
]
for ci in range(-2, 3)
]
# version 2: fitting a polynomial radius = (26501365 - rhombus) // cycle - 1
# A = counts[2][2] if radius % 2 == 0 else counts[2][1]
# the value we are interested in (26501365) can be written as R + K * C where R is the B = counts[2][2] if radius % 2 == 1 else counts[2][1]
# step at which we find the first rhombus, and K the repeat step, so instead of fitting answer_2 = (
# for X values (R, R + K, R + 2 K), we are going to fit for (0, 1, 2), giving us much (radius + 1) * A
# simpler equation for the a, b and c coefficient + radius * B
# + 2 * radius * (radius + 1) // 2 * A
# we get: + 2 * radius * (radius - 1) // 2 * B
# - (a * 0² + b * 0 + c) = y1 => c = y1 + sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
# - (a * 1² + b * 1 + c) = y2 => a + b = y2 - y1 + sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3))) * (radius + 1)
# => b = y2 - y1 - a + sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
# - (a * 2² + b * 2 + c) = y3 => 4a + 2b = y3 - y1 )
# => 4a + 2(y2 - y1 - a) = y3 - y1 print(f"answer 2 (v1) is {answer_2}")
# => a = (y1 + y3) / 2 - y2
#
y1, y2, y3 = values
a, b, c = (y1 + y3) // 2 - y2, 2 * y2 - (3 * y1 + y3) // 2, y1
n = (26501365 - rhombus) // cycle # version 2: fitting a polynomial
yield a * n * n + b * n + c #
# the value we are interested in (26501365) can be written as R + K * C where R is the
# step at which we find the first rhombus, and K the repeat step, so instead of fitting
# for X values (R, R + K, R + 2 K), we are going to fit for (0, 1, 2), giving us much
# simpler equation for the a, b and c coefficient
#
# we get:
# - (a * 0² + b * 0 + c) = y1 => c = y1
# - (a * 1² + b * 1 + c) = y2 => a + b = y2 - y1
# => b = y2 - y1 - a
# - (a * 2² + b * 2 + c) = y3 => 4a + 2b = y3 - y1
# => 4a + 2(y2 - y1 - a) = y3 - y1
# => a = (y1 + y3) / 2 - y2
#
y1, y2, y3 = values
a, b, c = (y1 + y3) // 2 - y2, 2 * y2 - (3 * y1 + y3) // 2, y1
n = (26501365 - rhombus) // cycle
answer_2 = a * n * n + b * n + c
print(f"answer 2 (v2) is {answer_2}")

View File

@@ -1,109 +1,111 @@
import itertools import itertools
import logging
import os
import string import string
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
def _name(i: int) -> str:
if len(lines) < 26:
return string.ascii_uppercase[i]
return f"B{i:04d}"
def build_supports( def _name(i: int) -> str:
bricks: list[tuple[tuple[int, int, int], tuple[int, int, int]]], if len(lines) < 26:
) -> tuple[dict[int, set[int]], dict[int, set[int]]]: return string.ascii_uppercase[i]
# 1. compute locations where a brick of sand will land after falling by processing return f"B{i:04d}"
# them in sorted order of bottom z location
levels: dict[tuple[int, int, int], int] = defaultdict(lambda: -1)
for i_brick, ((sx, sy, sz), (ex, ey, ez)) in enumerate(bricks):
assert sx <= ex and sy <= ey and sz <= ez
xs, ys = range(sx, ex + 1), range(sy, ey + 1)
for z in range(sz - 1, 0, -1): def build_supports(
if any(levels[x, y, z] >= 0 for x, y in itertools.product(xs, ys)): bricks: list[tuple[tuple[int, int, int], tuple[int, int, int]]],
break ) -> tuple[dict[int, set[int]], dict[int, set[int]]]:
sz, ez = sz - 1, ez - 1 # 1. compute locations where a brick of sand will land after falling by processing
# them in sorted order of bottom z location
levels: dict[tuple[int, int, int], int] = defaultdict(lambda: -1)
for i_brick, ((sx, sy, sz), (ex, ey, ez)) in enumerate(bricks):
assert sx <= ex and sy <= ey and sz <= ez
bricks[i_brick] = ((sx, sy, sz), (ex, ey, ez)) xs, ys = range(sx, ex + 1), range(sy, ey + 1)
zs = range(sz, ez + 1)
for x, y, z in itertools.product(xs, ys, zs): for z in range(sz - 1, 0, -1):
levels[x, y, z] = i_brick if any(levels[x, y, z] >= 0 for x, y in itertools.product(xs, ys)):
break
sz, ez = sz - 1, ez - 1
# 2. compute the bricks that supports any brick bricks[i_brick] = ((sx, sy, sz), (ex, ey, ez))
supported_by: dict[int, set[int]] = {} zs = range(sz, ez + 1)
supports: dict[int, set[int]] = {
i_brick: set() for i_brick in range(len(bricks))
}
for i_brick, ((sx, sy, sz), (ex, ey, ez)) in enumerate(bricks):
name = _name(i_brick)
supported_by[i_brick] = { for x, y, z in itertools.product(xs, ys, zs):
v levels[x, y, z] = i_brick
for x, y in itertools.product(range(sx, ex + 1), range(sy, ey + 1))
if (v := levels[x, y, sz - 1]) != -1
}
self.logger.info(
f"{name} supported by {', '.join(map(_name, supported_by[i_brick]))}"
)
for support in supported_by[i_brick]: # 2. compute the bricks that supports any brick
supports[support].add(i_brick) supported_by: dict[int, set[int]] = {}
supports: dict[int, set[int]] = {i_brick: set() for i_brick in range(len(bricks))}
for i_brick, ((sx, sy, sz), (ex, ey, ez)) in enumerate(bricks):
name = _name(i_brick)
return supported_by, supports supported_by[i_brick] = {
v
bricks: list[tuple[tuple[int, int, int], tuple[int, int, int]]] = [] for x, y in itertools.product(range(sx, ex + 1), range(sy, ey + 1))
for line in lines: if (v := levels[x, y, sz - 1]) != -1
bricks.append( }
( logging.info(
tuple(int(c) for c in line.split("~")[0].split(",")), # type: ignore f"{name} supported by {', '.join(map(_name, supported_by[i_brick]))}"
tuple(int(c) for c in line.split("~")[1].split(",")), # type: ignore
)
)
# sort bricks by bottom z position to compute supports
bricks = sorted(bricks, key=lambda b: b[0][-1])
supported_by, supports = build_supports(bricks)
# part 1
yield len(bricks) - sum(
any(len(supported_by[supported]) == 1 for supported in supports_to)
for supports_to in supports.values()
) )
# part 2 for support in supported_by[i_brick]:
falling_in_chain: dict[int, set[int]] = {} supports[support].add(i_brick)
for i_brick in range(len(bricks)):
to_disintegrate: set[int] = {
supported
for supported in supports[i_brick]
if len(supported_by[supported]) == 1
}
supported_by_copy = dict(supported_by) return supported_by, supports
falling_in_chain[i_brick] = set()
while to_disintegrate:
falling_in_chain[i_brick].update(to_disintegrate)
to_disintegrate_v: set[int] = set() bricks: list[tuple[tuple[int, int, int], tuple[int, int, int]]] = []
for line in lines:
bricks.append(
(
tuple(int(c) for c in line.split("~")[0].split(",")), # type: ignore
tuple(int(c) for c in line.split("~")[1].split(",")), # type: ignore
)
)
for d_brick in to_disintegrate: # sort bricks by bottom z position to compute supports
for supported in supports[d_brick]: bricks = sorted(bricks, key=lambda b: b[0][-1])
supported_by_copy[supported] = supported_by_copy[supported] - { supported_by, supports = build_supports(bricks)
d_brick
}
if not supported_by_copy[supported]: # part 1
to_disintegrate_v.add(supported) answer_1 = len(bricks) - sum(
any(len(supported_by[supported]) == 1 for supported in supports_to)
for supports_to in supports.values()
)
print(f"answer 1 is {answer_1}")
to_disintegrate = to_disintegrate_v # part 2
falling_in_chain: dict[int, set[int]] = {}
for i_brick in range(len(bricks)):
to_disintegrate: set[int] = {
supported
for supported in supports[i_brick]
if len(supported_by[supported]) == 1
}
yield sum(len(falling) for falling in falling_in_chain.values()) supported_by_copy = dict(supported_by)
falling_in_chain[i_brick] = set()
while to_disintegrate:
falling_in_chain[i_brick].update(to_disintegrate)
to_disintegrate_v: set[int] = set()
for d_brick in to_disintegrate:
for supported in supports[d_brick]:
supported_by_copy[supported] = supported_by_copy[supported] - {d_brick}
if not supported_by_copy[supported]:
to_disintegrate_v.add(supported)
to_disintegrate = to_disintegrate_v
answer_2 = sum(len(falling) for falling in falling_in_chain.values())
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
import logging
import os
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator, Literal, Sequence, TypeAlias, cast from typing import Literal, Sequence, TypeAlias, cast
from ..base import BaseSolver VERBOSE = os.getenv("AOC_VERBOSE") == "True"
logging.basicConfig(level=logging.INFO if VERBOSE else logging.WARNING)
DirectionType: TypeAlias = Literal[">", "<", "^", "v", ".", "#"] DirectionType: TypeAlias = Literal[">", "<", "^", "v", ".", "#"]
@@ -31,7 +35,6 @@ def neighbors(
Compute neighbors of the given node, ignoring the given set of nodes and considering Compute neighbors of the given node, ignoring the given set of nodes and considering
that you can go uphill on slopes. that you can go uphill on slopes.
""" """
n_rows, n_cols = len(grid), len(grid[0])
i, j = node i, j = node
for di, dj in Neighbors[grid[i][j]]: for di, dj in Neighbors[grid[i][j]]:
@@ -100,66 +103,65 @@ def compute_direct_links(
return direct return direct
class Solver(BaseSolver): def longest_path_length(
def longest_path_length( links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]],
self, start: tuple[int, int],
links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]], target: tuple[int, int],
start: tuple[int, int], ) -> int:
target: tuple[int, int], max_distance: int = -1
) -> int: queue: list[tuple[tuple[int, int], int, frozenset[tuple[int, int]]]] = [
max_distance: int = -1 (start, 0, frozenset({start}))
queue: list[tuple[tuple[int, int], int, frozenset[tuple[int, int]]]] = [ ]
(start, 0, frozenset({start}))
]
nodes = 0 nodes = 0
while queue: while queue:
node, distance, path = queue.pop() node, distance, path = queue.pop()
nodes += 1 nodes += 1
if node == target: if node == target:
max_distance = max(distance, max_distance) max_distance = max(distance, max_distance)
continue continue
queue.extend( queue.extend(
(reach, distance + length, path | {reach}) (reach, distance + length, path | {reach})
for reach, length in links.get(node, []) for reach, length in links.get(node, [])
if reach not in path if reach not in path
)
self.logger.info(f"processed {nodes} nodes")
return max_distance
def solve(self, input: str) -> Iterator[Any]:
lines = cast(list[Sequence[DirectionType]], input.splitlines())
start = (0, 1)
target = (len(lines) - 1, len(lines[0]) - 2)
direct_links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]] = {
start: [reachable(lines, start, target)]
}
direct_links.update(
compute_direct_links(lines, direct_links[start][0][0], target)
) )
# part 1 logging.info(f"processed {nodes} nodes")
yield self.longest_path_length(direct_links, start, target)
# part 2 return max_distance
reverse_links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]] = (
defaultdict(list)
)
for origin, links in direct_links.items():
for destination, distance in links:
if origin != start:
reverse_links[destination].append((origin, distance))
links = {
k: direct_links.get(k, []) + reverse_links.get(k, [])
for k in direct_links.keys() | reverse_links.keys()
}
yield self.longest_path_length(links, start, target) lines = cast(list[Sequence[DirectionType]], sys.stdin.read().splitlines())
n_rows, n_cols = len(lines), len(lines[0])
start = (0, 1)
target = (len(lines) - 1, len(lines[0]) - 2)
direct_links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]] = {
start: [reachable(lines, start, target)]
}
direct_links.update(compute_direct_links(lines, direct_links[start][0][0], target))
# part 1
answer_1 = longest_path_length(direct_links, start, target)
print(f"answer 1 is {answer_1}")
# part 2
reverse_links: dict[tuple[int, int], list[tuple[tuple[int, int], int]]] = defaultdict(
list
)
for origin, links in direct_links.items():
for destination, distance in links:
if origin != start:
reverse_links[destination].append((origin, distance))
links = {
k: direct_links.get(k, []) + reverse_links.get(k, [])
for k in direct_links.keys() | reverse_links.keys()
}
answer_2 = longest_path_length(links, start, target)
print(f"answer 2 is {answer_2}")

View File

@@ -1,68 +1,63 @@
from typing import Any, Iterator import sys
import numpy as np import numpy as np
from sympy import solve, symbols from sympy import solve, symbols
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
positions = np.array(
[[int(c) for c in line.split("@")[0].strip().split(", ")] for line in lines]
)
velocities = np.array(
[[int(c) for c in line.split("@")[1].strip().split(", ")] for line in lines]
)
# part 1
low, high = [7, 27] if len(positions) <= 10 else [200000000000000, 400000000000000]
count = 0
for i1, (p1, v1) in enumerate(zip(positions, velocities)):
p, r = p1[:2], v1[:2]
q, s = positions[i1 + 1 :, :2], velocities[i1 + 1 :, :2]
rs = np.cross(r, s)
q, s, rs = q[m := (rs != 0)], s[m], rs[m]
t = np.cross((q - p), s) / rs
u = np.cross((q - p), r) / rs
t, u = t[m := ((t >= 0) & (u >= 0))], u[m]
c = p + np.expand_dims(t, 1) * r
count += np.all((low <= c) & (c <= high), axis=1).sum()
class Solver(BaseSolver): answer_1 = count
def solve(self, input: str) -> Iterator[Any]: print(f"answer 1 is {answer_1}")
lines = input.splitlines()
positions = np.array( # part 2
[[int(c) for c in line.split("@")[0].strip().split(", ")] for line in lines] # equation
) # p1 + t1 * v1 == p0 + t1 * v0
velocities = np.array( # p2 + t2 * v2 == p0 + t2 * v0
[[int(c) for c in line.split("@")[1].strip().split(", ")] for line in lines] # p3 + t3 * v3 == p0 + t3 * v0
) # ...
# pn + tn * vn == p0 + tn * v0
#
# part 1 # we can solve with only 3 lines since each lines contains 3
low, high = ( # equations (x / y / z), so 3 lines give 9 equations and 9
[7, 27] if len(positions) <= 10 else [200000000000000, 400000000000000] # variables: position (3), velocities (3) and times (3).
) n = 3
count = 0 x, y, z, vx, vy, vz, *ts = symbols(
for i1, (p1, v1) in enumerate(zip(positions, velocities)): "x y z vx vy vz " + " ".join(f"t{i}" for i in range(n + 1))
p, r = p1[:2], v1[:2] )
equations = []
for i1, ti in zip(range(n), ts):
for p, d, pi, di in zip((x, y, z), (vx, vy, vz), positions[i1], velocities[i1]):
equations.append(p + ti * d - pi - ti * di)
q, s = positions[i1 + 1 :, :2], velocities[i1 + 1 :, :2] r = solve(equations, [x, y, z, vx, vy, vz] + list(ts), dict=True)[0]
rs = np.cross(r, s) answer_2 = r[x] + r[y] + r[z]
print(f"answer 2 is {answer_2}")
q, s, rs = q[m := (rs != 0)], s[m], rs[m]
t = np.cross((q - p), s) / rs
u = np.cross((q - p), r) / rs
t, u = t[m := ((t >= 0) & (u >= 0))], u[m]
c = p + np.expand_dims(t, 1) * r
count += np.all((low <= c) & (c <= high), axis=1).sum()
yield count
# part 2
# equation
# p1 + t1 * v1 == p0 + t1 * v0
# p2 + t2 * v2 == p0 + t2 * v0
# p3 + t3 * v3 == p0 + t3 * v0
# ...
# pn + tn * vn == p0 + tn * v0
#
# we can solve with only 3 lines since each lines contains 3
# equations (x / y / z), so 3 lines give 9 equations and 9
# variables: position (3), velocities (3) and times (3).
n = 3
x, y, z, vx, vy, vz, *ts = symbols(
"x y z vx vy vz " + " ".join(f"t{i}" for i in range(n + 1))
)
equations = []
for i1, ti in zip(range(n), ts):
for p, d, pi, di in zip(
(x, y, z), (vx, vy, vz), positions[i1], velocities[i1]
):
equations.append(p + ti * d - pi - ti * di)
r = solve(equations, [x, y, z, vx, vy, vz] + list(ts), dict=True)[0]
yield r[x] + r[y] + r[z]

View File

@@ -1,25 +1,25 @@
# pyright: reportUnknownMemberType=false import sys
from typing import Any, Iterator
import networkx as nx import networkx as nx
from ..base import BaseSolver components = {
(p := line.split(": "))[0]: p[1].split() for line in sys.stdin.read().splitlines()
}
targets = {t for c in components for t in components[c] if t not in components}
class Solver(BaseSolver): graph = nx.Graph()
def solve(self, input: str) -> Iterator[Any]: graph.add_edges_from((u, v) for u, vs in components.items() for v in vs)
components = {
(p := line.split(": "))[0]: p[1].split() for line in input.splitlines()
}
graph: "nx.Graph[str]" = nx.Graph() cut = nx.minimum_edge_cut(graph)
graph.add_edges_from((u, v) for u, vs in components.items() for v in vs) graph.remove_edges_from(cut)
cut = nx.minimum_edge_cut(graph) c1, c2 = nx.connected_components(graph)
graph.remove_edges_from(cut)
c1, c2 = nx.connected_components(graph) # part 1
answer_1 = len(c1) * len(c2)
print(f"answer 1 is {answer_1}")
# part 1 # part 2
yield len(c1) * len(c2) answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,53 +1,53 @@
import string import string
import sys
from collections import defaultdict from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
NOT_A_SYMBOL = "." + string.digits NOT_A_SYMBOL = "." + string.digits
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver): values: list[int] = []
def solve(self, input: str) -> Iterator[Any]: gears: dict[tuple[int, int], list[int]] = defaultdict(list)
lines = input.splitlines()
values: list[int] = [] for i, line in enumerate(lines):
gears: dict[tuple[int, int], list[int]] = defaultdict(list) j = 0
while j < len(line):
# skip everything until a digit is found (start of a number)
if line[j] not in string.digits:
j += 1
continue
for i, line in enumerate(lines): # extract the range of the number and its value
j = 0 k = j + 1
while j < len(line): while k < len(line) and line[k] in string.digits:
# skip everything until a digit is found (start of a number) k += 1
if line[j] not in string.digits:
j += 1
continue
# extract the range of the number and its value value = int(line[j:k])
k = j + 1
while k < len(line) and line[k] in string.digits:
k += 1
value = int(line[j:k]) # lookup around the number if there is a symbol - we go through the number
# itself but that should not matter since it only contains digits
found = False
for i2 in range(max(0, i - 1), min(i + 1, len(lines) - 1) + 1):
for j2 in range(max(0, j - 1), min(k, len(line) - 1) + 1):
assert i2 >= 0 and i2 < len(lines)
assert j2 >= 0 and j2 < len(line)
# lookup around the number if there is a symbol - we go through the number if lines[i2][j2] not in NOT_A_SYMBOL:
# itself but that should not matter since it only contains digits found = True
found = False
for i2 in range(max(0, i - 1), min(i + 1, len(lines) - 1) + 1):
for j2 in range(max(0, j - 1), min(k, len(line) - 1) + 1):
assert i2 >= 0 and i2 < len(lines)
assert j2 >= 0 and j2 < len(line)
if lines[i2][j2] not in NOT_A_SYMBOL: if lines[i2][j2] == "*":
found = True gears[i2, j2].append(value)
if lines[i2][j2] == "*": if found:
gears[i2, j2].append(value) values.append(value)
if found: # continue starting from the end of the number
values.append(value) j = k
# continue starting from the end of the number # part 1
j = k answer_1 = sum(values)
print(f"answer 1 is {answer_1}")
yield sum(values) # part 2
yield sum(v1 * v2 for v1, v2 in filter(lambda vs: len(vs) == 2, gears.values())) answer_2 = sum(v1 * v2 for v1, v2 in filter(lambda vs: len(vs) == 2, gears.values()))
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,5 @@
import sys
from dataclasses import dataclass from dataclasses import dataclass
from typing import Any, Iterator
from ..base import BaseSolver
@dataclass(frozen=True) @dataclass(frozen=True)
@@ -11,34 +9,33 @@ class Card:
values: list[int] values: list[int]
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
cards: list[Card] = [] cards: list[Card] = []
for line in lines: for line in lines:
id_part, e_part = line.split(":") id_part, e_part = line.split(":")
numbers_s, values_s = e_part.split("|") numbers_s, values_s = e_part.split("|")
cards.append( cards.append(
Card( Card(
id=int(id_part.split()[1]), id=int(id_part.split()[1]),
numbers=[int(v.strip()) for v in numbers_s.strip().split()], numbers=[int(v.strip()) for v in numbers_s.strip().split()],
values=[int(v.strip()) for v in values_s.strip().split()], values=[int(v.strip()) for v in values_s.strip().split()],
) )
) )
winnings = [sum(1 for n in card.values if n in card.numbers) for card in cards] winnings = [sum(1 for n in card.values if n in card.numbers) for card in cards]
# part 1 # part 1
yield sum(2 ** (winning - 1) for winning in winnings if winning > 0) answer_1 = sum(2 ** (winning - 1) for winning in winnings if winning > 0)
print(f"answer 1 is {answer_1}")
# part 2 # part 2
card2cards = {i: list(range(i + 1, i + w + 1)) for i, w in enumerate(winnings)} card2cards = {i: list(range(i + 1, i + w + 1)) for i, w in enumerate(winnings)}
card2values = {i: 0 for i in range(len(cards))} card2values = {i: 0 for i in range(len(cards))}
for i in range(len(cards)): for i in range(len(cards)):
card2values[i] += 1 card2values[i] += 1
for j in card2cards[i]: for j in card2cards[i]:
card2values[j] += card2values[i] card2values[j] += card2values[i]
yield sum(card2values.values()) print(f"answer 2 is {sum(card2values.values())}")

View File

@@ -1,6 +1,5 @@
from typing import Any, Iterator, Sequence import sys
from typing import Sequence
from ..base import BaseSolver
MAP_ORDER = [ MAP_ORDER = [
"seed", "seed",
@@ -13,6 +12,55 @@ MAP_ORDER = [
"location", "location",
] ]
lines = sys.stdin.read().splitlines()
# mappings from one category to another, each list contains
# ranges stored as (source, target, length), ordered by start and
# completed to have no "hole"
maps: dict[tuple[str, str], list[tuple[int, int, int]]] = {}
# parsing
index = 2
while index < len(lines):
p1, _, p2 = lines[index].split()[0].split("-")
# extract the existing ranges from the file - we store as (source, target, length)
# whereas the file is in order (target, source, length)
index += 1
values: list[tuple[int, int, int]] = []
while index < len(lines) and lines[index]:
n1, n2, n3 = lines[index].split()
values.append((int(n2), int(n1), int(n3)))
index += 1
# sort by source value
values.sort()
# add a 'fake' interval starting at 0 if missing
if values[0][0] != 0:
values.insert(0, (0, 0, values[0][0]))
# fill gaps between intervals
for i in range(len(values) - 1):
next_start = values[i + 1][0]
end = values[i][0] + values[i][2]
if next_start != end:
values.insert(
i + 1,
(end, end, next_start - end),
)
# add an interval covering values up to at least 2**32 at the end
last_start, _, last_length = values[-1]
values.append((last_start + last_length, last_start + last_length, 2**32))
assert all(v1[0] + v1[2] == v2[0] for v1, v2 in zip(values[:-1], values[1:]))
assert values[0][0] == 0
assert values[-1][0] + values[-1][-1] >= 2**32
maps[p1, p2] = values
index += 1
def find_range( def find_range(
values: tuple[int, int], map: list[tuple[int, int, int]] values: tuple[int, int], map: list[tuple[int, int, int]]
@@ -63,71 +111,19 @@ def find_range(
return ranges return ranges
class Solver(BaseSolver): def find_location_ranges(seeds: Sequence[tuple[int, int]]) -> Sequence[tuple[int, int]]:
def solve(self, input: str) -> Iterator[Any]: for map1, map2 in zip(MAP_ORDER[:-1], MAP_ORDER[1:]):
lines = input.splitlines() seeds = [s2 for s1 in seeds for s2 in find_range(s1, maps[map1, map2])]
return seeds
# mappings from one category to another, each list contains
# ranges stored as (source, target, length), ordered by start and
# completed to have no "hole"
maps: dict[tuple[str, str], list[tuple[int, int, int]]] = {}
def find_location_ranges( # part 1 - use find_range() with range of length 1
seeds: Sequence[tuple[int, int]], seeds_p1 = [(int(s), 1) for s in lines[0].split(":")[1].strip().split()]
) -> Sequence[tuple[int, int]]: answer_1 = min(start for start, _ in find_location_ranges(seeds_p1))
for map1, map2 in zip(MAP_ORDER[:-1], MAP_ORDER[1:]): print(f"answer 1 is {answer_1}")
seeds = [s2 for s1 in seeds for s2 in find_range(s1, maps[map1, map2])]
return seeds
# parsing # # part 2
index = 2 parts = lines[0].split(":")[1].strip().split()
while index < len(lines): seeds_p2 = [(int(s), int(e)) for s, e in zip(parts[::2], parts[1::2])]
p1, _, p2 = lines[index].split()[0].split("-") answer_2 = min(start for start, _ in find_location_ranges(seeds_p2))
print(f"answer 2 is {answer_2}")
# extract the existing ranges from the file - we store as (source, target, length)
# whereas the file is in order (target, source, length)
index += 1
values: list[tuple[int, int, int]] = []
while index < len(lines) and lines[index]:
n1, n2, n3 = lines[index].split()
values.append((int(n2), int(n1), int(n3)))
index += 1
# sort by source value
values.sort()
# add a 'fake' interval starting at 0 if missing
if values[0][0] != 0:
values.insert(0, (0, 0, values[0][0]))
# fill gaps between intervals
for i in range(len(values) - 1):
next_start = values[i + 1][0]
end = values[i][0] + values[i][2]
if next_start != end:
values.insert(
i + 1,
(end, end, next_start - end),
)
# add an interval covering values up to at least 2**32 at the end
last_start, _, last_length = values[-1]
values.append((last_start + last_length, last_start + last_length, 2**32))
assert all(
v1[0] + v1[2] == v2[0] for v1, v2 in zip(values[:-1], values[1:])
)
assert values[0][0] == 0
assert values[-1][0] + values[-1][-1] >= 2**32
maps[p1, p2] = values
index += 1
# part 1 - use find_range() with range of length 1
seeds_p1 = [(int(s), 1) for s in lines[0].split(":")[1].strip().split()]
yield min(start for start, _ in find_location_ranges(seeds_p1))
# # part 2
parts = lines[0].split(":")[1].strip().split()
seeds_p2 = [(int(s), int(e)) for s, e in zip(parts[::2], parts[1::2])]
yield min(start for start, _ in find_location_ranges(seeds_p2))

View File

@@ -1,7 +1,5 @@
import math import math
from typing import Any, Iterator import sys
from ..base import BaseSolver
def extreme_times_to_beat(time: int, distance: int) -> tuple[int, int]: def extreme_times_to_beat(time: int, distance: int) -> tuple[int, int]:
@@ -27,23 +25,23 @@ def extreme_times_to_beat(time: int, distance: int) -> tuple[int, int]:
return t1, t2 return t1, t2
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1 # part 1
times = list(map(int, lines[0].split()[1:])) times = list(map(int, lines[0].split()[1:]))
distances = list(map(int, lines[1].split()[1:])) distances = list(map(int, lines[1].split()[1:]))
yield math.prod( answer_1 = math.prod(
t2 - t1 + 1 t2 - t1 + 1
for t1, t2 in ( for t1, t2 in (
extreme_times_to_beat(time, distance) extreme_times_to_beat(time, distance)
for time, distance in zip(times, distances) for time, distance in zip(times, distances)
) )
) )
print(f"answer 1 is {answer_1}")
# part 2 # part 2
time = int(lines[0].split(":")[1].strip().replace(" ", "")) time = int(lines[0].split(":")[1].strip().replace(" ", ""))
distance = int(lines[1].split(":")[1].strip().replace(" ", "")) distance = int(lines[1].split(":")[1].strip().replace(" ", ""))
t1, t2 = extreme_times_to_beat(time, distance) t1, t2 = extreme_times_to_beat(time, distance)
yield t2 - t1 + 1 answer_2 = t2 - t1 + 1
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,5 @@
import sys
from collections import Counter, defaultdict from collections import Counter, defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
class HandTypes: class HandTypes:
@@ -34,17 +32,18 @@ def extract_key(hand: str, values: dict[str, int], joker: str = "0") -> tuple[in
) )
class Solver(BaseSolver): lines = sys.stdin.read().splitlines()
def solve(self, input: str) -> Iterator[Any]: cards = [(t[0], int(t[1])) for line in lines if (t := line.split())]
lines = input.splitlines()
cards = [(t[0], int(t[1])) for line in lines if (t := line.split())]
# part 1
values = {card: value for value, card in enumerate("23456789TJQKA")}
cards.sort(key=lambda cv: extract_key(cv[0], values=values))
yield sum(rank * value for rank, (_, value) in enumerate(cards, start=1))
# part 2 # part 1
values = {card: value for value, card in enumerate("J23456789TQKA")} values = {card: value for value, card in enumerate("23456789TJQKA")}
cards.sort(key=lambda cv: extract_key(cv[0], values=values, joker="J")) cards.sort(key=lambda cv: extract_key(cv[0], values=values))
yield sum(rank * value for rank, (_, value) in enumerate(cards, start=1)) answer_1 = sum(rank * value for rank, (_, value) in enumerate(cards, start=1))
print(f"answer 1 is {answer_1}")
# part 2
values = {card: value for value, card in enumerate("J23456789TQKA")}
cards.sort(key=lambda cv: extract_key(cv[0], values=values, joker="J"))
answer_2 = sum(rank * value for rank, (_, value) in enumerate(cards, start=1))
print(f"answer 2 is {answer_2}")

View File

@@ -1,30 +1,29 @@
import itertools import itertools
import math import math
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
sequence = lines[0]
nodes = {
p[0]: {d: n for d, n in zip("LR", p[1].strip("()").split(", "))}
for line in lines[2:]
if (p := line.split(" = "))
}
class Solver(BaseSolver): def path(start: str):
def solve(self, input: str) -> Iterator[Any]: path = [start]
lines = input.splitlines() it_seq = iter(itertools.cycle(sequence))
while not path[-1].endswith("Z"):
path.append(nodes[path[-1]][next(it_seq)])
return path
sequence = lines[0]
nodes = {
p[0]: {d: n for d, n in zip("LR", p[1].strip("()").split(", "))}
for line in lines[2:]
if (p := line.split(" = "))
}
def path(start: str): # part 1
path = [start] answer_1 = len(path(next(node for node in nodes if node.endswith("A")))) - 1
it_seq = iter(itertools.cycle(sequence)) print(f"answer 1 is {answer_1}")
while not path[-1].endswith("Z"):
path.append(nodes[path[-1]][next(it_seq)])
return path
# part 1 # part 2
yield len(path(next(node for node in nodes if node.endswith("A")))) - 1 answer_2 = math.lcm(*(len(path(node)) - 1 for node in nodes if node.endswith("A")))
print(f"answer 2 is {answer_2}")
# part 2
yield math.lcm(*(len(path(node)) - 1 for node in nodes if node.endswith("A")))

View File

@@ -1,34 +1,29 @@
from typing import Any, Iterator import sys
from ..base import BaseSolver lines = sys.stdin.read().splitlines()
data = [[int(c) for c in line.split()] for line in lines]
class Solver(BaseSolver): right_values: list[int] = []
def solve(self, input: str) -> Iterator[Any]: left_values: list[int] = []
lines = input.splitlines() for values in data:
diffs = [values]
while any(d != 0 for d in diffs[-1]):
diffs.append([rhs - lhs for lhs, rhs in zip(diffs[-1][:-1], diffs[-1][1:])])
data = [[int(c) for c in line.split()] for line in lines] rhs: list[int] = [0]
lhs: list[int] = [0]
for cx in range(len(diffs) - 1):
rhs.append(diffs[-cx - 2][-1] + rhs[cx])
lhs.append(diffs[-cx - 2][0] - lhs[cx])
right_values: list[int] = [] right_values.append(rhs[-1])
left_values: list[int] = [] left_values.append(lhs[-1])
for values in data:
diffs = [values]
while any(d != 0 for d in diffs[-1]):
diffs.append(
[rhs - lhs for lhs, rhs in zip(diffs[-1][:-1], diffs[-1][1:])]
)
rhs: list[int] = [0] # part 1
lhs: list[int] = [0] answer_1 = sum(right_values)
for cx in range(len(diffs) - 1): print(f"answer 1 is {answer_1}")
rhs.append(diffs[-cx - 2][-1] + rhs[cx])
lhs.append(diffs[-cx - 2][0] - lhs[cx])
right_values.append(rhs[-1]) # part 2
left_values.append(lhs[-1]) answer_2 = sum(left_values)
print(f"answer 2 is {answer_2}")
# part 1
yield sum(right_values)
# part 2
yield sum(left_values)

View File

@@ -1,17 +1,14 @@
import sys
from collections import Counter from collections import Counter
from typing import Any, Iterator
from ..base import BaseSolver values = list(map(int, sys.stdin.read().strip().split()))
column_1 = sorted(values[::2])
column_2 = sorted(values[1::2])
counter_2 = Counter(column_2)
class Solver(BaseSolver): answer_1 = sum(abs(v1 - v2) for v1, v2 in zip(column_1, column_2, strict=True))
def solve(self, input: str) -> Iterator[Any]: answer_2 = sum(value * counter_2.get(value, 0) for value in column_1)
values = list(map(int, input.split()))
column_1 = sorted(values[::2]) print(f"answer 1 is {answer_1}")
column_2 = sorted(values[1::2]) print(f"answer 2 is {answer_2}")
yield sum(abs(v1 - v2) for v1, v2 in zip(column_1, column_2, strict=True))
counter_2 = Counter(column_2)
yield sum(value * counter_2.get(value, 0) for value in column_1)

Some files were not shown because too many files have changed in this diff Show More