Compare commits
29 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
100df02a09 | ||
|
15b987a590 | ||
|
b1578f5709 | ||
|
d80dbb6c7c | ||
|
b679c1f895 | ||
|
e9d5f9747b | ||
|
fe3aad7ddd | ||
|
7ac9981ae5 | ||
|
652756a341 | ||
|
c7ef505f1b | ||
|
c55f6ac8e1 | ||
|
726a6aecac | ||
|
291b188238 | ||
|
289e3b7d02 | ||
|
9820765e9c | ||
|
c6522de8a2 | ||
|
80465e5e53 | ||
|
af1428b5e1 | ||
|
fca283527d | ||
|
0d37458ec5 | ||
|
198927e4a3 | ||
|
4192c98bba | ||
|
7cb8317659 | ||
|
f46cb51c60 | ||
|
261a396ae7 | ||
|
4b3af377ab | ||
|
f697415ef2 | ||
|
ac2806b0fb | ||
|
c62b8abfd0 |
52
2021/day5.py
Normal file
52
2021/day5.py
Normal file
@ -0,0 +1,52 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
lines: list[str] = sys.stdin.read().splitlines()
|
||||
|
||||
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
|
||||
(
|
||||
(
|
||||
int(line.split(" -> ")[0].split(",")[0]),
|
||||
int(line.split(" -> ")[0].split(",")[1]),
|
||||
),
|
||||
(
|
||||
int(line.split(" -> ")[1].split(",")[0]),
|
||||
int(line.split(" -> ")[1].split(",")[1]),
|
||||
),
|
||||
)
|
||||
for line in lines
|
||||
]
|
||||
|
||||
np_sections = np.array(sections).reshape(-1, 4)
|
||||
|
||||
x_min, x_max, y_min, y_max = (
|
||||
min(np_sections[:, 0].min(), np_sections[:, 2].min()),
|
||||
max(np_sections[:, 0].max(), np_sections[:, 2].max()),
|
||||
min(np_sections[:, 1].min(), np_sections[:, 3].min()),
|
||||
max(np_sections[:, 1].max(), np_sections[:, 3].max()),
|
||||
)
|
||||
|
||||
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
|
||||
counts_2 = counts_1.copy()
|
||||
|
||||
for (x1, y1), (x2, y2) in sections:
|
||||
|
||||
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
|
||||
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
|
||||
|
||||
if x1 == x2 or y1 == y2:
|
||||
counts_1[list(y_rng), list(x_rng)] += 1
|
||||
counts_2[list(y_rng), list(x_rng)] += 1
|
||||
elif abs(x2 - x1) == abs(y2 - y1):
|
||||
for i, j in zip(y_rng, x_rng):
|
||||
counts_2[i, j] += 1
|
||||
|
||||
answer_1 = (counts_1 >= 2).sum()
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
answer_2 = (counts_2 >= 2).sum()
|
||||
print(f"answer 2 is {answer_2}")
|
500
2021/inputs/day5.txt
Normal file
500
2021/inputs/day5.txt
Normal file
@ -0,0 +1,500 @@
|
||||
657,934 -> 657,926
|
||||
130,34 -> 570,474
|
||||
478,716 -> 226,464
|
||||
861,110 -> 861,167
|
||||
448,831 -> 370,831
|
||||
75,738 -> 390,738
|
||||
26,880 -> 864,42
|
||||
965,658 -> 527,220
|
||||
208,381 -> 80,381
|
||||
523,475 -> 807,475
|
||||
219,69 -> 219,434
|
||||
793,538 -> 534,797
|
||||
754,602 -> 754,148
|
||||
443,327 -> 443,611
|
||||
606,395 -> 546,395
|
||||
980,56 -> 51,985
|
||||
619,325 -> 354,325
|
||||
342,123 -> 819,600
|
||||
290,533 -> 374,533
|
||||
598,77 -> 598,75
|
||||
605,302 -> 605,636
|
||||
97,981 -> 692,386
|
||||
278,779 -> 278,800
|
||||
661,377 -> 661,10
|
||||
726,108 -> 518,316
|
||||
271,883 -> 271,50
|
||||
382,271 -> 606,271
|
||||
963,358 -> 891,286
|
||||
496,880 -> 496,855
|
||||
211,142 -> 211,49
|
||||
841,866 -> 260,285
|
||||
841,849 -> 173,181
|
||||
927,326 -> 391,862
|
||||
396,558 -> 459,558
|
||||
753,183 -> 953,183
|
||||
941,698 -> 941,407
|
||||
347,612 -> 347,476
|
||||
18,340 -> 18,612
|
||||
140,299 -> 797,956
|
||||
714,907 -> 714,228
|
||||
966,155 -> 194,927
|
||||
769,674 -> 712,674
|
||||
644,675 -> 948,979
|
||||
703,872 -> 812,763
|
||||
26,629 -> 120,535
|
||||
844,738 -> 844,253
|
||||
798,133 -> 798,795
|
||||
27,318 -> 288,57
|
||||
38,545 -> 872,545
|
||||
827,351 -> 195,983
|
||||
818,45 -> 21,842
|
||||
257,559 -> 626,928
|
||||
145,925 -> 886,184
|
||||
83,618 -> 590,111
|
||||
326,243 -> 53,243
|
||||
489,278 -> 526,278
|
||||
783,693 -> 783,525
|
||||
495,636 -> 495,585
|
||||
374,716 -> 215,557
|
||||
839,536 -> 839,966
|
||||
850,468 -> 955,468
|
||||
55,799 -> 55,447
|
||||
472,722 -> 296,898
|
||||
390,731 -> 120,461
|
||||
405,493 -> 208,296
|
||||
807,42 -> 56,793
|
||||
476,327 -> 655,327
|
||||
24,965 -> 967,22
|
||||
776,211 -> 776,850
|
||||
489,20 -> 822,20
|
||||
630,740 -> 871,499
|
||||
743,493 -> 283,953
|
||||
62,429 -> 62,720
|
||||
806,270 -> 806,332
|
||||
550,154 -> 107,597
|
||||
71,713 -> 533,251
|
||||
620,575 -> 620,156
|
||||
726,829 -> 143,246
|
||||
944,553 -> 468,553
|
||||
185,582 -> 185,468
|
||||
845,266 -> 212,899
|
||||
654,97 -> 265,486
|
||||
726,609 -> 726,147
|
||||
631,76 -> 860,76
|
||||
835,24 -> 928,24
|
||||
712,719 -> 74,81
|
||||
616,478 -> 616,117
|
||||
903,226 -> 903,577
|
||||
440,699 -> 136,395
|
||||
215,705 -> 890,30
|
||||
20,24 -> 981,985
|
||||
102,144 -> 850,892
|
||||
695,967 -> 582,967
|
||||
219,284 -> 219,388
|
||||
359,833 -> 665,833
|
||||
389,55 -> 305,55
|
||||
59,32 -> 957,930
|
||||
815,198 -> 64,949
|
||||
699,540 -> 717,558
|
||||
215,682 -> 182,682
|
||||
805,489 -> 328,489
|
||||
43,546 -> 578,546
|
||||
489,181 -> 489,363
|
||||
266,391 -> 266,582
|
||||
863,368 -> 448,368
|
||||
83,236 -> 83,487
|
||||
874,875 -> 874,413
|
||||
799,90 -> 799,802
|
||||
253,29 -> 253,905
|
||||
136,446 -> 435,745
|
||||
830,534 -> 550,534
|
||||
183,785 -> 107,785
|
||||
81,517 -> 159,517
|
||||
359,941 -> 359,560
|
||||
71,546 -> 948,546
|
||||
596,811 -> 596,791
|
||||
255,960 -> 255,159
|
||||
788,15 -> 788,682
|
||||
240,55 -> 240,244
|
||||
51,423 -> 137,423
|
||||
504,418 -> 809,723
|
||||
131,842 -> 914,59
|
||||
727,790 -> 82,145
|
||||
281,509 -> 841,509
|
||||
797,807 -> 834,807
|
||||
333,499 -> 790,499
|
||||
215,328 -> 215,139
|
||||
500,898 -> 500,862
|
||||
75,217 -> 777,919
|
||||
17,264 -> 17,446
|
||||
852,755 -> 150,755
|
||||
865,186 -> 385,186
|
||||
158,192 -> 158,733
|
||||
196,261 -> 196,128
|
||||
989,960 -> 131,102
|
||||
807,393 -> 807,153
|
||||
507,579 -> 507,764
|
||||
468,76 -> 535,76
|
||||
381,357 -> 659,357
|
||||
794,277 -> 749,277
|
||||
51,152 -> 546,647
|
||||
797,959 -> 458,959
|
||||
82,156 -> 967,156
|
||||
261,624 -> 460,624
|
||||
597,53 -> 197,53
|
||||
153,507 -> 411,765
|
||||
305,717 -> 768,717
|
||||
344,954 -> 344,217
|
||||
194,432 -> 545,432
|
||||
346,46 -> 557,46
|
||||
685,599 -> 685,312
|
||||
49,719 -> 49,631
|
||||
499,668 -> 304,863
|
||||
262,405 -> 554,405
|
||||
87,64 -> 295,64
|
||||
859,675 -> 74,675
|
||||
663,776 -> 99,212
|
||||
232,189 -> 232,904
|
||||
777,276 -> 703,276
|
||||
704,492 -> 86,492
|
||||
142,736 -> 514,364
|
||||
418,611 -> 224,417
|
||||
602,571 -> 602,424
|
||||
152,603 -> 248,603
|
||||
915,673 -> 143,673
|
||||
538,32 -> 128,32
|
||||
975,885 -> 975,344
|
||||
870,511 -> 870,756
|
||||
330,798 -> 46,798
|
||||
440,195 -> 587,195
|
||||
739,237 -> 568,66
|
||||
54,838 -> 196,980
|
||||
370,556 -> 47,556
|
||||
124,575 -> 748,575
|
||||
261,283 -> 880,902
|
||||
784,91 -> 426,449
|
||||
764,670 -> 148,670
|
||||
32,51 -> 967,986
|
||||
807,906 -> 10,906
|
||||
470,488 -> 579,597
|
||||
274,649 -> 285,649
|
||||
221,540 -> 221,94
|
||||
914,957 -> 914,510
|
||||
879,825 -> 145,91
|
||||
438,833 -> 438,775
|
||||
191,844 -> 911,124
|
||||
145,763 -> 595,763
|
||||
504,81 -> 622,199
|
||||
834,206 -> 834,704
|
||||
908,308 -> 815,308
|
||||
929,567 -> 929,322
|
||||
805,50 -> 620,235
|
||||
36,409 -> 133,312
|
||||
345,375 -> 19,701
|
||||
468,948 -> 468,108
|
||||
109,547 -> 446,547
|
||||
929,916 -> 69,56
|
||||
927,857 -> 318,248
|
||||
833,948 -> 833,61
|
||||
559,787 -> 559,982
|
||||
293,825 -> 293,775
|
||||
508,744 -> 545,744
|
||||
827,713 -> 753,639
|
||||
88,775 -> 555,775
|
||||
523,812 -> 684,812
|
||||
307,142 -> 307,265
|
||||
636,40 -> 355,321
|
||||
891,875 -> 891,25
|
||||
301,423 -> 712,12
|
||||
922,187 -> 219,890
|
||||
45,447 -> 230,262
|
||||
114,568 -> 233,687
|
||||
573,398 -> 677,398
|
||||
334,101 -> 324,101
|
||||
957,277 -> 957,652
|
||||
943,834 -> 610,834
|
||||
523,632 -> 523,379
|
||||
958,361 -> 90,361
|
||||
408,824 -> 380,824
|
||||
647,314 -> 647,449
|
||||
747,83 -> 59,83
|
||||
776,104 -> 937,104
|
||||
16,984 -> 989,11
|
||||
362,581 -> 362,226
|
||||
72,962 -> 940,94
|
||||
319,877 -> 319,122
|
||||
310,206 -> 986,882
|
||||
794,877 -> 267,877
|
||||
855,58 -> 976,58
|
||||
699,971 -> 598,971
|
||||
162,556 -> 162,440
|
||||
494,859 -> 494,255
|
||||
794,210 -> 142,862
|
||||
275,510 -> 548,510
|
||||
739,592 -> 739,793
|
||||
376,985 -> 376,990
|
||||
755,264 -> 280,739
|
||||
187,34 -> 187,688
|
||||
770,827 -> 770,548
|
||||
10,68 -> 913,971
|
||||
571,427 -> 571,944
|
||||
153,211 -> 153,560
|
||||
976,972 -> 55,51
|
||||
103,611 -> 674,40
|
||||
95,972 -> 924,143
|
||||
929,94 -> 38,985
|
||||
777,330 -> 60,330
|
||||
312,430 -> 312,326
|
||||
549,433 -> 269,433
|
||||
477,267 -> 477,403
|
||||
598,375 -> 19,375
|
||||
512,799 -> 512,831
|
||||
348,700 -> 348,43
|
||||
165,97 -> 63,199
|
||||
38,835 -> 38,828
|
||||
282,334 -> 282,909
|
||||
14,891 -> 390,515
|
||||
930,657 -> 334,61
|
||||
630,341 -> 630,85
|
||||
671,464 -> 319,112
|
||||
949,340 -> 894,285
|
||||
663,916 -> 245,916
|
||||
114,395 -> 286,223
|
||||
335,804 -> 529,804
|
||||
567,338 -> 14,891
|
||||
623,705 -> 379,949
|
||||
82,864 -> 545,401
|
||||
932,128 -> 932,134
|
||||
291,294 -> 291,101
|
||||
739,765 -> 739,757
|
||||
460,94 -> 892,94
|
||||
375,673 -> 367,681
|
||||
81,831 -> 90,831
|
||||
890,402 -> 890,138
|
||||
775,547 -> 790,547
|
||||
49,927 -> 966,10
|
||||
23,116 -> 257,116
|
||||
923,75 -> 18,980
|
||||
63,986 -> 687,362
|
||||
369,844 -> 357,844
|
||||
790,188 -> 644,188
|
||||
557,282 -> 557,669
|
||||
861,173 -> 390,644
|
||||
480,529 -> 893,529
|
||||
32,960 -> 830,162
|
||||
368,725 -> 368,40
|
||||
502,600 -> 701,600
|
||||
63,977 -> 873,167
|
||||
463,518 -> 788,193
|
||||
738,406 -> 324,406
|
||||
162,931 -> 822,931
|
||||
377,487 -> 707,817
|
||||
610,319 -> 901,319
|
||||
586,658 -> 690,658
|
||||
25,288 -> 53,288
|
||||
760,602 -> 760,628
|
||||
294,62 -> 951,62
|
||||
222,773 -> 661,334
|
||||
151,483 -> 646,483
|
||||
272,852 -> 317,852
|
||||
557,906 -> 503,960
|
||||
736,445 -> 736,703
|
||||
241,376 -> 241,692
|
||||
835,41 -> 835,369
|
||||
987,743 -> 987,210
|
||||
42,700 -> 42,244
|
||||
646,136 -> 646,440
|
||||
544,751 -> 404,751
|
||||
295,651 -> 295,805
|
||||
687,878 -> 113,878
|
||||
290,142 -> 604,142
|
||||
579,920 -> 579,807
|
||||
12,985 -> 987,10
|
||||
919,940 -> 919,808
|
||||
770,143 -> 770,832
|
||||
114,76 -> 962,76
|
||||
876,882 -> 428,434
|
||||
861,139 -> 861,320
|
||||
888,59 -> 888,39
|
||||
629,823 -> 707,823
|
||||
296,598 -> 296,305
|
||||
61,54 -> 578,54
|
||||
864,58 -> 253,58
|
||||
71,861 -> 306,861
|
||||
682,181 -> 326,537
|
||||
307,418 -> 307,910
|
||||
810,251 -> 810,431
|
||||
151,836 -> 602,385
|
||||
954,987 -> 243,276
|
||||
724,272 -> 350,646
|
||||
134,295 -> 434,295
|
||||
178,235 -> 802,859
|
||||
832,688 -> 832,573
|
||||
165,334 -> 165,378
|
||||
816,26 -> 114,728
|
||||
668,192 -> 540,192
|
||||
730,341 -> 969,341
|
||||
951,169 -> 286,834
|
||||
647,115 -> 886,115
|
||||
664,288 -> 507,131
|
||||
609,362 -> 609,295
|
||||
747,479 -> 287,19
|
||||
350,967 -> 350,725
|
||||
117,383 -> 311,383
|
||||
871,124 -> 292,124
|
||||
654,271 -> 547,271
|
||||
525,773 -> 345,953
|
||||
401,670 -> 610,670
|
||||
930,196 -> 301,825
|
||||
336,37 -> 961,662
|
||||
714,212 -> 714,667
|
||||
454,848 -> 454,107
|
||||
587,390 -> 587,577
|
||||
530,437 -> 542,437
|
||||
304,229 -> 517,229
|
||||
340,571 -> 766,571
|
||||
727,941 -> 138,352
|
||||
831,325 -> 11,325
|
||||
241,294 -> 403,456
|
||||
788,658 -> 788,126
|
||||
337,360 -> 337,589
|
||||
799,402 -> 342,402
|
||||
530,820 -> 530,319
|
||||
982,27 -> 20,989
|
||||
923,936 -> 923,721
|
||||
581,395 -> 64,912
|
||||
61,509 -> 61,827
|
||||
989,580 -> 610,580
|
||||
477,592 -> 219,592
|
||||
296,775 -> 296,58
|
||||
204,12 -> 204,457
|
||||
190,171 -> 190,673
|
||||
939,200 -> 939,457
|
||||
472,282 -> 472,631
|
||||
983,331 -> 734,331
|
||||
365,609 -> 365,817
|
||||
640,698 -> 145,698
|
||||
103,618 -> 549,618
|
||||
454,319 -> 454,346
|
||||
650,815 -> 381,546
|
||||
624,603 -> 507,603
|
||||
966,445 -> 723,445
|
||||
763,129 -> 763,784
|
||||
695,145 -> 695,511
|
||||
498,84 -> 435,147
|
||||
188,716 -> 967,716
|
||||
810,446 -> 810,924
|
||||
731,483 -> 731,51
|
||||
307,783 -> 307,533
|
||||
15,956 -> 956,15
|
||||
192,210 -> 882,210
|
||||
303,173 -> 38,438
|
||||
769,952 -> 769,863
|
||||
135,781 -> 405,781
|
||||
494,436 -> 494,892
|
||||
705,394 -> 714,394
|
||||
164,37 -> 164,633
|
||||
813,232 -> 813,620
|
||||
227,906 -> 222,906
|
||||
542,432 -> 414,432
|
||||
549,858 -> 88,397
|
||||
200,101 -> 958,859
|
||||
235,565 -> 469,331
|
||||
492,871 -> 503,882
|
||||
704,398 -> 869,563
|
||||
450,736 -> 746,736
|
||||
420,706 -> 420,635
|
||||
717,493 -> 686,524
|
||||
187,554 -> 717,24
|
||||
31,851 -> 315,851
|
||||
800,230 -> 466,230
|
||||
226,324 -> 226,614
|
||||
937,927 -> 937,798
|
||||
143,26 -> 534,417
|
||||
952,344 -> 12,344
|
||||
181,361 -> 782,361
|
||||
925,906 -> 415,396
|
||||
685,944 -> 470,944
|
||||
200,627 -> 290,627
|
||||
728,285 -> 728,326
|
||||
271,864 -> 271,34
|
||||
802,558 -> 207,558
|
||||
963,26 -> 84,905
|
||||
504,60 -> 529,60
|
||||
840,292 -> 180,292
|
||||
914,272 -> 914,330
|
||||
82,107 -> 925,950
|
||||
33,245 -> 33,134
|
||||
463,663 -> 463,82
|
||||
27,305 -> 27,675
|
||||
276,894 -> 891,279
|
||||
746,325 -> 746,948
|
||||
249,657 -> 341,749
|
||||
530,848 -> 28,346
|
||||
798,617 -> 798,609
|
||||
119,767 -> 312,767
|
||||
80,18 -> 674,18
|
||||
723,374 -> 583,374
|
||||
582,985 -> 239,642
|
||||
217,765 -> 217,395
|
||||
811,159 -> 609,159
|
||||
689,896 -> 501,896
|
||||
562,881 -> 562,96
|
||||
244,621 -> 629,621
|
||||
277,379 -> 277,287
|
||||
856,153 -> 20,153
|
||||
518,228 -> 518,898
|
||||
230,789 -> 243,789
|
||||
534,335 -> 534,592
|
||||
240,790 -> 413,617
|
||||
768,615 -> 768,560
|
||||
773,101 -> 912,101
|
||||
252,571 -> 767,56
|
||||
370,595 -> 681,906
|
||||
565,176 -> 565,318
|
||||
750,465 -> 750,724
|
||||
979,130 -> 120,989
|
||||
160,153 -> 160,785
|
||||
610,222 -> 610,191
|
||||
873,124 -> 130,867
|
||||
519,593 -> 519,32
|
||||
525,947 -> 525,562
|
||||
50,292 -> 291,533
|
||||
558,927 -> 960,525
|
||||
536,694 -> 249,981
|
||||
954,896 -> 277,896
|
||||
732,202 -> 732,288
|
||||
447,989 -> 541,895
|
||||
890,754 -> 367,231
|
||||
368,89 -> 564,285
|
||||
588,100 -> 588,156
|
||||
282,313 -> 943,974
|
||||
16,792 -> 495,792
|
||||
111,591 -> 111,493
|
||||
57,713 -> 685,85
|
||||
676,632 -> 676,575
|
||||
560,708 -> 560,602
|
||||
489,288 -> 489,404
|
||||
904,515 -> 443,54
|
||||
70,977 -> 985,62
|
||||
11,119 -> 11,403
|
||||
215,859 -> 937,137
|
||||
78,469 -> 110,437
|
||||
747,605 -> 747,369
|
||||
847,598 -> 847,299
|
||||
742,695 -> 159,112
|
||||
986,370 -> 986,460
|
||||
631,900 -> 771,760
|
||||
228,406 -> 683,861
|
||||
189,639 -> 61,639
|
||||
221,650 -> 820,650
|
||||
558,569 -> 834,845
|
||||
655,533 -> 558,630
|
||||
967,921 -> 967,169
|
||||
230,308 -> 429,308
|
||||
873,762 -> 873,528
|
||||
412,151 -> 412,538
|
||||
881,587 -> 881,21
|
||||
941,45 -> 26,960
|
||||
377,126 -> 700,126
|
11
2022/day1.py
11
2022/day1.py
@ -1,10 +1,11 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from pathlib import Path
|
||||
import sys
|
||||
|
||||
with open(Path(__file__).parent.joinpath("inputs", "day1.txt")) as fp:
|
||||
lines = fp.readlines()
|
||||
lines = sys.stdin.readlines()
|
||||
|
||||
# we store the list of calories for each elf in values, and we use the last element
|
||||
# of values to accumulate
|
||||
values: list[int] = [0]
|
||||
for line in lines:
|
||||
if not line.strip():
|
||||
@ -13,7 +14,7 @@ for line in lines:
|
||||
values[-1] += int(line.strip())
|
||||
|
||||
# part 1
|
||||
print(f"max is {max(values)}")
|
||||
print(f"answer 1 is {max(values)}")
|
||||
|
||||
# part 2
|
||||
print(f"sum of top 3 is {sum(sorted(values)[-3:])}")
|
||||
print(f"answer 2 is {sum(sorted(values)[-3:])}")
|
||||
|
40
2022/day10.py
Normal file
40
2022/day10.py
Normal file
@ -0,0 +1,40 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
cycle = 1
|
||||
x = 1
|
||||
|
||||
values = {cycle: x}
|
||||
|
||||
for line in lines:
|
||||
cycle += 1
|
||||
|
||||
if line == "noop":
|
||||
pass
|
||||
else:
|
||||
r = int(line.split()[1])
|
||||
|
||||
values[cycle] = x
|
||||
|
||||
cycle += 1
|
||||
x += r
|
||||
|
||||
values[cycle] = x
|
||||
|
||||
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
|
||||
for i in range(6):
|
||||
for j in range(40):
|
||||
v = values[1 + i * 40 + j]
|
||||
|
||||
if j >= v - 1 and j <= v + 1:
|
||||
print("#", end="")
|
||||
else:
|
||||
print(".", end="")
|
||||
|
||||
print()
|
146
2022/day11.py
Normal file
146
2022/day11.py
Normal file
@ -0,0 +1,146 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
import sys
|
||||
from functools import reduce
|
||||
from typing import Callable, Final, Mapping, Sequence
|
||||
|
||||
|
||||
class Monkey:
|
||||
|
||||
id: Final[int]
|
||||
items: Final[Sequence[int]]
|
||||
worry_fn: Final[Callable[[int], int]]
|
||||
test_value: Final[int]
|
||||
throw_targets: Final[Mapping[bool, int]]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
id: int,
|
||||
items: list[int],
|
||||
worry_fn: Callable[[int], int],
|
||||
test_value: int,
|
||||
throw_targets: dict[bool, int],
|
||||
):
|
||||
self.id = id
|
||||
self.items = items
|
||||
self.worry_fn = worry_fn
|
||||
self.test_value = test_value
|
||||
self.throw_targets = throw_targets
|
||||
|
||||
def __eq__(self, o: object) -> bool:
|
||||
if not isinstance(o, Monkey):
|
||||
return False
|
||||
return self.id == o.id
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(self.id)
|
||||
|
||||
|
||||
def parse_monkey(lines: list[str]) -> Monkey:
|
||||
assert lines[0].startswith("Monkey")
|
||||
|
||||
monkey_id = int(lines[0].split()[-1][:-1])
|
||||
|
||||
# parse items
|
||||
items = [int(r.strip()) for r in lines[1].split(":")[1].split(",")]
|
||||
|
||||
# parse worry
|
||||
worry_fn: Callable[[int], int]
|
||||
worry_s = lines[2].split("new =")[1].strip()
|
||||
operand = worry_s.split()[2].strip()
|
||||
|
||||
if worry_s.startswith("old *"):
|
||||
if operand == "old":
|
||||
worry_fn = lambda w: w * w # noqa: E731
|
||||
else:
|
||||
worry_fn = lambda w: w * int(operand) # noqa: E731
|
||||
elif worry_s.startswith("old +"):
|
||||
if operand == "old":
|
||||
worry_fn = lambda w: w + w # noqa: E731
|
||||
else:
|
||||
worry_fn = lambda w: w + int(operand) # noqa: E731
|
||||
else:
|
||||
assert False, worry_s
|
||||
|
||||
# parse test
|
||||
assert lines[3].split(":")[1].strip().startswith("divisible by")
|
||||
test_value = int(lines[3].split()[-1])
|
||||
|
||||
assert lines[4].strip().startswith("If true")
|
||||
assert lines[5].strip().startswith("If false")
|
||||
throw_targets = {True: int(lines[4].split()[-1]), False: int(lines[5].split()[-1])}
|
||||
|
||||
assert monkey_id not in throw_targets.values()
|
||||
|
||||
return Monkey(monkey_id, items, worry_fn, test_value, throw_targets)
|
||||
|
||||
|
||||
def run(
|
||||
monkeys: list[Monkey], n_rounds: int, me_worry_fn: Callable[[int], int]
|
||||
) -> dict[Monkey, int]:
|
||||
"""
|
||||
Perform a full run.
|
||||
|
||||
Args:
|
||||
monkeys: Initial list of monkeys. The Monkey are not modified.
|
||||
n_rounds: Number of rounds to run.
|
||||
me_worry_fn: Worry function to apply after the Monkey operation (e.g., divide
|
||||
by 3 for round 1).
|
||||
|
||||
Returns:
|
||||
A mapping containing, for each monkey, the number of items inspected.
|
||||
"""
|
||||
# copy of the items
|
||||
items = {monkey: list(monkey.items) for monkey in monkeys}
|
||||
|
||||
# number of inspects
|
||||
inspects = {monkey: 0 for monkey in monkeys}
|
||||
|
||||
for round in range(n_rounds):
|
||||
|
||||
for monkey in monkeys:
|
||||
for item in items[monkey]:
|
||||
inspects[monkey] += 1
|
||||
|
||||
# compute the new worry level
|
||||
item = me_worry_fn(monkey.worry_fn(item))
|
||||
|
||||
# find the target
|
||||
target = monkey.throw_targets[item % monkey.test_value == 0]
|
||||
assert target != monkey.id
|
||||
|
||||
items[monkeys[target]].append(item)
|
||||
|
||||
# clear after the loop
|
||||
items[monkey].clear()
|
||||
|
||||
return inspects
|
||||
|
||||
|
||||
def monkey_business(inspects: dict[Monkey, int]) -> int:
|
||||
sorted_levels = sorted(inspects.values())
|
||||
return sorted_levels[-2] * sorted_levels[-1]
|
||||
|
||||
|
||||
monkeys = [parse_monkey(block.splitlines()) for block in sys.stdin.read().split("\n\n")]
|
||||
|
||||
# case 1: we simply divide the worry by 3 after applying the monkey worry operation
|
||||
answer_1 = monkey_business(
|
||||
run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3)
|
||||
)
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
# case 2: to keep reasonable level values, we can use a modulo operation, we need to
|
||||
# use the product of all "divisible by" test so that the test remains valid
|
||||
#
|
||||
# (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value
|
||||
#
|
||||
# (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here
|
||||
# we use the product of all test value
|
||||
#
|
||||
total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1)
|
||||
answer_2 = monkey_business(
|
||||
run(copy.deepcopy(monkeys), 10_000, me_worry_fn=lambda w: w % total_test_value)
|
||||
)
|
||||
print(f"answer 2 is {answer_2}")
|
165
2022/day12.py
Normal file
165
2022/day12.py
Normal file
@ -0,0 +1,165 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import heapq
|
||||
import sys
|
||||
from typing import Callable, Iterator, TypeVar
|
||||
|
||||
Node = TypeVar("Node")
|
||||
|
||||
|
||||
def dijkstra(
|
||||
start: Node,
|
||||
neighbors: Callable[[Node], Iterator[Node]],
|
||||
cost: Callable[[Node, Node], float],
|
||||
) -> tuple[dict[Node, float], dict[Node, Node]]:
|
||||
"""
|
||||
Compute shortest paths from one node to all reachable ones.
|
||||
|
||||
Args:
|
||||
start: Starting node.
|
||||
neighbors: Function returning the neighbors of a node.
|
||||
cost: Function to compute the cost of an edge.
|
||||
|
||||
Returns:
|
||||
A tuple (lengths, parents) where lengths is a mapping from Node to distance
|
||||
(from the starting node) and parents a mapping from parents Node (in the
|
||||
shortest path). If keyset of lengths and parents is the same. If a Node is not
|
||||
in the mapping, it cannot be reached from the starting node.
|
||||
"""
|
||||
|
||||
queue: list[tuple[float, Node]] = []
|
||||
|
||||
visited: set[Node] = set()
|
||||
lengths: dict[Node, float] = {start: 0}
|
||||
parents: dict[Node, Node] = {}
|
||||
|
||||
heapq.heappush(queue, (0, start))
|
||||
|
||||
while queue:
|
||||
length, current = heapq.heappop(queue)
|
||||
|
||||
if current in visited:
|
||||
continue
|
||||
|
||||
visited.add(current)
|
||||
|
||||
for neighbor in neighbors(current):
|
||||
|
||||
if neighbor in visited:
|
||||
continue
|
||||
|
||||
neighbor_cost = length + cost(current, neighbor)
|
||||
|
||||
if neighbor_cost < lengths.get(neighbor, float("inf")):
|
||||
lengths[neighbor] = neighbor_cost
|
||||
parents[neighbor] = current
|
||||
|
||||
heapq.heappush(queue, (neighbor_cost, neighbor))
|
||||
|
||||
return lengths, parents
|
||||
|
||||
|
||||
def make_path(parents: dict[Node, Node], start: Node, end: Node) -> list[Node] | None:
|
||||
|
||||
if end not in parents:
|
||||
return None
|
||||
|
||||
path: list[Node] = [end]
|
||||
|
||||
while path[-1] is not start:
|
||||
path.append(parents[path[-1]])
|
||||
|
||||
return list(reversed(path))
|
||||
|
||||
|
||||
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
|
||||
end = path[-1]
|
||||
|
||||
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
|
||||
graph[end[0]][end[1]] = "E"
|
||||
|
||||
for i in range(0, len(path) - 1):
|
||||
cr, cc = path[i]
|
||||
nr, nc = path[i + 1]
|
||||
|
||||
if cr == nr and nc == cc - 1:
|
||||
graph[cr][cc] = "<"
|
||||
elif cr == nr and nc == cc + 1:
|
||||
graph[cr][cc] = ">"
|
||||
elif cr == nr - 1 and nc == cc:
|
||||
graph[cr][cc] = "v"
|
||||
elif cr == nr + 1 and nc == cc:
|
||||
graph[cr][cc] = "^"
|
||||
else:
|
||||
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
|
||||
|
||||
print("\n".join("".join(row) for row in graph))
|
||||
|
||||
|
||||
def neighbors(
|
||||
grid: list[list[int]], node: tuple[int, int], up: bool
|
||||
) -> Iterator[tuple[int, int]]:
|
||||
n_rows = len(grid)
|
||||
n_cols = len(grid[0])
|
||||
|
||||
c_row, c_col = node
|
||||
for n_row, n_col in (
|
||||
(c_row - 1, c_col),
|
||||
(c_row + 1, c_col),
|
||||
(c_row, c_col - 1),
|
||||
(c_row, c_col + 1),
|
||||
):
|
||||
|
||||
if not (n_row >= 0 and n_row < n_rows and n_col >= 0 and n_col < n_cols):
|
||||
continue
|
||||
|
||||
if up and grid[n_row][n_col] > grid[c_row][c_col] + 1:
|
||||
continue
|
||||
elif not up and grid[n_row][n_col] < grid[c_row][c_col] - 1:
|
||||
continue
|
||||
|
||||
yield n_row, n_col
|
||||
|
||||
|
||||
# === main code ===
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
|
||||
|
||||
start: tuple[int, int]
|
||||
end: tuple[int, int]
|
||||
|
||||
# for part 2
|
||||
start_s: list[tuple[int, int]] = []
|
||||
|
||||
for i_row, row in enumerate(grid):
|
||||
for i_col, col in enumerate(row):
|
||||
if chr(col + ord("a")) == "S":
|
||||
start = (i_row, i_col)
|
||||
start_s.append(start)
|
||||
elif chr(col + ord("a")) == "E":
|
||||
end = (i_row, i_col)
|
||||
elif col == 0:
|
||||
start_s.append((i_row, i_col))
|
||||
|
||||
# fix values
|
||||
grid[start[0]][start[1]] = 0
|
||||
grid[end[0]][end[1]] = ord("z") - ord("a")
|
||||
|
||||
|
||||
lengths_1, parents_1 = dijkstra(
|
||||
start=start, neighbors=lambda n: neighbors(grid, n, True), cost=lambda lhs, rhs: 1
|
||||
)
|
||||
path_1 = make_path(parents_1, start, end)
|
||||
assert path_1 is not None
|
||||
|
||||
print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
|
||||
|
||||
print(f"answer 1 is {lengths_1[end] - 1}")
|
||||
|
||||
lengths_2, parents_2 = dijkstra(
|
||||
start=end, neighbors=lambda n: neighbors(grid, n, False), cost=lambda lhs, rhs: 1
|
||||
)
|
||||
answer_2 = min(lengths_2.get(start, float("inf")) for start in start_s)
|
||||
print(f"answer 2 is {answer_2}")
|
41
2022/day13.py
Normal file
41
2022/day13.py
Normal file
@ -0,0 +1,41 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import json
|
||||
import sys
|
||||
from functools import cmp_to_key
|
||||
|
||||
blocks = sys.stdin.read().strip().split("\n\n")
|
||||
|
||||
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
|
||||
|
||||
|
||||
def compare(lhs: list[int | list], rhs: list[int | list]) -> int:
|
||||
|
||||
for lhs_a, rhs_a in zip(lhs, rhs):
|
||||
if isinstance(lhs_a, int) and isinstance(rhs_a, int):
|
||||
if lhs_a != rhs_a:
|
||||
return rhs_a - lhs_a
|
||||
else:
|
||||
if not isinstance(lhs_a, list):
|
||||
lhs_a = [lhs_a]
|
||||
elif not isinstance(rhs_a, list):
|
||||
rhs_a = [rhs_a]
|
||||
assert isinstance(rhs_a, list) and isinstance(lhs_a, list)
|
||||
r = compare(lhs_a, rhs_a)
|
||||
if r != 0:
|
||||
return r
|
||||
|
||||
return len(rhs) - len(lhs)
|
||||
|
||||
|
||||
answer_1 = sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0)
|
||||
print(f"answer_1 is {answer_1}")
|
||||
|
||||
dividers = [[[2]], [[6]]]
|
||||
|
||||
packets = [packet for packets in pairs for packet in packets]
|
||||
packets.extend(dividers)
|
||||
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
|
||||
|
||||
d_index = [packets.index(d) + 1 for d in dividers]
|
||||
print(f"answer 2 is {d_index[0] * d_index[1]}")
|
144
2022/day14.py
Normal file
144
2022/day14.py
Normal file
@ -0,0 +1,144 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from enum import Enum, auto
|
||||
from typing import Callable, cast
|
||||
|
||||
|
||||
class Cell(Enum):
|
||||
AIR = auto()
|
||||
ROCK = auto()
|
||||
SAND = auto()
|
||||
|
||||
def __str__(self) -> str:
|
||||
return {Cell.AIR: ".", Cell.ROCK: "#", Cell.SAND: "O"}[self]
|
||||
|
||||
|
||||
def print_blocks(blocks: dict[tuple[int, int], Cell]):
|
||||
"""
|
||||
Print the given set of blocks on a grid.
|
||||
|
||||
Args:
|
||||
blocks: Set of blocks to print.
|
||||
"""
|
||||
x_min, y_min, x_max, y_max = (
|
||||
min(x for x, y in blocks),
|
||||
0,
|
||||
max(x for x, y in blocks),
|
||||
max(y for x, y in blocks),
|
||||
)
|
||||
|
||||
for y in range(y_min, y_max + 1):
|
||||
print(
|
||||
"".join(str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1))
|
||||
)
|
||||
|
||||
|
||||
def flow(
|
||||
blocks: dict[tuple[int, int], Cell],
|
||||
stop_fn: Callable[[int, int], bool],
|
||||
fill_fn: Callable[[int, int], Cell],
|
||||
) -> dict[tuple[int, int], Cell]:
|
||||
"""
|
||||
Flow sands onto the given set of blocks
|
||||
|
||||
Args:
|
||||
blocks: Blocks containing ROCK position. Modified in-place.
|
||||
stop_fn: Function called with the last (assumed) position of a grain of
|
||||
sand BEFORE adding it to blocks. If the function returns True, the grain
|
||||
is added and a new one is flowed, otherwise, the whole procedure stops
|
||||
and the function returns (without adding the final grain).
|
||||
fill_fn: Function called when the target position of a grain (during the
|
||||
flowing process) is missing from blocks.
|
||||
|
||||
Returns:
|
||||
The input blocks.
|
||||
"""
|
||||
|
||||
y_max = max(y for x, y in blocks)
|
||||
|
||||
while True:
|
||||
x, y = 500, 0
|
||||
|
||||
while y <= y_max:
|
||||
|
||||
moved = False
|
||||
for cx, cy in ((x, y + 1), (x - 1, y + 1), (x + 1, y + 1)):
|
||||
if (cx, cy) not in blocks and fill_fn(cx, cy) == Cell.AIR:
|
||||
x, y = cx, cy
|
||||
moved = True
|
||||
elif blocks[cx, cy] == Cell.AIR:
|
||||
x, y = cx, cy
|
||||
moved = True
|
||||
|
||||
if moved:
|
||||
break
|
||||
|
||||
if not moved:
|
||||
break
|
||||
|
||||
if stop_fn(x, y):
|
||||
break
|
||||
|
||||
blocks[x, y] = Cell.SAND
|
||||
|
||||
return blocks
|
||||
|
||||
|
||||
# === inputs ===
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
paths: list[list[tuple[int, int]]] = []
|
||||
for line in lines:
|
||||
parts = line.split(" -> ")
|
||||
paths.append(
|
||||
[
|
||||
cast(tuple[int, int], tuple(int(c.strip()) for c in part.split(",")))
|
||||
for part in parts
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
blocks: dict[tuple[int, int], Cell] = {}
|
||||
for path in paths:
|
||||
for start, end in zip(path[:-1], path[1:]):
|
||||
x_start = min(start[0], end[0])
|
||||
x_end = max(start[0], end[0]) + 1
|
||||
y_start = min(start[1], end[1])
|
||||
y_end = max(start[1], end[1]) + 1
|
||||
|
||||
for x in range(x_start, x_end):
|
||||
for y in range(y_start, y_end):
|
||||
blocks[x, y] = Cell.ROCK
|
||||
|
||||
print_blocks(blocks)
|
||||
print()
|
||||
|
||||
x_min, y_min, x_max, y_max = (
|
||||
min(x for x, y in blocks),
|
||||
0,
|
||||
max(x for x, y in blocks),
|
||||
max(y for x, y in blocks),
|
||||
)
|
||||
|
||||
# === part 1 ===
|
||||
|
||||
blocks_1 = flow(
|
||||
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
|
||||
)
|
||||
print_blocks(blocks_1)
|
||||
print(f"answer 1 is {sum(v == Cell.SAND for v in blocks_1.values())}")
|
||||
print()
|
||||
|
||||
# === part 2 ===
|
||||
|
||||
blocks_2 = flow(
|
||||
blocks.copy(),
|
||||
stop_fn=lambda x, y: x == 500 and y == 0,
|
||||
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
|
||||
)
|
||||
blocks_2[500, 0] = Cell.SAND
|
||||
print_blocks(blocks_2)
|
||||
print(f"answer 2 is {sum(v == Cell.SAND for v in blocks_2.values())}")
|
90
2022/day15.py
Normal file
90
2022/day15.py
Normal file
@ -0,0 +1,90 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import parse
|
||||
|
||||
|
||||
def part1(sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], row: int) -> int:
|
||||
|
||||
no_beacons_row_l: list[np.ndarray] = []
|
||||
|
||||
for (sx, sy), (bx, by) in sensor_to_beacon.items():
|
||||
d = abs(sx - bx) + abs(sy - by) # closest
|
||||
|
||||
no_beacons_row_l.append(sx - np.arange(0, d - abs(sy - row) + 1))
|
||||
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1))
|
||||
|
||||
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
|
||||
no_beacons_row = set(np.concatenate(no_beacons_row_l)).difference(beacons_at_row)
|
||||
|
||||
return len(no_beacons_row)
|
||||
|
||||
|
||||
def part2_intervals(
|
||||
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
|
||||
) -> tuple[int, int, int]:
|
||||
from tqdm import trange
|
||||
|
||||
for y in trange(xy_max + 1):
|
||||
its: list[tuple[int, int]] = []
|
||||
for (sx, sy), (bx, by) in sensor_to_beacon.items():
|
||||
d = abs(sx - bx) + abs(sy - by)
|
||||
dx = d - abs(sy - y)
|
||||
|
||||
if dx >= 0:
|
||||
its.append((max(0, sx - dx), min(sx + dx, xy_max)))
|
||||
|
||||
its = sorted(its)
|
||||
s, e = its[0]
|
||||
|
||||
for si, ei in its[1:]:
|
||||
if si > e + 1:
|
||||
return si - 1, y, 4_000_000 * (si - 1) + y
|
||||
if ei > e:
|
||||
e = ei
|
||||
|
||||
return (0, 0, 0)
|
||||
|
||||
|
||||
def part2_cplex(
|
||||
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]], xy_max: int
|
||||
) -> tuple[int, int, int]:
|
||||
from docplex.mp.model import Model
|
||||
|
||||
m = Model()
|
||||
|
||||
x, y = m.continuous_var_list(2, ub=xy_max, name=["x", "y"])
|
||||
|
||||
for (sx, sy), (bx, by) in sensor_to_beacon.items():
|
||||
d = abs(sx - bx) + abs(sy - by)
|
||||
m.add_constraint(m.abs(x - sx) + m.abs(y - sy) >= d + 1, ctname=f"ct_{sx}_{sy}")
|
||||
|
||||
m.set_objective("min", x + y)
|
||||
|
||||
s = m.solve()
|
||||
|
||||
vx = int(s.get_value(x))
|
||||
vy = int(s.get_value(y))
|
||||
return vx, vy, 4_000_000 * vx + vy
|
||||
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
sensor_to_beacon: dict[tuple[int, int], tuple[int, int]] = {}
|
||||
|
||||
for line in lines:
|
||||
r = parse.parse(
|
||||
"Sensor at x={sx}, y={sy}: closest beacon is at x={bx}, y={by}", line
|
||||
)
|
||||
sensor_to_beacon[int(r["sx"]), int(r["sy"])] = (int(r["bx"]), int(r["by"]))
|
||||
|
||||
xy_max = 4_000_000 if max(sensor_to_beacon) > (1_000, 0) else 20
|
||||
row = 2_000_000 if max(sensor_to_beacon) > (1_000, 0) else 10
|
||||
|
||||
print(f"answer 1 is {part1(sensor_to_beacon, row)}")
|
||||
|
||||
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max)
|
||||
x, y, a2 = part2_intervals(sensor_to_beacon, xy_max)
|
||||
print(f"answer 2 is {a2} (x={x}, y={y})")
|
155
2022/day16.py
Normal file
155
2022/day16.py
Normal file
@ -0,0 +1,155 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import heapq
|
||||
import itertools
|
||||
import re
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import FrozenSet, NamedTuple
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
class Pipe(NamedTuple):
|
||||
name: str
|
||||
flow: int
|
||||
tunnels: list[str]
|
||||
|
||||
def __lt__(self, other: object) -> bool:
|
||||
return isinstance(other, Pipe) and other.name < self.name
|
||||
|
||||
def __eq__(self, other: object) -> bool:
|
||||
return isinstance(other, Pipe) and other.name == self.name
|
||||
|
||||
def __hash__(self) -> int:
|
||||
return hash(self.name)
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.name
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return self.name
|
||||
|
||||
|
||||
def breadth_first_search(pipes: dict[str, Pipe], pipe_1: Pipe, pipe_2: Pipe) -> int:
|
||||
queue = [(0, pipe_1)]
|
||||
visited = set()
|
||||
|
||||
while queue:
|
||||
distance, current = heapq.heappop(queue)
|
||||
|
||||
if current in visited:
|
||||
continue
|
||||
|
||||
visited.add(current)
|
||||
|
||||
if current == pipe_2:
|
||||
return distance
|
||||
|
||||
for tunnel in current.tunnels:
|
||||
heapq.heappush(queue, (distance + 1, pipes[tunnel]))
|
||||
|
||||
return -1
|
||||
|
||||
|
||||
def update_with_better(
|
||||
node_at_times: dict[FrozenSet[Pipe], int], flow: int, flowing: FrozenSet[Pipe]
|
||||
) -> None:
|
||||
node_at_times[flowing] = max(node_at_times[flowing], flow)
|
||||
|
||||
|
||||
def part_1(
|
||||
start_pipe: Pipe,
|
||||
max_time: int,
|
||||
distances: dict[tuple[Pipe, Pipe], int],
|
||||
relevant_pipes: FrozenSet[Pipe],
|
||||
):
|
||||
|
||||
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
|
||||
lambda: defaultdict(lambda: defaultdict(lambda: 0))
|
||||
)
|
||||
node_at_times[0] = {start_pipe: {frozenset(): 0}}
|
||||
|
||||
for time in range(max_time):
|
||||
for c_pipe, nodes in node_at_times[time].items():
|
||||
for flowing, flow in nodes.items():
|
||||
for target in relevant_pipes:
|
||||
|
||||
distance = distances[c_pipe, target] + 1
|
||||
if time + distance >= max_time or target in flowing:
|
||||
continue
|
||||
|
||||
update_with_better(
|
||||
node_at_times[time + distance][target],
|
||||
flow + sum(pipe.flow for pipe in flowing) * distance,
|
||||
flowing | {target},
|
||||
)
|
||||
|
||||
update_with_better(
|
||||
node_at_times[max_time][c_pipe],
|
||||
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
|
||||
flowing,
|
||||
)
|
||||
|
||||
return max(
|
||||
flow
|
||||
for nodes_of_pipe in node_at_times[max_time].values()
|
||||
for flow in nodes_of_pipe.values()
|
||||
)
|
||||
|
||||
|
||||
def part_2(
|
||||
start_pipe: Pipe,
|
||||
max_time: int,
|
||||
distances: dict[tuple[Pipe, Pipe], int],
|
||||
relevant_pipes: FrozenSet[Pipe],
|
||||
):
|
||||
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
|
||||
return part_1(start_pipe, max_time, distances, pipes_for_me) + part_1(
|
||||
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
|
||||
)
|
||||
|
||||
combs = [
|
||||
frozenset(relevant_pipes_1)
|
||||
for r in range(2, len(relevant_pipes) // 2 + 1)
|
||||
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
|
||||
]
|
||||
|
||||
return max(compute(comb) for comb in tqdm(combs))
|
||||
|
||||
|
||||
# === MAIN ===
|
||||
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
|
||||
pipes: dict[str, Pipe] = {}
|
||||
for line in lines:
|
||||
r = re.match(
|
||||
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
|
||||
line,
|
||||
)
|
||||
assert r
|
||||
|
||||
g = r.groups()
|
||||
|
||||
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
|
||||
|
||||
# compute distances from one valve to any other
|
||||
distances: dict[tuple[Pipe, Pipe], int] = {}
|
||||
for pipe_1 in pipes.values():
|
||||
for pipe_2 in pipes.values():
|
||||
distances[pipe_1, pipe_2] = breadth_first_search(pipes, pipe_1, pipe_2)
|
||||
|
||||
# valves with flow
|
||||
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
|
||||
|
||||
|
||||
# 1651, 1653
|
||||
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
|
||||
|
||||
# 1707, 2223
|
||||
print(part_2(pipes["AA"], 26, distances, relevant_pipes))
|
55
2022/day2.py
Normal file
55
2022/day2.py
Normal file
@ -0,0 +1,55 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
lines = sys.stdin.readlines()
|
||||
|
||||
# the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using
|
||||
# modulo-3 arithmetic
|
||||
#
|
||||
# in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move
|
||||
# if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3)))
|
||||
#
|
||||
|
||||
# we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for
|
||||
# easier manipulation
|
||||
values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines]
|
||||
|
||||
|
||||
def score_1(ux: int, vx: int) -> int:
|
||||
# here ux and vx are both moves: 0 = rock, 1 = paper, 2 = scissor
|
||||
#
|
||||
|
||||
# 1. to get the score of the move/shape, we simply add 1 -> vx + 1
|
||||
# 2. to get the score of the outcome (loss/draw/win), we use the fact that the
|
||||
# winning hand is always the opponent hand (ux) + 1 in modulo-3 arithmetic:
|
||||
# - (ux - vx) % 3 gives us 0 for a draw, 1 for a loss and 2 for a win
|
||||
# - 1 - ((ux - vx) % 3) gives us -1 for a win, 0 for a loss and 1 for a draw
|
||||
# - (1 - ((ux - vx) % 3)) gives us 0 / 1 / 2 for loss / draw / win
|
||||
# - the above can be rewritten as ((1 - (ux - vx)) % 3)
|
||||
# we can then simply multiply this by 3 to get the outcome score
|
||||
#
|
||||
return (vx + 1) + ((1 - (ux - vx)) % 3) * 3
|
||||
|
||||
|
||||
def score_2(ux: int, vx: int) -> int:
|
||||
# here ux is the opponent move (0 = rock, 1 = paper, 2 = scissor) and vx is the
|
||||
# outcome (0 = loss, 1 = draw, 2 = win)
|
||||
#
|
||||
|
||||
# 1. to get the score to the move/shape, we need to find it (as 0, 1 or 2) and then
|
||||
# add 1 to it
|
||||
# - (vx - 1) gives the offset from the opponent shape (-1 for a loss, 0 for a
|
||||
# draw and 1 for a win)
|
||||
# - from the offset, we can retrieve the shape by adding the opponent shape and
|
||||
# using modulo-3 arithmetic -> (ux + vx - 1) % 3
|
||||
# - we then add 1 to get the final shape score
|
||||
# 2. to get the score of the outcome, we can simply multiply vx by 3 -> vx * 3
|
||||
return (ux + vx - 1) % 3 + 1 + vx * 3
|
||||
|
||||
|
||||
# part 1 - 13526
|
||||
print(f"score 1 is {sum(score_1(*v) for v in values)}")
|
||||
|
||||
# part 2 - 14204
|
||||
print(f"score 2 is {sum(score_2(*v) for v in values)}")
|
25
2022/day3.py
Normal file
25
2022/day3.py
Normal file
@ -0,0 +1,25 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import string
|
||||
import sys
|
||||
|
||||
lines = [line.strip() for line in sys.stdin.readlines()]
|
||||
|
||||
# extract content of each part
|
||||
parts = [(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines]
|
||||
|
||||
# priorities
|
||||
priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)}
|
||||
|
||||
# part 1
|
||||
part1 = sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2))
|
||||
print(f"score 1 is {part1}")
|
||||
|
||||
# part 2
|
||||
n_per_group = 3
|
||||
part2 = sum(
|
||||
priorities[c]
|
||||
for i in range(0, len(lines), n_per_group)
|
||||
for c in set.intersection(*map(set, (lines[i : i + n_per_group])))
|
||||
)
|
||||
print(f"score 2 is {part2}")
|
19
2022/day4.py
Normal file
19
2022/day4.py
Normal file
@ -0,0 +1,19 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
lines = [line.strip() for line in sys.stdin.readlines()]
|
||||
|
||||
|
||||
def make_range(value: str) -> set[int]:
|
||||
parts = value.split("-")
|
||||
return set(range(int(parts[0]), int(parts[1]) + 1))
|
||||
|
||||
|
||||
sections = [tuple(make_range(part) for part in line.split(",")) for line in lines]
|
||||
|
||||
score_1 = sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections)
|
||||
print(f"score 1 is {score_1}")
|
||||
|
||||
score_2 = sum(bool(s1.intersection(s2)) for s1, s2 in sections)
|
||||
print(f"score 1 is {score_2}")
|
43
2022/day5.py
Normal file
43
2022/day5.py
Normal file
@ -0,0 +1,43 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
import sys
|
||||
|
||||
blocks_s, moves_s = (part.splitlines() for part in sys.stdin.read().split("\n\n"))
|
||||
|
||||
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()}
|
||||
|
||||
# this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the
|
||||
# form of '[X] ' (including the trailing space)
|
||||
#
|
||||
for block in blocks_s[-2::-1]:
|
||||
for stack, index in zip(blocks, range(0, len(block), 4)):
|
||||
crate = block[index + 1 : index + 2].strip()
|
||||
|
||||
if crate:
|
||||
blocks[stack].append(crate)
|
||||
|
||||
# part 1 - deep copy for part 2
|
||||
blocks_1 = copy.deepcopy(blocks)
|
||||
|
||||
for move in moves_s:
|
||||
_, count_s, _, from_, _, to_ = move.strip().split()
|
||||
|
||||
for _i in range(int(count_s)):
|
||||
blocks_1[to_].append(blocks_1[from_].pop())
|
||||
|
||||
# part 2
|
||||
blocks_2 = copy.deepcopy(blocks)
|
||||
|
||||
for move in moves_s:
|
||||
_, count_s, _, from_, _, to_ = move.strip().split()
|
||||
count = int(count_s)
|
||||
|
||||
blocks_2[to_].extend(blocks_2[from_][-count:])
|
||||
del blocks_2[from_][-count:]
|
||||
|
||||
answer_1 = "".join(s[-1] for s in blocks_1.values())
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
answer_2 = "".join(s[-1] for s in blocks_2.values())
|
||||
print(f"answer 2 is {answer_2}")
|
16
2022/day6.py
Normal file
16
2022/day6.py
Normal file
@ -0,0 +1,16 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
data = sys.stdin.read().strip()
|
||||
|
||||
|
||||
def index_of_first_n_differents(data: str, n: int) -> int:
|
||||
for i in range(len(data)):
|
||||
if len(set(data[i : i + n])) == n:
|
||||
return i + n
|
||||
return -1
|
||||
|
||||
|
||||
print(f"answer 1 is {index_of_first_n_differents(data, 4)}")
|
||||
print(f"answer 2 is {index_of_first_n_differents(data, 14)}")
|
82
2022/day7.py
Normal file
82
2022/day7.py
Normal file
@ -0,0 +1,82 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
# we are going to use Path to create path and go up/down in the file tree since it
|
||||
# implements everything we need
|
||||
#
|
||||
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
|
||||
# on Windows but that is not an issue since only the sizes matter
|
||||
#
|
||||
|
||||
# mapping from path to list of files or directories
|
||||
trees: dict[Path, list[Path]] = {}
|
||||
|
||||
# mapping from paths to either size (for file) or -1 for directory
|
||||
sizes: dict[Path, int] = {}
|
||||
|
||||
# first line must be a cd otherwise we have no idea where we are
|
||||
assert lines[0].startswith("$ cd")
|
||||
base_path = Path(lines[0].strip("$").split()[1]).resolve()
|
||||
cur_path = base_path
|
||||
|
||||
trees[cur_path] = []
|
||||
sizes[cur_path] = -1
|
||||
|
||||
for line in lines[1:]:
|
||||
# command
|
||||
if line.startswith("$"):
|
||||
parts = line.strip("$").strip().split()
|
||||
command = parts[0]
|
||||
|
||||
if command == "cd":
|
||||
cur_path = cur_path.joinpath(parts[1]).resolve()
|
||||
|
||||
# just initialize the lis of files if not already done
|
||||
if cur_path not in trees:
|
||||
trees[cur_path] = []
|
||||
else:
|
||||
# nothing to do here
|
||||
pass
|
||||
|
||||
# fill the current path
|
||||
else:
|
||||
parts = line.split()
|
||||
name: str = parts[1]
|
||||
if line.startswith("dir"):
|
||||
size = -1
|
||||
else:
|
||||
size = int(parts[0])
|
||||
|
||||
path = cur_path.joinpath(name)
|
||||
trees[cur_path].append(path)
|
||||
sizes[path] = size
|
||||
|
||||
|
||||
def compute_size(path: Path) -> int:
|
||||
size = sizes[path]
|
||||
|
||||
if size >= 0:
|
||||
return size
|
||||
|
||||
return sum(compute_size(sub) for sub in trees[path])
|
||||
|
||||
|
||||
acc_sizes = {path: compute_size(path) for path in trees}
|
||||
|
||||
# part 1
|
||||
answer_1 = sum(size for size in acc_sizes.values() if size <= 100_000)
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
# part 2
|
||||
total_space = 70_000_000
|
||||
update_space = 30_000_000
|
||||
free_space = total_space - acc_sizes[base_path]
|
||||
|
||||
to_free_space = update_space - free_space
|
||||
|
||||
answer_2 = min(size for size in acc_sizes.values() if size >= to_free_space)
|
||||
print(f"answer 2 is {answer_2}")
|
54
2022/day8.py
Normal file
54
2022/day8.py
Normal file
@ -0,0 +1,54 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
trees = np.array([[int(x) for x in row] for row in lines])
|
||||
|
||||
# answer 1
|
||||
highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1
|
||||
highest_trees[1:-1, 1:-1] = [
|
||||
[
|
||||
[
|
||||
trees[:i, j].max(),
|
||||
trees[i + 1 :, j].max(),
|
||||
trees[i, :j].max(),
|
||||
trees[i, j + 1 :].max(),
|
||||
]
|
||||
for j in range(1, trees.shape[1] - 1)
|
||||
]
|
||||
for i in range(1, trees.shape[0] - 1)
|
||||
]
|
||||
|
||||
answer_1 = (highest_trees.min(axis=2) < trees).sum()
|
||||
print(f"answer 1 is {answer_1}")
|
||||
|
||||
|
||||
def viewing_distance(row_of_trees: np.ndarray, value: int) -> int:
|
||||
w = np.where(row_of_trees >= value)[0]
|
||||
|
||||
if not w.size:
|
||||
return len(row_of_trees)
|
||||
|
||||
return w[0] + 1
|
||||
|
||||
|
||||
# answer 2
|
||||
v_distances = np.zeros(trees.shape + (4,), dtype=int)
|
||||
v_distances[1:-1, 1:-1, :] = [
|
||||
[
|
||||
[
|
||||
viewing_distance(trees[i - 1 :: -1, j], trees[i, j]),
|
||||
viewing_distance(trees[i, j - 1 :: -1], trees[i, j]),
|
||||
viewing_distance(trees[i, j + 1 :], trees[i, j]),
|
||||
viewing_distance(trees[i + 1 :, j], trees[i, j]),
|
||||
]
|
||||
for j in range(1, trees.shape[1] - 1)
|
||||
]
|
||||
for i in range(1, trees.shape[0] - 1)
|
||||
]
|
||||
answer_2 = np.prod(v_distances, axis=2).max()
|
||||
print(f"answer 2 is {answer_2}")
|
64
2022/day9.py
Normal file
64
2022/day9.py
Normal file
@ -0,0 +1,64 @@
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def move(head: tuple[int, int], command: str) -> tuple[int, int]:
|
||||
|
||||
h_col, h_row = head
|
||||
|
||||
if command == "L":
|
||||
head = (h_col - 1, h_row)
|
||||
elif command == "R":
|
||||
head = (h_col + 1, h_row)
|
||||
elif command == "U":
|
||||
head = (h_col, h_row + 1)
|
||||
elif command == "D":
|
||||
head = (h_col, h_row - 1)
|
||||
|
||||
return head
|
||||
|
||||
|
||||
def follow(head: tuple[int, int], tail: tuple[int, int]) -> tuple[int, int]:
|
||||
|
||||
h_col, h_row = head
|
||||
t_col, t_row = tail
|
||||
|
||||
if abs(t_col - h_col) <= 1 and abs(t_row - h_row) <= 1:
|
||||
return tail
|
||||
|
||||
return t_col + np.sign(h_col - t_col), t_row + np.sign(h_row - t_row)
|
||||
|
||||
|
||||
def run(commands: list[str], n_blocks: int) -> list[tuple[int, int]]:
|
||||
|
||||
blocks = [(0, 0) for _ in range(n_blocks)]
|
||||
visited = [blocks[-1]]
|
||||
|
||||
for command in commands:
|
||||
blocks[0] = move(blocks[0], command)
|
||||
|
||||
for i in range(0, n_blocks - 1):
|
||||
blocks[i + 1] = follow(blocks[i], blocks[i + 1])
|
||||
|
||||
visited.append(blocks[-1])
|
||||
|
||||
return visited
|
||||
|
||||
|
||||
lines = sys.stdin.read().splitlines()
|
||||
|
||||
# flatten the commands
|
||||
commands: list[str] = []
|
||||
for line in lines:
|
||||
d, c = line.split()
|
||||
commands.extend(d * int(c))
|
||||
|
||||
|
||||
visited_1 = run(commands, n_blocks=2)
|
||||
print(f"answer 1 is {len(set(visited_1))}")
|
||||
|
||||
visited_2 = run(commands, n_blocks=10)
|
||||
print(f"answer 2 is {len(set(visited_2))}")
|
144
2022/inputs/day10.txt
Normal file
144
2022/inputs/day10.txt
Normal file
@ -0,0 +1,144 @@
|
||||
addx 1
|
||||
addx 4
|
||||
addx 1
|
||||
noop
|
||||
addx 4
|
||||
addx 3
|
||||
addx -2
|
||||
addx 5
|
||||
addx -1
|
||||
noop
|
||||
addx 3
|
||||
noop
|
||||
addx 7
|
||||
addx -1
|
||||
addx 1
|
||||
noop
|
||||
addx 6
|
||||
addx -1
|
||||
addx 5
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx -37
|
||||
addx 7
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx 5
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx 9
|
||||
addx -8
|
||||
addx 2
|
||||
addx 5
|
||||
addx 2
|
||||
addx 5
|
||||
noop
|
||||
noop
|
||||
addx -2
|
||||
noop
|
||||
addx 3
|
||||
addx 2
|
||||
noop
|
||||
addx 3
|
||||
addx 2
|
||||
noop
|
||||
addx 3
|
||||
addx -36
|
||||
noop
|
||||
addx 26
|
||||
addx -21
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx 3
|
||||
addx 5
|
||||
addx 2
|
||||
addx -4
|
||||
noop
|
||||
addx 9
|
||||
addx 5
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx -6
|
||||
addx 7
|
||||
addx 2
|
||||
noop
|
||||
addx 3
|
||||
addx 2
|
||||
addx 5
|
||||
addx -39
|
||||
addx 34
|
||||
addx 5
|
||||
addx -35
|
||||
noop
|
||||
addx 26
|
||||
addx -21
|
||||
addx 5
|
||||
addx 2
|
||||
addx 2
|
||||
noop
|
||||
addx 3
|
||||
addx 12
|
||||
addx -7
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx 5
|
||||
addx 2
|
||||
addx 3
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx -37
|
||||
addx 21
|
||||
addx -14
|
||||
addx 16
|
||||
addx -11
|
||||
noop
|
||||
addx -2
|
||||
addx 3
|
||||
addx 2
|
||||
addx 5
|
||||
addx 2
|
||||
addx -15
|
||||
addx 6
|
||||
addx 12
|
||||
addx -2
|
||||
addx 9
|
||||
addx -6
|
||||
addx 7
|
||||
addx 2
|
||||
noop
|
||||
noop
|
||||
noop
|
||||
addx -33
|
||||
addx 1
|
||||
noop
|
||||
addx 2
|
||||
addx 13
|
||||
addx 15
|
||||
addx -21
|
||||
addx 21
|
||||
addx -15
|
||||
noop
|
||||
noop
|
||||
addx 4
|
||||
addx 1
|
||||
noop
|
||||
addx 4
|
||||
addx 8
|
||||
addx 6
|
||||
addx -11
|
||||
addx 5
|
||||
addx 2
|
||||
addx -35
|
||||
addx -1
|
||||
noop
|
||||
noop
|
55
2022/inputs/day11.txt
Normal file
55
2022/inputs/day11.txt
Normal file
@ -0,0 +1,55 @@
|
||||
Monkey 0:
|
||||
Starting items: 54, 53
|
||||
Operation: new = old * 3
|
||||
Test: divisible by 2
|
||||
If true: throw to monkey 2
|
||||
If false: throw to monkey 6
|
||||
|
||||
Monkey 1:
|
||||
Starting items: 95, 88, 75, 81, 91, 67, 65, 84
|
||||
Operation: new = old * 11
|
||||
Test: divisible by 7
|
||||
If true: throw to monkey 3
|
||||
If false: throw to monkey 4
|
||||
|
||||
Monkey 2:
|
||||
Starting items: 76, 81, 50, 93, 96, 81, 83
|
||||
Operation: new = old + 6
|
||||
Test: divisible by 3
|
||||
If true: throw to monkey 5
|
||||
If false: throw to monkey 1
|
||||
|
||||
Monkey 3:
|
||||
Starting items: 83, 85, 85, 63
|
||||
Operation: new = old + 4
|
||||
Test: divisible by 11
|
||||
If true: throw to monkey 7
|
||||
If false: throw to monkey 4
|
||||
|
||||
Monkey 4:
|
||||
Starting items: 85, 52, 64
|
||||
Operation: new = old + 8
|
||||
Test: divisible by 17
|
||||
If true: throw to monkey 0
|
||||
If false: throw to monkey 7
|
||||
|
||||
Monkey 5:
|
||||
Starting items: 57
|
||||
Operation: new = old + 2
|
||||
Test: divisible by 5
|
||||
If true: throw to monkey 1
|
||||
If false: throw to monkey 3
|
||||
|
||||
Monkey 6:
|
||||
Starting items: 60, 95, 76, 66, 91
|
||||
Operation: new = old * old
|
||||
Test: divisible by 13
|
||||
If true: throw to monkey 2
|
||||
If false: throw to monkey 5
|
||||
|
||||
Monkey 7:
|
||||
Starting items: 65, 84, 76, 72, 79, 65
|
||||
Operation: new = old + 5
|
||||
Test: divisible by 19
|
||||
If true: throw to monkey 6
|
||||
If false: throw to monkey 0
|
41
2022/inputs/day12.txt
Normal file
41
2022/inputs/day12.txt
Normal file
@ -0,0 +1,41 @@
|
||||
abcccccccaaaaaaaaccccccccccaaaaaaccccccaccaaaaaaaccccccaacccccccccaaaaaaaaaaccccccccccccccccccccccccccccccccaaaaa
|
||||
abcccccccaaaaaaaaacccccccccaaaaaacccccaaacaaaaaaaaaaaccaacccccccccccaaaaaaccccccccccccccccccccccccccccccccccaaaaa
|
||||
abcccccccaaaaaaaaaaccccccccaaaaaacaaacaaaaaaaaaaaaaaaaaaccccccccccccaaaaaaccccccccccccccaaacccccccccccccccccaaaaa
|
||||
abaaacccccccaaaaaaacccccccccaaacccaaaaaaaaaaaaaaaaaaaaaaaaacccccccccaaaaaaccccccccccccccaaacccccccccccccccccaaaaa
|
||||
abaaaaccccccaaaccccccccccccccccccccaaaaaaaaacaaaacacaaaaaacccccccccaaaaaaaacccccccccccccaaaaccaaacccccccccccaccaa
|
||||
abaaaaccccccaaccccaaccccccccccccccccaaaaaaacaaaaccccaaaaaccccccccccccccccacccccccccccccccaaaaaaaaacccccccccccccca
|
||||
abaaaaccccccccccccaaaacccccccccaacaaaaaaaacccaaacccaaacaacccccccccccccccccccccccccccciiiiaaaaaaaacccccccccccccccc
|
||||
abaaacccccccccccaaaaaacccccccccaaaaaaaaaaacccaaacccccccaacccccccccccaacccccccccccccciiiiiiijaaaaccccccccaaccccccc
|
||||
abaaaccccccccccccaaaacccccccccaaaaaaaacaaacccaaaccccccccccccccccccccaaacaaacccccccciiiiiiiijjjacccccccccaaacccccc
|
||||
abcccccaacaacccccaaaaaccccccccaaaaaacccccacaacccccccccccccccccccccccaaaaaaaccccccciiiinnnoijjjjjjjjkkkaaaaaaacccc
|
||||
abcccccaaaaacccccaacaaccccccccccaaaacccaaaaaaccccccccccccccccccccccccaaaaaaccccccciiinnnnooojjjjjjjkkkkaaaaaacccc
|
||||
abccccaaaaacccccccccccccccccccccaccccccaaaaaaaccccccccccccccccccccaaaaaaaaccccccchhinnnnnoooojjooopkkkkkaaaaccccc
|
||||
abccccaaaaaaccccccccccccccccccccccccccccaaaaaaacccccccccccccccccccaaaaaaaaacccccchhhnnntttuooooooopppkkkaaaaccccc
|
||||
abccccccaaaaccccccccccacccccccccccccccccaaaaaaacccaaccccccccccccccaaaaaaaaaaccccchhhnnttttuuoooooppppkkkaaaaccccc
|
||||
abccccccaccccccccccccaaaacaaaccccccccccaaaaaacaaccaacccaaccccccccccccaaacaaacccchhhnnnttttuuuuuuuuupppkkccaaccccc
|
||||
abccccccccccccccaaccccaaaaaaaccccccccccaaaaaacaaaaaacccaaaaaaccccccccaaacccccccchhhnnntttxxxuuuuuuupppkkccccccccc
|
||||
abcccccccccccccaaaacccaaaaaaacccaccccccccccaaccaaaaaaacaaaaaaccccccccaacccaaccchhhhnnnttxxxxuuyyyuupppkkccccccccc
|
||||
abcccccccccccccaaaaccaaaaaaaaacaaacccccccccccccaaaaaaaaaaaaaccccccccccccccaaachhhhmnnnttxxxxxxyyyuvppkkkccccccccc
|
||||
abcccccccccccccaaaacaaaaaaaaaaaaaaccccccccccccaaaaaacaaaaaaaccccccccccccccaaaghhhmmmttttxxxxxyyyyvvpplllccccccccc
|
||||
abccacccccccccccccccaaaaaaaaaaaaaaccccccccccccaaaaaacccaaaaaacccaacaacccaaaaagggmmmttttxxxxxyyyyvvppplllccccccccc
|
||||
SbaaaccccccccccccccccccaaacaaaaaaaacccccccccccccccaacccaaccaacccaaaaacccaaaagggmmmsttxxxEzzzzyyvvvppplllccccccccc
|
||||
abaaaccccccccccccccccccaaaaaaaaaaaaacaaccccccccccccccccaaccccccccaaaaaccccaagggmmmsssxxxxxyyyyyyvvvqqqlllcccccccc
|
||||
abaaacccccccccccccccccccaaaaaaaaaaaaaaaaacccccccccccccccccccccccaaaaaaccccaagggmmmsssxxxwywyyyyyyvvvqqlllcccccccc
|
||||
abaaaaacccccccccccccccccccaacaaaccaaaaaaacccccccccccccccccccccccaaaaccccccaagggmmmssswwwwwyyyyyyyvvvqqqllcccccccc
|
||||
abaaaaaccccccccccccccccccccccaaaccccaaaacccccccccccccccccaaccaacccaaccccccccgggmmmmssssswwyywwvvvvvvqqqlllccccccc
|
||||
abaaaaacccccccccccccaccacccccaaaccccaaaacccccccccccccccccaaaaaacccccccccccaaggggmllllsssswwywwwvvvvqqqqlllccccccc
|
||||
abaaccccccccccccccccaaaaccccccccccccaccaccccccccccccccccccaaaaacccccccccccaaagggglllllssswwwwwrrqqqqqqmmllccccccc
|
||||
abaaccccccccccccccccaaaaaccccccaaccaaccccccccccccccccccccaaaaaaccaacccccccaaaaggfffllllsswwwwrrrrqqqqqmmmcccccccc
|
||||
abacaaaccccccccccccaaaaaaccccccaaaaaaccccccaacccccccccccaaaaaaaacaaacaaccccaaaaffffflllsrrwwwrrrmmmmmmmmmcccccccc
|
||||
abaaaaaccccccccccccaaaaaaccccccaaaaaccccccaaaaccccccccccaaaaaaaacaaaaaaccccaaaaccfffflllrrrrrrkkmmmmmmmccccaccccc
|
||||
abaaaacccccccccccccccaaccccccccaaaaaacccccaaaacccccccccccccaaccaaaaaaaccccccccccccffflllrrrrrkkkmmmmmccccccaccccc
|
||||
abaaacccccccccccccccccccccccccaaaaaaaaccccaaaacccccccccccccaaccaaaaaaacccccccccccccfffllkrrrkkkkmddddcccccaaacccc
|
||||
abaaacccccccccccccccccccccccccaaaaaaaacccccccccccccccccccccccccccaaaaaaccccccccccccfffllkkkkkkkdddddddcaaaaaacccc
|
||||
abaaaacccccccccccccccccccccccccccaaccccccccccccccccccccccccccccccaacaaacccccccccccccfeekkkkkkkddddddcccaaaccccccc
|
||||
abcaaacccccccccccaaaccccccccaacccaaccccaaaaaccccaaaccccccccccccccaaccccccccccccccccceeeeekkkkdddddccccccaaccccccc
|
||||
abccccccccccccccaaaaaaccccccaaacaaccacaaaaaaaccaaaaccccccccccaccaaccccccccccccccccccceeeeeeeedddacccccccccccccccc
|
||||
abccccccccccccccaaaaaacccccccaaaaacaaaaaccaaaaaaaacccccccccccaaaaacccccccccccccccccccceeeeeeedaaacccccccccccccaaa
|
||||
abccccccaaacccccaaaaacccccccaaaaaacaaaaaaaaaaaaaaaccccccccccccaaaaaccccccccccccccccccccceeeeecaaacccccccccccccaaa
|
||||
abccccccaaaccccccaaaaacccccaaaaaaaaccaaaaacaaaaaaccccccccccccaaaaaacccccccccccccccccccccaaaccccaccccccccccccccaaa
|
||||
abccccaacaaaaacccaaaaacccccaaaaaaaacaaaaaaaaaaaaaaaccccaaaaccaaaacccccccccccccccccccccccaccccccccccccccccccaaaaaa
|
||||
abccccaaaaaaaaccccccccccccccccaaccccaacaaaaaaaaaaaaaaccaaaaccccaaacccccccccccccccccccccccccccccccccccccccccaaaaaa
|
449
2022/inputs/day13.txt
Normal file
449
2022/inputs/day13.txt
Normal file
@ -0,0 +1,449 @@
|
||||
[[],[],[[],10,[[7,0,1,1,10],9,6],[1,[4,9,1],6,[4,6,0]],[0,3,0]],[1,[10,[7,4,3,4],[]],[2,2],7,[[10],5,3]]]
|
||||
[[8,1,[2,3,3,[6,7,7,2,6]],[[8,10,1]],[9]],[1,7,[7,[3,6],7,7,10]]]
|
||||
|
||||
[[[[3,0,4,4],9,2],8,[[1],3,[2,0,9,3],[5,3,6,4,5]]],[],[]]
|
||||
[[[],[]],[[[8,4],[5,5,9,9],[1,9,1,8],0]]]
|
||||
|
||||
[[5,[4,[8,3,4],1,1,[3,8,9,4,0]],4]]
|
||||
[[7,1,[[9,0,5,5,9],[5,0,3],[0,5,5,10,0],3,7],1],[9,[[1,6,3,2,2],7,[8,9],[7,7,2,10]],[],[]],[[8,0,[0],5],[[3]],3,[[1,0,0,9],[10,7,0,10]]],[[],8,2,3,[[10],[10,6,10],0,9]]]
|
||||
|
||||
[[4,8,6,8]]
|
||||
[[[3,[],[4,7,4,4],1],1,[6,[5],[1,1,6,8]],3,10],[2,[3,6,[],6],10]]
|
||||
|
||||
[[1],[[0],5]]
|
||||
[[10,[[2],10,[6,4,0],[],9]],[4,9,[[9,6,10,7]]]]
|
||||
|
||||
[[8,[[4,1,1,4],[6,10,6,6],7,6,[9,9,1]],[[0,9],3]],[1,[5],5,[]]]
|
||||
[[],[[]]]
|
||||
|
||||
[[[[3,9],[],[5,9,8,3]],2,5,9,8]]
|
||||
[[[9,0],4,[9,10],[5,6,10,0,[6]]]]
|
||||
|
||||
[[],[9],[4,[[10]],8,10,[10,10,[],[]]],[[],[[10,4,6]],[[1,1,6],[]],5],[[[1,7,5],[10,1,6],6,[]],[],2,3,9]]
|
||||
[[],[[4,[5,4,8,7],[10]]],[10,7,[3],8],[[6,[1,2,9,5]],[],[[2,4,3]],[3,[3,8,9,8],[9]]],[[[6,0,0,7,3],9,3],[9,[0,4]],[[8,8],[2,1,8],[]],3,[]]]
|
||||
|
||||
[[[9,0,9],3,10,5,7],[8,10],[[[1,6],[3,5,2,7],[2,3,0,5,8],[1,3],10],[],8],[[4,[]]]]
|
||||
[[7,[3,10,3],[[],[3],2,[5,4,3,10]],5,2],[6],[3,[],[[3,0,4,0]]]]
|
||||
|
||||
[[[10,3,[8]],10,1]]
|
||||
[[[],5,1,[10,[3,8,7],[5],[1,3,6,0],[4,8,10,6]],[[7,7,1],[0,2],8,[2,1,9,8],8]]]
|
||||
|
||||
[[6,[9,[1]],10,[7],10],[[10,4,9],5]]
|
||||
[[6,10,[[7,10,1]]],[[[2,9,0,3],[4,5,10,0,6],[2,4,2],9]],[],[[[5,0,8],[2,2,1,1],[1,6],5],[]]]
|
||||
|
||||
[[3,10,[7]],[4,[[0,3,8]],5,10],[],[[[8,9,4,8,10],[5,9,7,1,0],[6,5],8,7]],[]]
|
||||
[[2,6,[7,7,[3,8]],[[1,6,7,1,9],7,7,[5]],3],[8,[8,[4,7,1,2,4],[2,8],[6,9,9,8,4],9],[[3,10,2,0]]],[[5,[6,9],[]],0],[7],[[[]],3,[3],1]]
|
||||
|
||||
[[6],[],[[[1,5,1,9,5]],7,10]]
|
||||
[[],[5,[]],[[[1,2,1,1,7],[5,4,5]],8,3,3,8],[1,[5,[10,0,7],[7,4,9]]]]
|
||||
|
||||
[[1,2,8,[[4,10,2],[7,4,1,2,5],9],[7,0,[5,10,2,5,1],[5,4,9,2],0]],[1,10,[[5,10,4],[6],[8]],[[8],[2,9,10,1,3]],5],[[4],0],[]]
|
||||
[[9,[[2,9,6,7],6,[6]],7]]
|
||||
|
||||
[[[]],[[],5,[2,3]],[],[8,[],3],[9]]
|
||||
[[9,[6,6,9,[6,3,6,8],[]],[[],8,[0,8],[9],0],1,[]]]
|
||||
|
||||
[[0,[],10,[4,[8,7,10]],8],[[[],[10,6]]],[10,[1,[1,8,1,2],5,2],[[0,8,0],[1,9,1,1],[3,8,3],0],7,[0,5]]]
|
||||
[[8,4,[6,9,2,[4,5,6],4],[[10,9,0,0,1],[6,7,8,8]]],[[[2,5,6,1],2,8,[6,8,3,9]],[[4,10,0]],0,9]]
|
||||
|
||||
[4,6,8,10,9]
|
||||
[4,6,8,10]
|
||||
|
||||
[[[10,2,[0,1,2,0],0],7,[2],[[],[0],9]]]
|
||||
[[],[[]],[9]]
|
||||
|
||||
[[1]]
|
||||
[[],[[10],10]]
|
||||
|
||||
[[],[],[],[[[1]],9,10,[1,0,5]],[]]
|
||||
[[6,[[4,4,9],[10,3,10,1,4],[10,5]],4,[[1,7,5,0,1],[3,7,10,1,1]]]]
|
||||
|
||||
[[[[9],[8]],[6,3,4],5],[[6,3],[7],[[5,10]],10],[],[3,5,[3,0,[0,3,3]],8,[]]]
|
||||
[[3,[10,10],4],[8,[[7,1,0,6]],1],[8,[[5,0,7,4],[1,4],1],5,[[7,1],[2],[0,9,5,7,5]]],[[5,[6,3],[0,8,3,2],10,[10]]]]
|
||||
|
||||
[[],[[[1],0],[9,7,7,[3,9,3,9,10]],8,[5,10,[5,5,8,3,7],7,[9,0,7]]],[[8,2,[0],7],4]]
|
||||
[[[8,0,4],5,3,2,5],[4,7,6]]
|
||||
|
||||
[[3,1,[[6],[2],[4,8,7,10],2],1],[[[6,2,8,6,4]],6,[9]],[8,[0],1],[]]
|
||||
[[],[[[0],3,[2,10],10,[2,0,6,3]],9],[1,[[],10,[],8],[[6],2,7,8],[10,[4,3,4],[10,3,5,3,5]]],[[2,[],8],2,0,8]]
|
||||
|
||||
[[],[[[1,7],[0,2],[3,2,8],[7]],0],[1,[1,[7]]],[6],[[[7],[],[8,8,10],[0,5,1]],2,5,[[4,6,6,8],8,[0,9,4,5,4],4],[1,5,6,[2,4,6],[4]]]]
|
||||
[[4,[5,[5],6]]]
|
||||
|
||||
[[[[6,10,4],7,[],[5],[5]],1,9,7]]
|
||||
[[[]],[[[5,0,6,3,5],[]],8,[8,10,5,2],4,10],[7,[[8,0,9],9,[6,9],1,1],4,10],[6,4,6,9,5],[]]
|
||||
|
||||
[[[],1,9],[6,3,[[8,10,4,1]]],[[[0,4],9,7,[0,0,5]]],[[]]]
|
||||
[[[9,3],[[]]]]
|
||||
|
||||
[[9,0,8,0],[[1,[0],8,[]]],[],[5,8,[[8,9,0,8,0],0,8,[],[]],[1,2,5],[[],5]],[[3,1,6,[],[4,9,3,6]],[5,[10,10,4],3]]]
|
||||
[[6,[[],2,9],[1,9,[6,2,5,1],[1,5,0,8]]],[[2,[4,4,2,6,1],6],[],[],8,[[]]],[[[7,8,10,2,10],[1,4,9,5,2],7,[6,6,4,10,9],[7,3,3,0,0]]],[],[7,3,[2,[1,2],[2,2]]]]
|
||||
|
||||
[[1,[[2,6,1,6],[4,6],[3],[],[1]],8],[[8],6,5,[5,[4]],6],[[[],5,10,[10,7],[3,7,5,9,10]],0]]
|
||||
[[[9,[7],1,[],5]]]
|
||||
|
||||
[[[9,2,1,0,6],[[0,4,8],5],[[],[],0,[8]]],[[[],2],[[7,7,7,8,10],10,[0],[0,2]],[],[]],[],[]]
|
||||
[[],[5],[[[],5,[8,8,1,5],9],[7],[1,3,5,[0,0,0]]],[]]
|
||||
|
||||
[[[],[5,4,[],10,[1,8,1]]],[7],[[[1,4,10,10,4],[],9,[7,10,10,0,2],[10,4]],[4,[3,5,1],6,1]],[[[1,1,9,3,5],10,[2,1,3,9,3],[6,10]],[[],[]],2]]
|
||||
[[[[1,3,7,8,5]],[1,[1,8,3],[4,1,3]],0,2,4],[],[],[[5,[7,9,2,5,2]],[[10,10,10,8,3],2,[]]]]
|
||||
|
||||
[[[[1,0,3],[10,8],[],[9,1,9],[0,5,2,4]],[],3,[[6,8,7],[6,0,7,1,0],3,10],2],[1,7,[4,[5,7],[4,6]],9],[[],[[1,2,0,5],1,3,[9],0],5],[]]
|
||||
[[[[7,7,1,2]]]]
|
||||
|
||||
[[5,9],[[9,[1,9,2,2]],[[],8,[1,1]],[[],[6,4,0,3,3],[8,0]],[8],7],[[1],5,6,10],[]]
|
||||
[[[]],[[[0,2,8,5,4],[4,5],5],7],[[[0,10,3,4],8,[0,7,10,2],[6,1,9,9,10]],9,2,6],[1,[2,7,[6,6,2,2],[10,0,9,4,3],2],6,[[2,1,4,1],10,[7,5]]]]
|
||||
|
||||
[[[[5,2,7,9],[10,0,8,1,1],[]],[6,6,3,[8,7,1,9,1],4],[[6,1,4,8,1]],[0,[5,10,2],5],1],[[],[5,10,1,4]],[0,[10,10],[1,[7,0,5],[4],[10,5,3,4,2],[8,10,1]],[],[5,[0,6,3,7,4],2,9,4]],[[6],[],0]]
|
||||
[[[2,[10,9,9,9],7],[9,[1],10],1,[[5,10,5,4],2,1,1,[]],[10,[2,10],[0,7,2,5],0,1]]]
|
||||
|
||||
[[[4,9,[5,6,9,6],[7],[0,9,5,8,1]],[[8,0,2,5]]],[],[6,[[7,10],9]],[[5,2,[]],2],[[9,0],5,[[2]]]]
|
||||
[[[]],[],[[[2,9],0],2,[[6,2],6,[3,8,1,1],1]],[]]
|
||||
|
||||
[[3,6,4,[2,5,0,[8,6,8],4],[[1],[5]]],[0,[2]],[],[5,[],[5,4,[10,9,4],9,6]]]
|
||||
[[[[5,10,3],6,[2],[]],[[8,1,7,7,10],0,[6,8,9,3,9],[10,5,4],[9]],[[]],[[6,1,4,3,9],[10,9,9]],8],[9,7,6,[[3,8,0,1,1],1],8]]
|
||||
|
||||
[[[[0,3,8,10,5],2,[],[],[9]],3,6,[5,[0]],[5,[]]],[]]
|
||||
[[0,3]]
|
||||
|
||||
[[[3]],[9],[],[[4,1,9,[5],[]]]]
|
||||
[[[9,[5,6,3],4,[4]],[[],[5,6,4],[7,5,10,8]]],[[0,[8,3],4,6,[9,9,4,1,0]],[[3,5,1,7]],8,[]],[[],0,[8,2,9]],[4,[[],5,[10,10,10,6,6],[8,7,3]],[5,[1]]]]
|
||||
|
||||
[[[[1,0,3,6],6,[10,10,6,8]],[]],[[1,2,[9,7,1,10],[]],[[10,3,0,8,8]],2,8,[7,4]],[[[10,8,4]],[2,3],6],[[[10,6],[5],9,1],[],7]]
|
||||
[[],[[],[[3,8,4],0,[]],[],6,[[3,7,1,0],10,8]],[[9,4,[]]]]
|
||||
|
||||
[[[8,[4]],6,3,10],[[5,1,8,[0,6],2]],[],[[],[[10],[6,6],0,[1,7]],8],[[[1],0,5,[],10],7,2,[10,[8,3],9,3,[]],4]]
|
||||
[[[6],3,[]],[[[1,3,1],[1],[9,7]],[6,[1,9,9,7,9],2]]]
|
||||
|
||||
[[],[[8,4],0,[10,[]],5],[5]]
|
||||
[[[4,[],[],7]],[[6,[3,5],[0,5,8],8,7],[7,0,[8]]]]
|
||||
|
||||
[[[2,[6],[9,7,1,2,5]],8,[3,[4,0,4,7,3],[],3],[[1,3,1,8],[5],4],4],[10,4,7,3],[[]]]
|
||||
[[9,0,7,[],[8,5,10,[2,0,1,7,4],6]],[[8,[],10,6],1,[[5,0,7,0],[]]],[[9,[8,4,0],[0,8,8]]]]
|
||||
|
||||
[[[7]],[[3,1,3,[6,3],8],[],[[10,3,1,5],[9,5,6,4],1,[],5],2]]
|
||||
[[5]]
|
||||
|
||||
[[[1,2,0],[[2,7,3,5],0,[9,7,0],10]],[6],[3,7]]
|
||||
[[[[6,0,7],7,0],0,6,2,2],[5,6,5,7],[8,[]],[],[[[1],[0,5,10,6,9],[10],8,10],[[8,10,8,7],[],4]]]
|
||||
|
||||
[[4,[6,2,[9]],3],[0,8,10,[[2,9,1,1,8],7,5,5],[9,[],6]],[],[4]]
|
||||
[[9,[[10,3,10,8]],4],[0],[],[7,[[5,0,9],9],[[7,5,3,9,0]]],[]]
|
||||
|
||||
[[[7],1,[9,0,4,[4,10,9],[4]],10],[6,4,[[]]],[[[3]],[[4,1,0,9,4],4],9,[[9,0,2,10]]],[[2,9,[0,3,10,7],8,8],[[10]],5,[[3,7,4]]]]
|
||||
[[[10,[7,0],0,6,[3,3]],[[3,5,10,3]]],[[[1,6],[2,7,3,3,8],[8,0,7,3],8,[10,9,7,8]],2,[7,[1,9,0,9,1],2],[5,10,0,8,2]],[[[9,6,9,0,3]],9,3],[[[6,8,9,8],[0,2],[4,1,0,6,5],7]],[3,[[1],[7],1],[[3,7],10,[8,4,7,6],10],[9,[3,5,3,9],[6,3],3,[3,1]],[[5,3,10],[10,10,5,7],7,[0,1,5,1,3],8]]]
|
||||
|
||||
[[10,[8,[7,7,3],7,[5,3,8]],[1,2,10,[]],6]]
|
||||
[[3,[3,[7,6,3,6,10],9,[6,9,1],[1,3,1]]],[3,[8,10,[1],[8]]],[[[1,4,4,8]],[]],[[2],[[4,8],[9]],[[5,3,5,4]],9,[2,10]]]
|
||||
|
||||
[[4,1]]
|
||||
[[[10,[5,5,9,2,6],[],[3,2,0,4],10],[6,[8,7,7,4]],8,[]],[3,[0,[10,10,10,1]],[0,8,4],[[4,4,10,7,1],2,[],[2]],[5,2]],[[[10,6],7,[8,6,3],10,[5,8,0,6]]],[],[[]]]
|
||||
|
||||
[[[],7],[3,[5,[5,8,8,7,4],[2,6,2,10]],2,7,8],[5,[[],[1,8,1,2,5]],0,0],[]]
|
||||
[[4,[3,7,0,9],8,0],[[[3,2,3],8,[10],[7]],9],[1,[[],[2,3,1],2]],[0]]
|
||||
|
||||
[[[[8,2,1],8,10,10]],[[5,4,[4,9,2,6]],3],[],[10,[[3,8,7,4],8,7,[3,10,1,2,7]],[4,5],1]]
|
||||
[[4,[],4,[2]]]
|
||||
|
||||
[[[10,4]],[0,1,[]],[],[9,10,10,2]]
|
||||
[[],[[[7,9],10,8]],[8,4,2,[[6,7]],5]]
|
||||
|
||||
[[],[[[0],2,7,[8,5,6],[6]]],[[3,[0,9],1,[9]],2,[[6,5,2,7,9],[],[3,8,3,0,2]]],[[3,[],[10,2,9,2],[9,3,1]],[1,7,[6,2],[9],6]],[[[10,4,0,9],[8,8,0],10,2],[8],6,[4],3]]
|
||||
[[[[5,0],6]],[10,[]]]
|
||||
|
||||
[[[7,[4,6]],4,[5,7,[8,5,3,5],[2,9,5,5,5],7]]]
|
||||
[[[[8,2],0,[0,8,10]],[],[8]],[[[1,10],10,1],[10,[5,1,4],6,6,0],6,[9]]]
|
||||
|
||||
[[[[4,9,7,1],[8,0,10]],[[8],0],9],[4,[7,[5,10,9],8],[[],[3,4],[9,4,9],[2,9,9]]],[],[],[[3,0,[7,8,5],9,2],[[],[],[0,5,2,1,1]]]]
|
||||
[[0,[],9],[],[]]
|
||||
|
||||
[[5,[5,[5],[]],8,0],[3,[[]]],[6,[[7],[6],8,7,2],[[]],[],4]]
|
||||
[[6,2,3],[0,[[6,1,9],[2,10,5],0],[1,0,8,[10,0,9],[]],[[0,1,5,2,2],[],1,1,6],[[4],[]]]]
|
||||
|
||||
[[[0,[5,9,0,1],5,[3,6,4,7],[3,0]],[],[7,[],4],1,[7,4,8]]]
|
||||
[[[[2,0],0,[],6,1],[],[]],[1,5,[[],[3,0,3]],[6,3],[]],[[[9,9,0,3],5,[]],0,[[5,3],[6,9],[3,0,4,5,3]],[[7,6,2,6],[]]]]
|
||||
|
||||
[[5,[[3,5,10,7],3,[]],4,[]],[8,4,9,0],[[2,[10,2,8],[8,6,10],[9,8,0,3],[0,5,5]]],[[[6]],[6],3,4,[]]]
|
||||
[[[],[],0,2],[0,[[9,1,4,8,5],2,7]]]
|
||||
|
||||
[[9,6,[4,[7],[9],10,5],[8,[4,5,1,0,3],[9,6,7]]],[8]]
|
||||
[[2,[5,[6,1,3,6,8]],7],[[5,3,7,7,0],10,[8,6,6],[[1,2,3,8,5],[6,5],[9],[]],6],[[5,5,[],[0,4,5,5]]],[[5,2,2],5,[8,8,[8,9,5,1]],[],[6,7,3,8]],[8,3]]
|
||||
|
||||
[[9,2,[[],8,7]],[[[]],4],[[],[8,[6,1],[3],8],[[8,0,0]],3],[7,4,[[3,5,8,9,0],3],[],5]]
|
||||
[[9,0,[],[2,[6,2,1,7],1],[10,2,[6,2,7],[9,2,0],[8]]],[3,9,6,[6,0]]]
|
||||
|
||||
[[0,[4,[],[]],[]],[[8],[],5,0,[]],[10,[7,9],[3,5,5],[3,[3,3],[6,7,3],[4,0,2],[6]]],[5,[],10,8]]
|
||||
[[1],[],[[]],[7,[[],[0,1,3],[2],[],[4,0,7,7,9]]]]
|
||||
|
||||
[[[8,[2,4,7]],0,[0],[0,[],1,0,7],7],[0,8,4,4,[6]],[[],6,[[10,2,8,8],8,[7,2,4,9],1,5],[0,4,10,9]]]
|
||||
[[[1,[7,6,1],8,[6],[5,9,8]],1,[[3,7,3,7,2]]],[],[8,[4,10,2],[8,[]],4,5],[[3,[5,10,1,6,10],2],10,0,[[10,2,2,5,5],9,[4,3,7,4],6]],[0,8]]
|
||||
|
||||
[[[0,[],[2,5,7,8,10],[4,0,7,7]],1,2,4,7],[[7,[6,0,0]],[2,[],9,[7,0,5,7,10]],[[0,7],[],[3,10]],[1,10,8,0,[1,8,5]]]]
|
||||
[[],[8,[[1,10,3]],0,[],[[],8,5,4,7]],[[0],5,5],[[4],[5,8,[6,2,8],4,[1,4,2]],2,[[7,7,3]],[6]]]
|
||||
|
||||
[[8,[[6],1]],[0,8],[[7,2,[6,1],3],9,[6,[2,5],[5],[6],[6,1,0,1,10]],3,[[1,9,3,7],2,[]]]]
|
||||
[[6,[]]]
|
||||
|
||||
[[6,6,[5]]]
|
||||
[[9,[[],[4,8,1,2,10],[2,9,6,1],2],[[5,4]],3,[4,[1,1,10,5,10],4,[0,0],[7]]],[],[2,[1,[3,1,7,1],10,3]],[[[9,7,3,4]]]]
|
||||
|
||||
[[[]],[[8,[3,5,5,7,1],0],[10],0],[5,2,[[]],[2]],[]]
|
||||
[[6,0,5,[[1],[6,8],3]]]
|
||||
|
||||
[[10,[3,[],10]],[0],[[4,[],2,7]],[[9]],[[[0,7,5],[]],[[9,4,4],[1,5,8],[4,10,7,6]],[[8,5,4],8,[9,3,1,4,2]]]]
|
||||
[[1,[1,[5,2,7],0,[6,4,8,2,4],10],[],9,[1,3]],[[7,9,7,[7,5]]],[[[0,10,6,1]],[7,[8],6]]]
|
||||
|
||||
[[[0]],[[9,10],[9],[2,4,9,3],[[],[],1,7],10]]
|
||||
[[[[0,7,4,7,7],[3,6],[5],[1]],[],[8,9,[2,5],[10,3,10],[10,4]]],[[[9,7,1,6,2],3,0,[7],1]],[[7,[4,3,6,6,9]]],[[],[],[[],[8,8,2],3]],[[9,[8,2,5,4],[8,9]],[]]]
|
||||
|
||||
[[[],[4,[7,5,10],9,6,10],4,3],[]]
|
||||
[[6,4]]
|
||||
|
||||
[[[[],0,[8,8],3,[]],4,[4,[9],1],[[5,7,6,1],4,5,7,[]]],[1,5,1,[10],[]]]
|
||||
[[[[3,8,9,2,7],[3,0],2],[2,[8,0,4],2,5],[[8,0,6,0,2],[0,4],4,[5,10]]],[2,[]],[[1,[5,9,9,1],[10,7,2,10],3]]]
|
||||
|
||||
[[],[],[8,[[6,1]],9,[1,3,2],8],[5,2,[[7,7,8],[9,5,0],[10,4,7],2,[0]],7,5]]
|
||||
[[0,1,10],[4,3,[0,[5,4],4,5,2],[7,7,8],[[6,8,1,1,4],[6,3]]],[[[9,7,7,5,0]],6,[[5,0],[4,7,0],[5],9,8],[],[1,[8,8,9],[8]]],[[[7,8],6]],[]]
|
||||
|
||||
[[[[9,9,7],7,1,4,[9]],[],[4,8,6,[7,4,4,4],0]],[[2,[3,6,2],[0,8,0],[9,3],2]],[[[8,10,1],[9,7,8],[0,8,4,7,7],[0,7,7],5]]]
|
||||
[[6,[[]],0,[[],[2,3],1],7],[],[0],[2,[5,0,[2,5,8,6,2],3],[10,[0,10,5],[9,7,3,7,10],[]],[9]]]
|
||||
|
||||
[[1],[[[],[5,4,4,8,8],6,3],6,[8,0],1]]
|
||||
[[[1,9],1],[]]
|
||||
|
||||
[[[[0,6,6],[],0,3,[4,4]],[[10]]],[[[0]],8,0,0,9],[0,10,[7,[3,1,10],5,6,[1]],2,1],[[5,6],[[10,2,9,5]],6,[]]]
|
||||
[[],[],[[]],[[[6],[2,0,7],0,10,5],1]]
|
||||
|
||||
[[[[8,0,3,6,10],[4,8],5,9,[7]],[[8],[3,10,2,10],[4,5,4,7],5,[]],0,7],[2],[3],[[5,6,3,4],[[2,0,3],[6,0,9,0],3,[2,5,4,1,6]],[4,[3,4,10,1],1,0],[7,[5,2]],3],[8,6]]
|
||||
[[3,9],[5,[9,1,[7,1,1,8,7]],[6,[2],[4,8,4,2,10],[6,4,5,0],[]]],[[[1,2,3],[8,6,9]],7]]
|
||||
|
||||
[[[0,7,2,4,0]],[6,2,7,10,6]]
|
||||
[[0,1],[2],[6]]
|
||||
|
||||
[[[[5]],4,2]]
|
||||
[[[],7],[[[4,1],4,[2,0,3]],5],[[8],[1],2,[9,8,9,0,[2,3,9]],[9,[10,8,2,4,0],9,[6,0,2],6]],[[[5,5],[],1,5,[10,0,7,4,10]]],[8,7,3]]
|
||||
|
||||
[[[[1,1,1,9,2],[1,9,7,4,4],[],[0]],[2,[5,9,4,4],[7,5]],4,7],[1,7,5,[[],2,5]]]
|
||||
[[2,[[7,6,4],[3,5,3,10,4],5,[8]],8,4,3],[1,5],[],[2,[[0],[4,5]],[8,[9,8]],[8,[]],0]]
|
||||
|
||||
[[5,[[3,8,7],[10,9,4,3],[1,9,9,4],4],6],[[3,1,0],[[2],6]],[[1],0,[[4,3,1,2,0]],7],[]]
|
||||
[[9],[],[0,10,0],[1,5,[[8,6],[9,8,0,9],6,[0,10,1,9]],[[3],[2]],0]]
|
||||
|
||||
[[9]]
|
||||
[[6,[[],2,3,10],7,8],[],[[3,9,0],5,[[4,0]],2],[[],2,3,[[2,6,0,5],10,6,[1,0,0,0],2],1]]
|
||||
|
||||
[[],[3,4,[[],[],[],[]]],[3,[8],[],8,[8,[0,10,0],2,3]],[[2,[8,7,3,5],[0,10,6]],5,[[7,10,6],[3,7,9,7],5,[8,4,2],9],5],[[0,[8,0],5,[4,6,4,6]]]]
|
||||
[[5],[4,1,[[],7,[6,0,6,9]]],[[[6,3,3,9,8]],[],0,[[3,3],[8,7,8]]]]
|
||||
|
||||
[[[[10,4],[0,7,7,9],[10,6,0],[2,7,1,5,3],4],[4,[4],[1,8,0,2],[5,8,4],7],[9,10,6],3,5],[[[1,10,3,10,9]],4,[3],[7,0,3]],[7,[],[[2,5,1,3]],[7,[2,2,4]],[[4,6,4,10],2,[6,7,8,6],[3,7,3,2,0],1]],[3,2,[[2,3,10,2,0],9,1,[]]]]
|
||||
[[9],[2,3,[[],9]],[[2,10],[]],[9,[2,[4]],7,[6,7,[10],[10,8,2],0]]]
|
||||
|
||||
[[1],[[6],4,0,[7,4,6],5]]
|
||||
[[[[6,6,9],[1,2,2],[5],6,[8,8,8]],3],[[[],2,0],[],[],3,[[5,0,0],[2,0,1,5],0,[9]]],[[[],9,7],3,9]]
|
||||
|
||||
[[5,9,[],9,4],[[[9,8],0,2],8,5,[7,7,10,2]]]
|
||||
[[[5]],[7,4,6,7],[],[[2,[3,5],[7,8],0],[]],[]]
|
||||
|
||||
[[[[5,9,9,8]],[8,[8,1],8],6],[[8,[4],8,8,[8,5,6]],[8,[],2]],[0,4,6],[],[7,[2],[4,5,[10,8],[1,6,3]],4,[10,[7],3,7,3]]]
|
||||
[[0,[2],[],[5,[2,7,4,4,0],7,4]]]
|
||||
|
||||
[[10],[[[1,3,6,10],2,1],0,[],[3,[8,5],[3],8]],[0,[2,[],4,[1,10],[6,1,6,6,8]],[3,[0,8,7,3],10,9,5],6],[7]]
|
||||
[[9,[]]]
|
||||
|
||||
[[],[[9,[],1],[9,[0,2,0,7,8],8,10,[0,6,3,5,0]],[10]],[7,1,[[6,2,3,0],0,5,4],10,[[1],6,[9,4,7,3],[6]]],[0,10,[6,[8]],5,[2,2]],[9,1,2]]
|
||||
[[2,6,5,[2,7,[7,6,8,4,0]],[[3,0],3,[6,7],[10],4]]]
|
||||
|
||||
[[[],7,10,[[],7],3],[8],[[[],[7,8,0,0],[2,9,5,3,2],0],6,3]]
|
||||
[[[[1,1,9,2,1],[],7,[5,8]],[4,[8,4,1],9],[[4,4,6],[5,8,2],[5],[5,7,0]],7,[0,3,[10],[],[4,2,0]]],[],[],[1]]
|
||||
|
||||
[[],[0],[[[8,0,7],5],0,[10,6,9,10,5],10,[]]]
|
||||
[[[0,[6,1,6,10],[10,3,7,3],[1,4,9,3,8],[5,9]],0,[10],8,10],[],[7,3,[5],1]]
|
||||
|
||||
[[2,6],[8,0,[[10,8,7],[],[],[7]]],[[8,4],[],9,[7],2],[0,6],[[5,9],[2],[6,10,[3,2,2,6,0]],7,[[2,6,0,8,5],[],[9,4,10],2]]]
|
||||
[[[2,[],0],[[1,10,7,0,5],[7,9,7,2,5]]],[[[0,5,7,2,5],4,[],2,4],9,2,[]]]
|
||||
|
||||
[[[[],8,6],[[5,7,0,8],1,10,9,[4,4,7,7]],6,[[10]],[]],[[10,3,[5,7,9,2,7]],[[10,0],5],[7,10,9],4],[],[[0,0],6],[]]
|
||||
[[],[[[0],1,5],5],[[[6,2,4],0,[],6,5],[[7,1,8,1],[9,9,10,5,5],10,1,1],[3,10,10,10],2],[],[1]]
|
||||
|
||||
[[[],[[5,4,1,5],0,[],6],[6]],[4,0],[]]
|
||||
[[[[],2,5,2,3]],[[[6,5]],[]],[[5,0]],[[],6,[[4],10,[0,7,9]]],[]]
|
||||
|
||||
[[[3,7,[8,4,7,6,3],[5,1,7,6],[2]],8,3,[[0],1,[10,2,6,3,8],[9]],[5,6,1,[],[9,6,7]]],[[10,7,6,[7],[1,3,4,2,4]],[7,[5,2,5,9,0],[0,1],[5,10,6]]],[[[6,2,0],6,3,9,[3,3]],[7,8]],[0,1,[[5,9,6]],[[9,8,10,0],[6,3,7,8],8,5]]]
|
||||
[[],[[9,2,[0],[7,4,9,2],7],[[],[1,4,5,4],[2,10,8],0,5],1,3,[[7],9,9,[5,7]]],[[],4,[6,3,[3,0,1,6],5],[[],3]],[],[6,[1,[3,10,9,10,10],8,5,[4,3]],[10,4],[9]]]
|
||||
|
||||
[[[[7,2,3]]],[6]]
|
||||
[[[2,[3],[]],4,4,8]]
|
||||
|
||||
[[0,[10,6,[6],4,4]],[6],[[6,[8,4,6,7],7,7,0],9,[],10],[[[5,5,10]],9,[[10,6,5,6]]]]
|
||||
[[6,2,1,10]]
|
||||
|
||||
[3,6,5,10]
|
||||
[3,6,5,10,10]
|
||||
|
||||
[[4],[1,[10,[2,9,9,1,6],[],7,[9,3,8,9,0]],[10,[9,7,2,2,3],[0,2,3],5]],[[10,[10],[9,2]],6,7,[4,[1],[]],[[],10,[9,7,5,4],[1,4,3,3,4]]],[]]
|
||||
[[10,[9,[],0],4,[[],10],[0,0,6]],[],[5,[],8,[7,7,[4,7,0,9,6],5,1]],[],[[7,9],[[],5,5,[]]]]
|
||||
|
||||
[[[],0,5,[3,[5,1,1]],5],[[4,[6,5,2],[0,9,7,0],1,1],[],[1,10],4,10],[9,[1,9,9],[10],[[5],[5,9,0],[2,9,5],[7,2,3],1]]]
|
||||
[[4,10],[5],[[[2,0,7],5,[0],[],[4,10,3]],1,[[9,4,4],6,[8],[7],0],[],[1,1,[8,4,5,7],[3]]],[7,7,[[],[1,1]],2,7],[9,[[2,6,9],[6,5,6,2,4],[4,8,10],[3,0,2,9,10],8],6,3,[[7,2,7],[3],[4,3,10,1,3],[5,2,10,4,5]]]]
|
||||
|
||||
[[[7,[4,7],[8,8,2],[6,3,9]],[[1],0,[10,3,10,7],[9,2,9,4],1]]]
|
||||
[[],[[1]]]
|
||||
|
||||
[[[[4,1,10,4],2],[],[6,[]],5],[[[5,3,4,8],10,[]],[10,4,[0,7,9]],[],7],[[],4],[3,4,[],7]]
|
||||
[[[0,[2,5,1,5],6,[]]]]
|
||||
|
||||
[[[3]],[],[7,[[],[1,7,7,8]],[],[1,8]]]
|
||||
[[[0,[5,5,9,5],1,5]],[],[[[7,4,1,2,3],3,[],3],2,[[6,0,4],[0]],[[4,4,2,6,6]],[[9,0]]]]
|
||||
|
||||
[[4,4,8],[0]]
|
||||
[[6,5]]
|
||||
|
||||
[[5,9,[[5,5,3,3],[],[8,5,0,4,1],1,2]],[5,1,[3,4]],[8],[[[9],8,8,[8,0,2,3,8]],[8,[9],4,[7,1,0]],8,[]]]
|
||||
[[],[0],[],[4,4,[4,6,[10,1,1,0]],5,[3,6,[2,1,2,1],[5,8,7,10]]]]
|
||||
|
||||
[[7],[[10,[4,3,6],[6,9,10]],8,2,10]]
|
||||
[[3,2],[[7,[10,2,5,1],[2,7,0,0],[],[0,10,1,3]],9,7]]
|
||||
|
||||
[[[[7,7],[0,9,4,2],[7,0,2,9,6],2],2]]
|
||||
[[[[5,5,9]],[[7,4,4],[9,6]],6],[6,[8,1,6],3,7,4],[5,[6]],[],[[0,5],[8,1,3,4,9],[[],[3,4,9,10],6],[10]]]
|
||||
|
||||
[[6,[1,[6],6]]]
|
||||
[[6,[0,5],[[5,6,4,7],7]]]
|
||||
|
||||
[[],[[5,8],3,0],[[9],9,[5],[[],[3,2,4,4],1,[3,6,8,7,1]]],[[[],0,1],[3,5,[4,10,4]],[],[[2,2,5],[5,10],[6,6,10,0,7],[10,10,5,3,10]],[[1],9,5,[3,3,8,1,5],[5,4,5]]]]
|
||||
[[[[10,4,3,7,7],[3,6,6],[],[3]]],[5],[8,10,[7,3,5],7]]
|
||||
|
||||
[[9,7],[7],[]]
|
||||
[[5,[[8,8,8,3,9],5],5]]
|
||||
|
||||
[[1],[[3,[5,7],[3,4],[6,4]]],[[],[[6,7,5,8]]]]
|
||||
[[[[6,8],[],[]],0,[4,[]],1],[]]
|
||||
|
||||
[[],[[5,[2,9,0],3],1,[[]],[4,10,[]]],[[0,3,[4,1],[5,9,0],2],1,[]],[0],[[[4],5,6,4,3],3]]
|
||||
[[7,[4,[9,6,1,3]],[[9]]],[[6,[2,1,10,2],[9],8],[8,6],[[5,2,8,10,9],[8,8,3,0,5],[5,10,8,3]],[],8]]
|
||||
|
||||
[[],[3,[],5]]
|
||||
[[2,[],[[3,10,6,10],4]],[],[0,[10,8,[4,8]],[8,3,[9,8,3],[3,6],[10,9,9,6]]],[[[4],2,2,4],9],[[],[[],5,[],6]]]
|
||||
|
||||
[]
|
||||
[[],[[4],4],[[8],6],[0,1,3]]
|
||||
|
||||
[[[3,10,3,[9,3,9,9,4],8],[3,[]],[[7,8,6,0]],[[],[10,1]]]]
|
||||
[[0,3,10,2],[[[1],10],[3,0,4],9,[[4,8,6,7],[0,8,5],[],[9,5,3,1,4]]],[0,5,8,2],[2,[]],[]]
|
||||
|
||||
[[[1,[]]]]
|
||||
[[[],5,2],[],[[[8],[3,4,1,7],[0,7,10],7,[]],1,1]]
|
||||
|
||||
[[[[4],[0,9,7,6,0]],[[1,7,7,1,10],[],5]],[[0,[7,9,0,9,9],[3,10,6]],10,[[1,6],[10],[10],[6,2,2,2,4]]],[[]]]
|
||||
[[[4,[],0,[2,7,8,2,3]],8,[9,0,[1,9,1,2]]],[],[8,[3,2,0,[1,1,7,0]],[8,9,3,[10,5,1,5,4],[9,3]],[6,8,4,[3,3,4],[5,2,3]],1],[[3],5,[],[6,[2,4,9],[2,3],2,[]]]]
|
||||
|
||||
[[0,7,[10,3],10]]
|
||||
[[],[]]
|
||||
|
||||
[[[6,[6,6,5,6],[3],[9]]],[4],[3,[]],[[6,8,[3,0,6,7]],[5,[7,4,5,6],3,[0,7,2,8,3]]],[[10,7,10,2,3],[2,1,[7,2,10,1,3]]]]
|
||||
[[9],[[],3,0],[8,[10,[9],10]]]
|
||||
|
||||
[[10,[[5,9],10,[10],[10,7],4]],[0],[0,[9,[5],[5,6]]],[3]]
|
||||
[[4],[[[7,4]],0,6,2],[9,[4,2,5,[4,10,3,10]],[4,10,[4,0,5,1,4],1,1],10],[]]
|
||||
|
||||
[[[4,[9],8],[7,5],[],[[8],[],[6,9,10,4]],2],[],[],[],[[[3,10,0,3,0],[8],5,8],10]]
|
||||
[[[[1,2,1],10,[2,9]]],[4,[[6,0,4,3],[10,2],[],2,1],[[3,3,10,0,9],[3,7,2,5],[5,9]],10]]
|
||||
|
||||
[[[[8],[3,2,9,8,6]],[10,[3],5]]]
|
||||
[[],[[[8,3,10]]],[[4,[1,5,3,6,2],[3,6,5,8,7],7],0,[6,[10,4,9,8,9]],[]]]
|
||||
|
||||
[[9,[6],0,[9,[8,4,5,7]],[9]],[7,[[9,9,10],[9,4,0]]],[[4,[6,1,5,6]],[[6,7,0],[]],0,[[3,1,10,9,10],[0,6,6,10],6,[6,1,3,9,9],[9,0,10]]]]
|
||||
[[0,[10],8],[]]
|
||||
|
||||
[[0],[7,[[7,7,9],6],2,[],3]]
|
||||
[[[7,6,5,[9],[8,1,0,3]]],[4,[],[6,4,[7,6]],6],[],[[],0,9,8,[[8,5],6,1,[1,2]]],[[],4]]
|
||||
|
||||
[[4,[8,[5,1,7,6,2],6,[7]]],[[8,8,4],[9,5,8]]]
|
||||
[[5,[[10],2,[8,7,7,0],[9,0,7,5],3],6],[],[4,3,[]]]
|
||||
|
||||
[[2,3,7,1],[9,4,[],[[8,2,9,0,3],[]],[[6]]],[]]
|
||||
[[2,[[5,2,10,8],4]]]
|
||||
|
||||
[[[[3,7,0,8,3],4,10,[4],4]],[[[2,4],6,6,3],[[5,2,8],[6,3,6,6],9,10],4,[1,9,[],[1,2,4,8],2],9],[6,[[6],[2,9,8,7],1,[10,10,5,0]],[10,7,[8,0,2,6],10,3],1,3]]
|
||||
[[8,[7,[4,10,6,5],1,[]]],[[[0,0,2,9]],[10,2,0,[10,9,7,9,1],4],[5]],[[3,[10,5,1],1]]]
|
||||
|
||||
[[]]
|
||||
[[],[5],[0,9],[8,[[5],10,2],7,[[9,6,5],[9,6,4,1]]],[[[],[8,10,0,2],[0,9,3,7,2],3,[2,7,1,6]],2,[],[],3]]
|
||||
|
||||
[[[3,4,[7,2,4]],7,[1,6,[7]],6],[1,[[1],8,8],[1,1]],[[[5,3],[]],[1],[[4,2,1],3,0],6,0],[[[],[2,0,8,0]],5,[]]]
|
||||
[[],[[4,9],[8,3,[]]],[7,1,8,0]]
|
||||
|
||||
[[[[],9]],[],[7,2,10,1,[[6],6,[],3,[]]],[]]
|
||||
[[[[1,10]],6,[],5],[4],[1,[[1],2,[5,4,4,4,4],2],[4,4,[2,2,8],8]],[1,[],6,2,1],[[[2],[10,8,6],[6,3]],3,1,[9,3,10,9,3]]]
|
||||
|
||||
[[5,6,8,3],[9]]
|
||||
[[[],4],[[[],2,10],[5,[9,9,3],0,[]],4,3,[0,9]]]
|
||||
|
||||
[[10,3,0,[[7],8,3,7,5]],[[[6,9],[3,5],2],2,[[7,7,10],[5]],0],[[8,6,4,10,[7,10,5]]],[[4,[],[10,2,7,10,3],[10,3,7]],3,7,7],[[[2,0,2,0],[5,8,10,6,4],[3,10,10,0],[4,2,6,1]],10,3,[6]]]
|
||||
[[[[1],[],5,[]]],[4,8,3]]
|
||||
|
||||
[[10,[8,5]],[1,[0,4,[0]],1,3,[[0]]],[1,4,[[3,4,0,1,3],9],[10]],[],[10,[],[1,8,1,[5,2,10],1],[8,3,[1,4,7,1],1,[8]],[0,3,[8,5,0,3,0],[]]]]
|
||||
[[10,0,[7,[5,2,5,7],2,3,8]],[9,[[4,9,10,3],10,[],[1,1,5,2,2],[1,2]],3,[[9,1,9]],[[8,8],8]],[[5,8,[0,1,1],[7,7]],1,[3,[2,1],[10]],[]],[[10],3,[3,1,5],[4,[7],[2],2,[7,10,10]]]]
|
||||
|
||||
[[],[5,10,[[1,2,6,0],[2,9]],[2,[9,10,6],[2,7,4]]]]
|
||||
[[7,[[2,9,4,10,5],6],[[4],9,[0,4,3,5],0,0],4]]
|
||||
|
||||
[[[],[4,[1,6,7,7,3],[7,5,2,4],[5,10,1,2,7],[]]]]
|
||||
[[[8],[3],8,4]]
|
||||
|
||||
[[2,8,0],[[]],[],[[]],[1,[2]]]
|
||||
[[[4,0,[9,3,2,5,3],[1,4],[2,0]],0,0,[[7,9],[3,9,1,5,9]]],[[[6,0,9],[10,5,0,5],0,[1],[5]],8,10],[],[6,[10,1,[9,9,6,4],[8,8,7,6,0]],[[6,1,9,0]]]]
|
||||
|
||||
[[2,5,[[],2],[]],[6,[],1,1],[[7,8,3,8,5]],[[2,3],1,8,7],[]]
|
||||
[[[[],[],6,6]],[[7,1]]]
|
||||
|
||||
[[9,6,[9],4],[],[],[[[],3,6],[10],[1,[9,9,1,6,6],[],9,6]]]
|
||||
[[7,5]]
|
||||
|
||||
[[[2,[0,0],8,7,[7,6]],5,[[9,7,7,0,3]]],[[0,7,4]],[7],[]]
|
||||
[[[4,2,4,9]]]
|
||||
|
||||
[[5,2,[[10,8,8,1],1,8,4],0,[[9,8,4,4],[4,1],4]],[],[1]]
|
||||
[[4,7,[[7],0,8,0,1],[6],0],[4,4,9,[[1,3,0,5],[],[3,5,0,3,3]],[6,[9,2,7,9]]],[9],[8,6,7],[[10,[3,2,9]]]]
|
||||
|
||||
[[[[8,7,7,9,4]]]]
|
||||
[[2,[3,[9,8,5,6,2],[3,3,6,2]],8],[],[3,8],[[[0,0,2],6,3,7],9,[[3,8,8,0],[6,8],[5,9,6],0,7]]]
|
||||
|
||||
[[10],[[[8],2,[8]],[],7],[[2,2,[4,6]],5,6],[[],[[],3],[[9],3]],[3]]
|
||||
[[[[3,6,7,0],[9,8,8,3,0],5],[10],6]]
|
||||
|
||||
[[[4,[6,3,10,5],5,9,4]]]
|
||||
[[[[7,0,8,3],10],[[1,4]]],[4,4,[[5,2,6],[3,1,6],[10],[]],[7,3,[],[5],[7,1]],[7,[],1,9,[7]]],[7,[]]]
|
||||
|
||||
[[0,[6,[3,3,6,7,5],[6,5]]],[[9],[]],[[4,[7,10,7],[7,5],8,[0,2,2,3,6]],0,1,5,2],[[8,8,[9,8,4],8,6],0,[[9,6,7,7,5],7]],[]]
|
||||
[[4,5,4,[[3,2]],[7,5,[9],0]],[[],[],3],[[3,9,[7,3,8,6],[7,10,10]],0,[[0,5],[2],[]]],[]]
|
||||
|
||||
[[],[[[4],9,7],9,[[6,9,10],[8]]],[[1,[1,10,6,4],[4,9,6],[5,8,6,5,6],5],[0,[2],9],5,4,[7,2,10]],[9,4,2]]
|
||||
[[2,[[1,0,0],4,2,[10,0,9,5,3]],[8,1,2,[6,4],1]]]
|
||||
|
||||
[[2,2],[[4,[1,7,7],[4,2]],[4,9,[10,5,10,1],[3]],[5,[],9,[7],3]],[[],[9]]]
|
||||
[[[[7]],[2],[2,[3,2],[0],9],10,5],[4,3,2,[[7]],3],[[[7,2,4],0,0,[3,8]],[]],[[],0,[],[[],[5,0,0],[0,4,6],3,2]]]
|
||||
|
||||
[[],[[2,[0,1,1],10],[2,6,4,[0]]],[6,9,[[0,0,10,7,5],[],[10],[8,7,10,10]],7],[[2]]]
|
||||
[[10,[[4,6,0,5]],9,[[3,1,0,9],5,[6,7],7],[[8,9,2,7],[4,6]]],[[8],1]]
|
||||
|
||||
[[[],[[10,3],5,[6,10,2,8]]]]
|
||||
[[0,9,6]]
|
||||
|
||||
[[9,6,0],[[],5,10,10],[],[3,1,[[4,9,7,6,10],10],[[9,6,4,5,2]],6],[10,8,5]]
|
||||
[[2,8],[[],[]]]
|
||||
|
||||
[[6],[0,[4,[9,9,0,0,7],[9,10],[7]],6,1],[[6],9,[0,8,[3,5]]],[4],[[[0,9,2,4,1],3,5],3,[3],[7],[[6,0,1],[2],[7,1,7,5,5]]]]
|
||||
[[9,7],[7,5,[[],[2,0,9,0,0],9,[8,1,3,10]],2]]
|
||||
|
||||
[[],[[5],[1,[1,2,6,10,1]],[]],[[],1,8,[[8,7],[7],[4,4,7],[4,9,8]],[[2,6,4],4]]]
|
||||
[[6,[10],1],[[9,8,[]],[1,[7,7,1,1,2]],5,[[5,8,9],[10,6,10,6],0,3,9],[7,2,[1,5]]],[4],[3,[2,[8,6,7,2],7]]]
|
||||
|
||||
[[9],[8,[[3,0,1,5,5],9],0,6],[1,[],1],[8,3,6,[[8,9],[10,9,6,8,4],[]]],[[],[3,5,1],2,6]]
|
||||
[[4,[]],[5],[[],[]]]
|
||||
|
||||
[[5],[[[],[2,2]],4],[5,[[],[9,3,0,1,4],[0,2,1]],[[3],[8,4,10],[]]],[]]
|
||||
[[10,[6,10,3,7],[0],3,4]]
|
||||
|
||||
[[1,[[5]],[4,1,[]],10,[4,[2,6,5,4,2]]]]
|
||||
[[[],5,[],5],[8,3,4,6,7],[1,[]]]
|
146
2022/inputs/day14.txt
Normal file
146
2022/inputs/day14.txt
Normal file
@ -0,0 +1,146 @@
|
||||
477,140 -> 481,140
|
||||
468,149 -> 472,149
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
465,152 -> 469,152
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
501,140 -> 505,140
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
498,17 -> 503,17
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
492,131 -> 496,131
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
501,116 -> 505,116
|
||||
495,122 -> 499,122
|
||||
486,131 -> 490,131
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
504,104 -> 504,105 -> 521,105 -> 521,104
|
||||
503,70 -> 503,71 -> 518,71
|
||||
501,15 -> 506,15
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
504,119 -> 508,119
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
471,146 -> 475,146
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
495,134 -> 499,134
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
498,125 -> 502,125
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
501,122 -> 505,122
|
||||
495,140 -> 499,140
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
498,119 -> 502,119
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
498,137 -> 502,137
|
||||
474,149 -> 478,149
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
517,90 -> 531,90
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
483,152 -> 487,152
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
483,134 -> 487,134
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
489,134 -> 493,134
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
477,146 -> 481,146
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
462,167 -> 462,168 -> 474,168 -> 474,167
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
474,143 -> 478,143
|
||||
497,13 -> 502,13
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
505,17 -> 510,17
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
477,152 -> 481,152
|
||||
462,167 -> 462,168 -> 474,168 -> 474,167
|
||||
504,104 -> 504,105 -> 521,105 -> 521,104
|
||||
489,128 -> 493,128
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
483,140 -> 487,140
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
507,122 -> 511,122
|
||||
489,140 -> 493,140
|
||||
510,125 -> 514,125
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
480,149 -> 484,149
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
492,125 -> 496,125
|
||||
503,70 -> 503,71 -> 518,71
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
462,167 -> 462,168 -> 474,168 -> 474,167
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
491,17 -> 496,17
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
504,125 -> 508,125
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
504,68 -> 504,59 -> 504,68 -> 506,68 -> 506,60 -> 506,68 -> 508,68 -> 508,63 -> 508,68 -> 510,68 -> 510,67 -> 510,68
|
||||
486,137 -> 490,137
|
||||
502,46 -> 502,48 -> 494,48 -> 494,55 -> 507,55 -> 507,48 -> 506,48 -> 506,46
|
||||
462,155 -> 462,157 -> 457,157 -> 457,162 -> 471,162 -> 471,157 -> 465,157 -> 465,155
|
||||
529,93 -> 529,95 -> 526,95 -> 526,100 -> 541,100 -> 541,95 -> 533,95 -> 533,93
|
||||
504,104 -> 504,105 -> 521,105 -> 521,104
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
471,152 -> 475,152
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
494,15 -> 499,15
|
||||
490,43 -> 490,42 -> 490,43 -> 492,43 -> 492,35 -> 492,43 -> 494,43 -> 494,38 -> 494,43 -> 496,43 -> 496,36 -> 496,43 -> 498,43 -> 498,39 -> 498,43 -> 500,43 -> 500,35 -> 500,43 -> 502,43 -> 502,36 -> 502,43
|
||||
514,84 -> 514,79 -> 514,84 -> 516,84 -> 516,78 -> 516,84 -> 518,84 -> 518,77 -> 518,84 -> 520,84 -> 520,82 -> 520,84 -> 522,84 -> 522,79 -> 522,84
|
||||
492,137 -> 496,137
|
||||
480,137 -> 484,137
|
||||
520,108 -> 520,110 -> 516,110 -> 516,113 -> 529,113 -> 529,110 -> 525,110 -> 525,108
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
||||
482,30 -> 482,23 -> 482,30 -> 484,30 -> 484,20 -> 484,30 -> 486,30 -> 486,26 -> 486,30 -> 488,30 -> 488,23 -> 488,30 -> 490,30 -> 490,20 -> 490,30 -> 492,30 -> 492,25 -> 492,30 -> 494,30 -> 494,29 -> 494,30 -> 496,30 -> 496,24 -> 496,30
|
30
2022/inputs/day15.txt
Normal file
30
2022/inputs/day15.txt
Normal file
@ -0,0 +1,30 @@
|
||||
Sensor at x=2332081, y=2640840: closest beacon is at x=2094728, y=2887414
|
||||
Sensor at x=3048293, y=3598671: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=2574256, y=3973583: closest beacon is at x=2520711, y=4005929
|
||||
Sensor at x=3011471, y=2514567: closest beacon is at x=2999559, y=2558817
|
||||
Sensor at x=3718881, y=2593817: closest beacon is at x=2999559, y=2558817
|
||||
Sensor at x=2388052, y=2201955: closest beacon is at x=2163809, y=1961540
|
||||
Sensor at x=3783125, y=3897169: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=1864613, y=3918152: closest beacon is at x=2520711, y=4005929
|
||||
Sensor at x=2850099, y=689863: closest beacon is at x=3231146, y=2000000
|
||||
Sensor at x=3431652, y=2328669: closest beacon is at x=3231146, y=2000000
|
||||
Sensor at x=3480248, y=3999492: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=455409, y=3347614: closest beacon is at x=-399822, y=4026621
|
||||
Sensor at x=2451938, y=2950107: closest beacon is at x=2094728, y=2887414
|
||||
Sensor at x=1917790, y=3194437: closest beacon is at x=2094728, y=2887414
|
||||
Sensor at x=3947393, y=3625984: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=1615064, y=2655330: closest beacon is at x=2094728, y=2887414
|
||||
Sensor at x=3630338, y=1977851: closest beacon is at x=3231146, y=2000000
|
||||
Sensor at x=3878266, y=3019867: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=2837803, y=2395749: closest beacon is at x=2999559, y=2558817
|
||||
Sensor at x=3979396, y=3697962: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=109399, y=250528: closest beacon is at x=929496, y=-688981
|
||||
Sensor at x=2401381, y=3518884: closest beacon is at x=2520711, y=4005929
|
||||
Sensor at x=3962391, y=71053: closest beacon is at x=5368730, y=-488735
|
||||
Sensor at x=1751119, y=97658: closest beacon is at x=929496, y=-688981
|
||||
Sensor at x=2932155, y=2967347: closest beacon is at x=2999559, y=2558817
|
||||
Sensor at x=3326630, y=2845463: closest beacon is at x=2999559, y=2558817
|
||||
Sensor at x=3959042, y=1734156: closest beacon is at x=3231146, y=2000000
|
||||
Sensor at x=675279, y=1463916: closest beacon is at x=2163809, y=1961540
|
||||
Sensor at x=3989603, y=3500749: closest beacon is at x=3872908, y=3598272
|
||||
Sensor at x=1963470, y=2288355: closest beacon is at x=2163809, y=1961540
|
64
2022/inputs/day16.txt
Normal file
64
2022/inputs/day16.txt
Normal file
@ -0,0 +1,64 @@
|
||||
Valve AA has flow rate=0; tunnels lead to valves AM, AN, BN, LA, RJ
|
||||
Valve AM has flow rate=0; tunnels lead to valves OJ, AA
|
||||
Valve AN has flow rate=0; tunnels lead to valves AA, IX
|
||||
Valve BB has flow rate=0; tunnels lead to valves NS, HR
|
||||
Valve BN has flow rate=0; tunnels lead to valves AA, YH
|
||||
Valve CN has flow rate=7; tunnels lead to valves YH, EO, WX, NR, OM
|
||||
Valve CV has flow rate=0; tunnels lead to valves KV, NS
|
||||
Valve DT has flow rate=16; tunnels lead to valves UU, HU, KA, VH
|
||||
Valve EE has flow rate=0; tunnels lead to valves LY, RI
|
||||
Valve EO has flow rate=0; tunnels lead to valves IK, CN
|
||||
Valve FM has flow rate=0; tunnels lead to valves VT, RP
|
||||
Valve GG has flow rate=12; tunnels lead to valves ML, IL, MH, OL, KA
|
||||
Valve GQ has flow rate=0; tunnels lead to valves YA, KO
|
||||
Valve HF has flow rate=0; tunnels lead to valves NR, SU
|
||||
Valve HG has flow rate=0; tunnels lead to valves MH, RP
|
||||
Valve HN has flow rate=0; tunnels lead to valves KV, LR
|
||||
Valve HR has flow rate=11; tunnels lead to valves BB, KO, LR
|
||||
Valve HU has flow rate=0; tunnels lead to valves TQ, DT
|
||||
Valve IK has flow rate=0; tunnels lead to valves EO, RP
|
||||
Valve IL has flow rate=0; tunnels lead to valves GG, XD
|
||||
Valve IP has flow rate=0; tunnels lead to valves WX, VT
|
||||
Valve IX has flow rate=0; tunnels lead to valves AN, JQ
|
||||
Valve JC has flow rate=0; tunnels lead to valves JQ, NJ
|
||||
Valve JQ has flow rate=6; tunnels lead to valves IX, JC, PX, YN, OM
|
||||
Valve KA has flow rate=0; tunnels lead to valves GG, DT
|
||||
Valve KO has flow rate=0; tunnels lead to valves GQ, HR
|
||||
Valve KV has flow rate=13; tunnels lead to valves HN, CV, PE, XD, TA
|
||||
Valve LA has flow rate=0; tunnels lead to valves AA, MU
|
||||
Valve LI has flow rate=15; tunnel leads to valve XG
|
||||
Valve LR has flow rate=0; tunnels lead to valves HR, HN
|
||||
Valve LY has flow rate=0; tunnels lead to valves EE, RP
|
||||
Valve MH has flow rate=0; tunnels lead to valves GG, HG
|
||||
Valve ML has flow rate=0; tunnels lead to valves RI, GG
|
||||
Valve MU has flow rate=0; tunnels lead to valves VT, LA
|
||||
Valve NJ has flow rate=0; tunnels lead to valves QF, JC
|
||||
Valve NR has flow rate=0; tunnels lead to valves HF, CN
|
||||
Valve NS has flow rate=23; tunnels lead to valves CV, BB, UJ
|
||||
Valve OJ has flow rate=0; tunnels lead to valves RP, AM
|
||||
Valve OL has flow rate=0; tunnels lead to valves GG, SU
|
||||
Valve OM has flow rate=0; tunnels lead to valves CN, JQ
|
||||
Valve PE has flow rate=0; tunnels lead to valves KV, RI
|
||||
Valve PX has flow rate=0; tunnels lead to valves XZ, JQ
|
||||
Valve QF has flow rate=17; tunnels lead to valves YI, NJ
|
||||
Valve RI has flow rate=4; tunnels lead to valves ML, EE, TZ, RJ, PE
|
||||
Valve RJ has flow rate=0; tunnels lead to valves AA, RI
|
||||
Valve RP has flow rate=3; tunnels lead to valves HG, FM, OJ, IK, LY
|
||||
Valve SF has flow rate=0; tunnels lead to valves YN, SU
|
||||
Valve SU has flow rate=19; tunnels lead to valves TQ, HF, OL, SF
|
||||
Valve TA has flow rate=0; tunnels lead to valves KV, VH
|
||||
Valve TQ has flow rate=0; tunnels lead to valves HU, SU
|
||||
Valve TZ has flow rate=0; tunnels lead to valves VT, RI
|
||||
Valve UH has flow rate=25; tunnel leads to valve YI
|
||||
Valve UJ has flow rate=0; tunnels lead to valves YA, NS
|
||||
Valve UU has flow rate=0; tunnels lead to valves DT, XG
|
||||
Valve VH has flow rate=0; tunnels lead to valves DT, TA
|
||||
Valve VT has flow rate=5; tunnels lead to valves IP, XZ, TZ, FM, MU
|
||||
Valve WX has flow rate=0; tunnels lead to valves CN, IP
|
||||
Valve XD has flow rate=0; tunnels lead to valves IL, KV
|
||||
Valve XG has flow rate=0; tunnels lead to valves LI, UU
|
||||
Valve XZ has flow rate=0; tunnels lead to valves PX, VT
|
||||
Valve YA has flow rate=21; tunnels lead to valves UJ, GQ
|
||||
Valve YH has flow rate=0; tunnels lead to valves CN, BN
|
||||
Valve YI has flow rate=0; tunnels lead to valves QF, UH
|
||||
Valve YN has flow rate=0; tunnels lead to valves SF, JQ
|
2500
2022/inputs/day2.txt
Normal file
2500
2022/inputs/day2.txt
Normal file
File diff suppressed because it is too large
Load Diff
300
2022/inputs/day3.txt
Normal file
300
2022/inputs/day3.txt
Normal file
@ -0,0 +1,300 @@
|
||||
LLBPGtltrGPBMMsLcLMMVMpVRhhfCDTwRwRdTfwDllRRRDhC
|
||||
gNFJHJFgtZFJjZJHNNFWZWZwwDjCwSDhfCDbdwjfwDTTDT
|
||||
gmQNZnZNHWnqmQpLtVLMBsPpBqrL
|
||||
HlHldQtHlctzppdQtjdczHhJRnnhGNVmVRJmVjCVFCNh
|
||||
LgWNgggZJZGFhCZr
|
||||
DbqPswwMvDPqzlBNHtzfHdwd
|
||||
tJgtJwwCtNvPHHPtHzDsdRTsBRDDWgWTgT
|
||||
QhLQjLGjZQFlFZmnmGLDrzWfRldrTrzTBRWTzs
|
||||
bFFmFZjhSFHvBCvCvJpb
|
||||
MSGcvnvMGMJgWJDpdndZwBnppfCp
|
||||
VPVfQQVbshZNZwdNDwNs
|
||||
LtLbjmQRLmVhQtTbfgWjJgFFcrqqrGSqWg
|
||||
fHfCNCwwHfGhcntntrrgHrQnrn
|
||||
FVqpSpbPpjSVMjqvVmVvMzlzwJnbtnnlzQQlrWzJgt
|
||||
PTqqRRPSRSmqSpPpSpRZwGCLGscCNLZZZTNdNZ
|
||||
pQQQslVSVzzCQnZSlplzbLcHZHcrrrbZqFbZjbFm
|
||||
gWtvPgdMDDtFDHHjJJbbccbrLW
|
||||
MhNvwwDfDfdtvRQnpFNNTlSRSn
|
||||
ZTnSnTTzqvFmVzvWWm
|
||||
ClpCgltHNrtgsHdpLCHtDCNLVvQvVwVmwcsWQGMMQvcGcFcv
|
||||
JmrgCHCNJtlmHmNhnJjnnnjJhPfhSJ
|
||||
BgRRZTgHHvRTRmRNLNNhQWlmGFfJlWlhsQshpF
|
||||
qPqSSttwnnzqqqwtVrPwMthFsJllJJlGhpJhWJQlhVQd
|
||||
MjMwScnDPzcwjtqDtztnctrvgNZTTvCvLgvQbLbvjTBvBg
|
||||
SWQSbbqTTbPcfMZSwZZwwn
|
||||
dghjghmNDmGsGgdnfmtMRCLCCRncfc
|
||||
pJDJNdsNMMhpssgdprBTBzWlpBWlllWb
|
||||
TwNLNZTwWCWLwWCSTZSLzWHGrDHHPmGdDHvndGdNfvMm
|
||||
BgpjtpgjBjVbRjQRhVsDnvgGgPnGdrmvnMDfrf
|
||||
rhRjRssQJplRtVbpthblbbLSLzFCJZFqLLFWCzqcqzLL
|
||||
PBrdPMtBPvCQBVBjCfWPqSHbszhGGnsfSG
|
||||
JpmDwJgWJgNzmShhmfSGzh
|
||||
pRwNcNpFZNZRWgcNplpjVCMVjdvdMQtCMLZjMZ
|
||||
lDrcnnlLqLRcDDZRLjFVTHzGCLGVPzGPVWGB
|
||||
pNwHpdmsNJsbpwsbzJTCPWTVFzzQTWCQ
|
||||
vbhswdtdwfdsmtNSssHwvllvMcZjnjcnZqlgMDZglM
|
||||
GVVtJGtzVFsVsDTH
|
||||
mQRgcBRmRLnBjrtFjCCrHmFF
|
||||
gqpBnlRpgZcvdSdlMdSvMt
|
||||
tMSCNGSflffNhnnGqlPPsrzWPrTrVpWr
|
||||
bZHbmDBQmbDZQdbDcRFZZBTTWWWwqVzszWjrFPVwrzqq
|
||||
HQBLHmQVQLDdCggMfgMNLvNG
|
||||
HHNDzNJPJPmdPcNGGGhnhwnVhCQBwBjQ
|
||||
bsSbLfrLtRSLRSRRRsBwhCpfpCzlwCBVjlCV
|
||||
zvvsvqLtZqLtzRsqTrggRMHJNWJgHHHNJcgWNPdHcH
|
||||
qgbNvqbgmmZgZLvZqgnZzlpzpzHtVPzttGPrrnnl
|
||||
jwswGjQDMsQMjdBwdcjCHVtcPVpCVCrPlVSrpc
|
||||
GsFWBfhGBfDFDFWqNbLNqbgvqbbvfN
|
||||
HgwWqtcqHNWgnHcNNCfvJCCJJfJGvnPfrR
|
||||
sbDhZSmdBbsSdmSDdrjjffRvdjPrprCd
|
||||
vvZbSFFlFHtqFqqWNc
|
||||
ZRjnbRsHlncZGjTRTfFVSQBQppQvvFBHpF
|
||||
zrLwMdhDhqJJttDQSldQVPQSlSfPlV
|
||||
hCWWCzqWnmcZlRRW
|
||||
HfgfQflHjWgRQRdRBWVsnbvvscbbbwvmbHncSc
|
||||
tJGLtPPGZPwVvSSPhw
|
||||
CLGTLZqJtMGqLDFFDZZJFZJpWjRpVNRWpllDpjlBfgVjlp
|
||||
rhhGZZhLNhPmfJqvfLlq
|
||||
dHRTHRHQQWcTCRTHmmjJgfqqlGmgWgql
|
||||
CCwRzTRRdCCRSQwzRcppprZtrMhGBMZMnDSt
|
||||
WfffvnSnfSBshwsjhlvGlh
|
||||
ZHpFNTmppVmNzVVmmFMZzbwwjHGrGlPhCGrljbgHsg
|
||||
pLZMmqVsZVMMVVscDfdtSSStqcRRdn
|
||||
RhRbLzRLHLCPmzznHLbzCRTJhdTVSJJVSjdFFNFFNTJv
|
||||
MGgMfpMsBgpnMtGfnfwBtDBjFVdNSSSFdvJSQSpTJdJjNv
|
||||
lMsBgDMsblmRblnz
|
||||
ClNcJZttLfLvvRQzQWwRQN
|
||||
hrpMdqMspsrGDdMphhdMMMMHBmRWmSVrRVzVTzQBQvSmzVWV
|
||||
ppHDMGhMMDbGMdDMGbgFbgbMlJJnjjZtZfLPcfcngZfPPfCR
|
||||
ZRslLRgCclZLZzQghQhfrbfGbJ
|
||||
pVSHpBBBBDVDqDBldVzfrMzQbfSTSJrzzJrJ
|
||||
DqqHnBDlpNDVVnpnjtDtNjCvFLcsFFPZRcPsNNmPcFcP
|
||||
LmLWSmSRNdcpcRHFHrWzWHbMbwZlZlPSbTjlwPbTPJTf
|
||||
DttBsvhnhqvGGBhGtBVNBVqJlPwslMMPJwTjZbbZPTfbPs
|
||||
CDthQvVNVFCHHWCFdr
|
||||
RRtCWSzQZdRMrtRWrSztMggcGDfQTcfFTGqTLgGDLc
|
||||
bnVhnvPHhhdJJBTLDGcDTcBvvD
|
||||
pmbnhmPPmHwdCjmdrRtCdj
|
||||
lTPzwhzmHpTvrDCDHJnsNN
|
||||
tdgtbMMBbWdFbtqJCnsrqnMMDsrq
|
||||
FjWdtgLSWttWtLSWtDWBjGGmwGlzTRwPTQGhlQQm
|
||||
wcbnTtTppNLrntznTBBccCGrVldRrZqdqRCZdFZCVZ
|
||||
JfHDgjgPPfRRgRlLRddR
|
||||
jhDhhLMfmJjMjDbNSTzbbbtmttmN
|
||||
CfGlvzpvpTjzzCWjvDlfvbbJbCRSdSRhsSQCMhdbhR
|
||||
wqrSmrLHHNcLqrrLBNsndssnnhPshnsQwbnJ
|
||||
NtcmBLcNVDWzjSvWtv
|
||||
vZPCSCvCJffvVvmCmPqCSlDSscczHDRcwcHzRlRHHs
|
||||
LFGFNnGrdQttNMFpzpMRRDslsJwsJH
|
||||
gjtLnFBJrLvhZvCbZhqB
|
||||
DBcjVFjDhQMSJVZbHZbl
|
||||
nfmsqppnLfTnfmMmzppwgllSrbSHHtllqbtSwZ
|
||||
TRzTnfRWnfdzWssfnRfRpncQPBhdDjjDCPcMQcCBGPPj
|
||||
NSjWCHjNHjpPWPpSFWdtqBMBBFVBvqvJGJwqBt
|
||||
gQllgDrnhQQDGRshRsZfVtVMRqwMtccVJcBtvRqw
|
||||
DQrzrDzhQgrsZLrZjWSSHNTWCjjNGTLH
|
||||
CgdcCFcbTbBzPgmNRmpptP
|
||||
rsZtsvVvHZZzPmqVNPzNmV
|
||||
HZjrwrjnjtHSHwDGdFhCdhWWJnWchCFJ
|
||||
RMTqQMRJqPtBtGBPtWjN
|
||||
ssHfSfShCwwbhsbHhhsmSfhSGNpCpNCjBBBLptcGtpzBBBWW
|
||||
HnwrSFwffHsFwrSSjfHglJJlTgZdFdgZRZTDDM
|
||||
pDLDWlDSlJDmzSJnDScRPLGGvqFqLPccGLgv
|
||||
CZHfwNMVNjsHNNqPgcbcBbRQGQ
|
||||
dCffZCjVCdCHHTmnlSgTlTSrlStp
|
||||
bFtlLCvLlVjpCGPJndrrMMCDDCnrMg
|
||||
hRsTwcZcBjZRJrfMDnsHrJnH
|
||||
mNZqcTSSBTScNzVQFtGtjpFtjmGG
|
||||
bjHdLrHjRWpDCtLzhzps
|
||||
lZcGfTvQcQfvlqqcNCcBvVwtGzmzthmwmpthMDmswgMt
|
||||
NcqflNQTBTTvvQSvqSVvQJbHPHbHCRJdndJPSHjWHb
|
||||
CVmRncrRVrhcmsBgfmtfdJsJmt
|
||||
bZHvZZDJwpWtdZgtGNGd
|
||||
vSbwHDMFMJqPQqQvvSPQqpSwjRcTVTLjLRhVCLFLjLFnFzCC
|
||||
mtffsmBwfwBDBmmsLsHqtpftGrMVMPSMPsVvhNvFrGPMvjNV
|
||||
TQTQCRWjJcdcQQSPrhhPSvVGPF
|
||||
cTRJCnldWJZlTgbWgbdbpqfqmppjmtljpqzmjpLw
|
||||
NNPmrmPWmrSSNNPmnglghmCvLCCflh
|
||||
LFbsDQMQFtQFHbQHqhvnngCftpcllptJgJ
|
||||
bDjsGqLLdRVjPZPP
|
||||
tgrbBQlbtRblwtRGrbCNswDDCsvFszpssCss
|
||||
SJVMhSZfHvpdhphN
|
||||
SMLpWZSSZMjfgGBgRtbQgljQ
|
||||
HsHHNDDHzHDDjsVBBZqtWBrSNcPwQvccvvdhPclSrQSc
|
||||
fGCFCgpgTfnTmgTFLFgccclhwQhwrzSwSwrCrr
|
||||
pmLJGfMRpFmfFMzmgGmRpgmVqWJDqZqqHtjBBVDBBqqssJ
|
||||
mBTfcfCCmpBCCSzNQScQSTfddhdtwgttjghNwGtGdgwGtd
|
||||
HvvqbvMLnFZVVPjJGRGzGRjZtwgw
|
||||
VFHFbsFHHSmzQBmsmT
|
||||
ZNmZCmNHHzzmPPzlbplvhbQh
|
||||
GDSwldfdvggPfLvQ
|
||||
ddqrtlnJDJlnjScRmMRCFHTHtFZF
|
||||
FPvglHSPcpNcFNSHFHNvZjdmbwdbzZtzsHDzbsbj
|
||||
MMnBLCCWBJCnrCVWCBstTZdZmdTtbDLswTtZ
|
||||
BMDnRCrnGhPPSgcgpG
|
||||
nsbgpbdrjMdGqnNRRWWRww
|
||||
tZZhPzCJhsJBtJPllJBCtCvwwcwwWLvWvwWRThcGcqLq
|
||||
mlBmZQPZmlppbgMmfssg
|
||||
RFdZTHFCdvjhgGnFqj
|
||||
zQLtNQpzNNtNpDtDPWLNMmGfBcjgjlgjhBnvcfnBvfjp
|
||||
PtmLsPzQVWzWDswCSwHbRZsGZw
|
||||
nPsfnPsFhTGjqGnmQppG
|
||||
RZhBbNwbBRZHZSCCHQqSpCpqqm
|
||||
VMbgNWRWMDfhtFJT
|
||||
RWhRPDhBHZWgZghRZwZgGJPGdncFdLcdLCjscFcjCjNLLj
|
||||
mQfSrlfTVqmSVTTTrprfFLqcdLHsLHFnvsFFqnNd
|
||||
TtQmVHmMrbMWRggRPJZP
|
||||
TTlCTVTdcpBlcchF
|
||||
ZLhwSMZhqhtqwqLjFcBvFmvvssGBmmjj
|
||||
LwSMRtqMHnqhhRZRRtJSVTgggVPdTdrVbQDJgTPW
|
||||
CGFFWFFVgjfzgVfcJCcgTCcBBWqSqMMBMBShhwMLMwSSMq
|
||||
fmQnflldltBZqlwqNZpB
|
||||
dvtnvmtRtsPbzCfTHjHcPzGf
|
||||
hzshzfshVhthgMmRsFRvFqmm
|
||||
PDDcZWlWBbplvmRRGtlvqQ
|
||||
ncjnDjbScnBWZjDVfwjfrrVtwLjzhr
|
||||
QRWvffVVGfDhNNjzGZLLcGGZ
|
||||
rgtpSSHpPrHSspvNLFlzTgNLlFglcc
|
||||
SSpbMHpvmwMQhMBR
|
||||
dHLtBqPCtPBHNsbRNdNNsZVN
|
||||
nQwntMwJWhwWjvcjDMlntRsNpgSbNNpglFpVggbSVF
|
||||
QDhJWwhzJtTqLzCmtT
|
||||
PSLqTqrCrRvCSJWLdLwdVWdQWL
|
||||
zNjHQnnHjHznnbDMnMMMdVZcpZZJpZWcdJFZ
|
||||
BntfgNbzfBtHzgnbbbPPSstlQSSGGrlGsrTT
|
||||
QpBNsBzztgqVtdmp
|
||||
jvrhGljRhSTlGGvjwjSwGjRvHVdqLttrMgMbtMMMVmdqqHfV
|
||||
ChTvTvljmCsQQQnNsQ
|
||||
CQCNSQHHgCtNHCNHHNDJcBJwLPtJBGhMPPPJwM
|
||||
zRTqmsdRRzrmdzVRpzPwcjdwwhLjMBMGBBLw
|
||||
hprmzRmblTzTVTVrlbrmVHNWNnCZFWNNFZlnDFSWgQ
|
||||
hGGqwwdwMqsRDGRBzlvDzB
|
||||
LTNTfcCFFFCcNHFFBzRSZRBlzHPSZdvD
|
||||
nLVTFNfVVLLWnwnwdrdbhnrhrr
|
||||
hlTpcDTpHmHwDmMbbdMMMGTPdGPR
|
||||
ZzFqNSQqHvBvzzqjFHtvSGRRMPQsJGJWRGWPMRdRsM
|
||||
BZjLNqNqzVVHgLVgll
|
||||
ZHHBzSZPVqghJgSnBhqJRQLRRMvQpwZvfNQRMMMp
|
||||
ctFCDmdDWmDGNRFMpRlwwQPP
|
||||
PrsmDmCGjtcmdjGtVqBSjJhnSbHnnghH
|
||||
QmZHTjmmHRmmdPRvHdVlPdrNNLqWzffbRtqpzfWtWsWNNW
|
||||
gwMcgnMGFGCjJLqfbtNtzzssCW
|
||||
DwMFGBwcBFjhBBhcDSJQQVQTPldTvPlVVZQSdQ
|
||||
NRTGfNffLghStLRR
|
||||
QlnWsdJWmnbWnVqWbWqHPSpmjgCjtSwhPjgtptLS
|
||||
JWchnllHqQJzGTZfTcFNDN
|
||||
VtdtcTVVCRctVdJclCVtpphpPhNGDwNPmThwWmgG
|
||||
ZjZMFnfBqqMjHZHMzBnzgPGwDmhmhDPfQNGPQGfD
|
||||
BbgsnFgMgMlVdJtlcVSs
|
||||
tlBMdBnClhLJnTbgph
|
||||
PhDDczqDGPqsHGrRGPWHGPzcFJNLTTJZLNbNLfFZgTbffL
|
||||
sHsmzzrGmPrRDRHqhHwmjBVtllwtdMdBSBtl
|
||||
QscfZsGsVjVtqGmlzvRMvl
|
||||
ThJNCHPTDDhHHJTJPHmlSMTtTTlBvlnMSzqn
|
||||
HhCdrHrCcpmmdVmb
|
||||
WPPBPvRWzvhWhWzGWtBqBSTLDZhgFSTCDgSgZZDCZs
|
||||
flbJmMJnjdMqNdfZZrFZZNFZgrrsTZ
|
||||
nQnqJlJdlQMMbVnVmdMplVnnBwcBPGttzQcvtHcWwWtHRHvB
|
||||
LLsmpJTWCJmJppCmgHCCLjbFtRFghzjfjcjcZttbRg
|
||||
SZlMPBdBtQfFSbSF
|
||||
nPqldlDwlBVnvdLWJVsmVNZCCVmJ
|
||||
HWvNVtHWJjHJsSgHsHzsDsmf
|
||||
RwZGPFGMQgzpTGSD
|
||||
PZMlwwqhFPPZqwFhPwnFbMjWJNNBtWNVJlCJJWJjWWzj
|
||||
frBSzJDtztfNVGwRzVgGhqsV
|
||||
MPMmjPWGMMmPCQCcbmRwVhTgVwTTqjvRTLww
|
||||
cFpcMGFplDHfBHFS
|
||||
gtjhjLffmgjgmbgVfbNdqFJMJMNbbwrwqq
|
||||
sWHHPSJsHzTZzTGsCdrqCNNddGdGFGRC
|
||||
ZpzHHTZWzsSSnBBPsTBnLVcpQfcJcQVQDQfcDfQt
|
||||
qMPqChqjQPRCMqlBrmGmLbPSsTbSvz
|
||||
nWNHZFVZZttWpfHsGSbBGTbWBSGmSm
|
||||
nZfpVfdZdtFHnwVHZtNwZhCJRJhcCdDcQhCqDSSCQc
|
||||
LlwSlZrftFSMpfLCdltTmmmSDmJqmssDVJBmJB
|
||||
cRcGGhpvDTmTDgsG
|
||||
nNPcjpWbNzjRRcWhbzWjvnLMddMLCwtdtMttddtrCdMz
|
||||
NszSsDCMSDzdZpCMCSMpNszfTvJhlvmlmrTfrhlhHPrmhD
|
||||
FRWBgRjWwqFWQFBBWjVncjRTvJfvvJvVrHhmVrHhmrdJTh
|
||||
wnwnqwRGFqdbNNtCGpCp
|
||||
zgsBvPVVDDrDtDgt
|
||||
nTHldmJQNTTfflcJNrQlHWpmDDFDFhWpWCLtFbphCm
|
||||
nTTNMlNfHQZTQPGSzVVZSVPSwr
|
||||
bPLbtPpwsJhlpnhnnLNNZDWhRNzWQrWWffNr
|
||||
SczqFdFHSTFjmMSMFVqFGCWWNRrWQQQRZCVWgQQgrZ
|
||||
dFdzFGHvjmqGMFwwLLsPnvBspnsn
|
||||
lwJwwmblVdvjbbbJvVnlmjGTTNTLqffpqDJffqGLqDLD
|
||||
ZtWgPtRMtQRQnTGDQNTTqL
|
||||
gCztMgWgchHhvwlllbnl
|
||||
cCwSSCVbqwCCWSbZMmGdtBllWBfdlvdt
|
||||
jzRsJjhPjnLthJNNpmpvmvvMfGvjQpGv
|
||||
nPHPFgRHLtCHZrqTcq
|
||||
dVJwCJGCVrQQGTNtLtGm
|
||||
hWWgDHBzWWWpZlhWBssLDTDsQTLLtswswL
|
||||
gPhBHpjwHcljpggwwWqvbFvdCVRqPPnnqVRb
|
||||
zRRRRNqzpQZNNRRmRcZscQcCDmCTTTDGfTbfGhrTCTrbFF
|
||||
HMvMtjgtLHVlLVfhCGfrfhJhhrvh
|
||||
LBgStjnHBjLVgggBgHndnSNNQdNWcQQNGZccwsccdQpw
|
||||
jLRqmZNGtZtvZvHzPfCvSSzhCP
|
||||
QbwDVHFrVbDVrDFbzPwSThSfddhWPWzS
|
||||
rpnFDccHFHtZNmMmRntj
|
||||
RFVdzzlNtrwSTltb
|
||||
hHGcqqBcGLQZffHhMwSswSWGrnnbMStC
|
||||
cgqLBgQgpgbbPbPz
|
||||
lfcgglhfTvmlBvclbgztnSRtSmttwRJwptWR
|
||||
FMjDjsdNDjNMQLFFLCMQdtwGGzRwzpGwzdWzzJpGhn
|
||||
ZQVNsVZMPsVhCQsFCFsHHlqlcBZrHHfBflbHBB
|
||||
vGGQQdwNCTJfQJHJbM
|
||||
FFqmzghlzhgqjlFqzZhmhPlRgBDLLRTTcHMbRcJHBLcgRH
|
||||
qFrPjnhZmqnhZZjhhmpPzZmtvbpwtdvsSCCsGwdNwvwNCp
|
||||
nrFdSHScdRwvdvRm
|
||||
NNpPLJJbNbppCvmzbHTbmsTw
|
||||
fWLHPlPtpMNBgGQgqggQSMGc
|
||||
BcHtrBcnjflfHslsrnltbTgvMwpWnnWpwwwCwCCRRW
|
||||
dzGhLSSGDdPNgLLdPWTqWWRMqwRWpvzMMv
|
||||
VPZZNhhNSSDhLNSLdFZBVgBbjHcgsgfrbBJbfs
|
||||
VMnWjjWTnNNCzzhblbbjlj
|
||||
FmHwfFHqpDrJzPQLPLbCDs
|
||||
GrdFfHqqSmmwHSqHfpdMNTtTtZCMMZtTRggGZR
|
||||
QRlnlTphqNfqdjZNmd
|
||||
rDtPmGctFrcgDjJcNjvNJNCcNw
|
||||
bgGDtgDbBWBSBVlblmVmsRMmLM
|
||||
CcQTQTrrmfQQhZZBpZpSSZ
|
||||
JFqSvLlLbWggDvDDFHjsdnshBZpjHBBhBW
|
||||
FgJqNvLRMlMMDDblrtfrTCStmCVtNttz
|
||||
MRRbbddqtHbMZbqMHHTFTFgwZglWPfgsZWgW
|
||||
LCcLjzCNGNcvpvLTFPmzlFsfTgFlgs
|
||||
NhNGcrCGrsrvcDpvVcSbtHQJQbnQbSdHMtJV
|
||||
bfMfBFcWFsWZHBWRPQpRqdwmMpmddm
|
||||
rSShvvVTNVhvVCCvThDlSvCwpGCmRmGQmPwmpLRLRdpq
|
||||
DhRzzVNVVgSzTFcgtnbHnHbfBB
|
||||
HsTGHHvlvvGTGlHBvlbZstrVrwNjrjVStwVVZR
|
||||
PPmgcFJPFcFWmWMgdNtVtQZtDVDVdZZjjR
|
||||
LLqWnMnmNvlBLCTzCT
|
||||
qTttLqLvGCQqCDlhml
|
||||
FJjzrRBrpjRWrCwrBrrwpRbbDzgghSmmNhPQhgNshmDSzSNm
|
||||
bJBrbFRjBVnWBrRBnHLfHGfdVtvHttcCdT
|
||||
mTzjGPmPPmPNjNBTvlJRlNJzZqrzrSZZSpcZqpgcgcggFr
|
||||
QWCwwMwWWhVZFbpQDSpSJS
|
||||
stMMsWwMwVWtwJTNNPvvRmTsNPsl
|
||||
gGFFNWMMNFTBlLpGpSll
|
||||
qvccssdDwDbhMhzwHLppTSHLrdBpBVLV
|
||||
PhJhzhMJzwDJwhZZtZQJCjgWtFjZ
|
||||
pGqWfqqGcspGqWqppHprpTrzhCzttMBCtbtJmtJbSBvWBt
|
||||
QDnVPgVPgDCJBMhmBJgv
|
||||
NlZwFlnnPLLlFwDlDlnPPFFHTMTdMZjTTcjsqqcsdfGdcp
|
||||
HLzZfHWWQwpgVHjVHr
|
||||
JlMlMGGDMtJGdtJhqtlccDgVCSTFFSCSDTggpvFTjSgS
|
||||
JcGRMlthtlVNMJRfzWsPnQsnnZNZns
|
||||
zVfvMpsbtQmtBlFWBZ
|
||||
lLSrlNTNRSFRFhhHRmPR
|
||||
dnSJjjwJJGwwnzVlvpszvccM
|
||||
SmlcCrpnrnznGzSBBSfzNbtsQsWZQcFbWctcbbZb
|
||||
JHgwJPjvdghbbWdDZGNLZb
|
||||
JjghvvhRwhwJVhHTzmfRfzGSMrzBfnGC
|
||||
JbCmrbnzmntnVJjbCHJJFQFvqgJgQgqLDQ
|
||||
NGhhhhPMGhWsSSchWlNsCLBBlLFQCgqvgCFFgQBg
|
||||
PdcNWWcdGdPssPPNTSNNtzbTwjntzbbVwtZpCVnb
|
||||
tGNgtsNQHsJmwwzddmQw
|
||||
hMhhDBwMhDDfCRRBjFDDTTWjdWmrmdWqjlmmmjJz
|
||||
RSpSSBhppDhRncRLswZLGvtGvNcNtL
|
1000
2022/inputs/day4.txt
Normal file
1000
2022/inputs/day4.txt
Normal file
File diff suppressed because it is too large
Load Diff
512
2022/inputs/day5.txt
Normal file
512
2022/inputs/day5.txt
Normal file
@ -0,0 +1,512 @@
|
||||
[Q] [B] [H]
|
||||
[F] [W] [D] [Q] [S]
|
||||
[D] [C] [N] [S] [G] [F]
|
||||
[R] [D] [L] [C] [N] [Q] [R]
|
||||
[V] [W] [L] [M] [P] [S] [M] [M]
|
||||
[J] [B] [F] [P] [B] [B] [P] [F] [F]
|
||||
[B] [V] [G] [J] [N] [D] [B] [L] [V]
|
||||
[D] [P] [R] [W] [H] [R] [Z] [W] [S]
|
||||
1 2 3 4 5 6 7 8 9
|
||||
|
||||
move 1 from 4 to 1
|
||||
move 2 from 4 to 8
|
||||
move 5 from 9 to 6
|
||||
move 1 from 1 to 3
|
||||
move 5 from 8 to 3
|
||||
move 1 from 1 to 5
|
||||
move 4 from 3 to 6
|
||||
move 14 from 6 to 2
|
||||
move 5 from 4 to 5
|
||||
move 7 from 7 to 2
|
||||
move 24 from 2 to 3
|
||||
move 13 from 3 to 2
|
||||
move 1 from 7 to 9
|
||||
move 1 from 9 to 5
|
||||
move 7 from 2 to 6
|
||||
move 3 from 1 to 7
|
||||
move 3 from 6 to 3
|
||||
move 2 from 7 to 1
|
||||
move 1 from 7 to 5
|
||||
move 2 from 2 to 6
|
||||
move 2 from 1 to 4
|
||||
move 9 from 5 to 1
|
||||
move 1 from 6 to 3
|
||||
move 4 from 5 to 4
|
||||
move 1 from 2 to 7
|
||||
move 4 from 6 to 2
|
||||
move 7 from 2 to 3
|
||||
move 2 from 2 to 6
|
||||
move 2 from 2 to 3
|
||||
move 2 from 5 to 4
|
||||
move 1 from 7 to 3
|
||||
move 4 from 6 to 7
|
||||
move 19 from 3 to 6
|
||||
move 3 from 7 to 4
|
||||
move 1 from 7 to 8
|
||||
move 1 from 8 to 1
|
||||
move 2 from 1 to 3
|
||||
move 10 from 3 to 2
|
||||
move 3 from 3 to 8
|
||||
move 1 from 3 to 9
|
||||
move 1 from 9 to 6
|
||||
move 11 from 6 to 8
|
||||
move 2 from 3 to 8
|
||||
move 6 from 4 to 3
|
||||
move 3 from 4 to 1
|
||||
move 7 from 2 to 8
|
||||
move 1 from 3 to 6
|
||||
move 6 from 8 to 5
|
||||
move 1 from 4 to 6
|
||||
move 9 from 6 to 9
|
||||
move 6 from 3 to 8
|
||||
move 1 from 3 to 5
|
||||
move 10 from 1 to 3
|
||||
move 11 from 8 to 7
|
||||
move 1 from 3 to 5
|
||||
move 1 from 1 to 8
|
||||
move 5 from 9 to 2
|
||||
move 1 from 6 to 3
|
||||
move 5 from 3 to 6
|
||||
move 1 from 3 to 5
|
||||
move 4 from 6 to 4
|
||||
move 1 from 5 to 9
|
||||
move 6 from 2 to 4
|
||||
move 2 from 2 to 9
|
||||
move 5 from 5 to 1
|
||||
move 2 from 1 to 7
|
||||
move 10 from 8 to 3
|
||||
move 1 from 8 to 6
|
||||
move 3 from 6 to 3
|
||||
move 6 from 4 to 2
|
||||
move 8 from 3 to 8
|
||||
move 3 from 4 to 8
|
||||
move 4 from 2 to 1
|
||||
move 3 from 5 to 3
|
||||
move 4 from 7 to 6
|
||||
move 2 from 9 to 3
|
||||
move 1 from 2 to 9
|
||||
move 1 from 2 to 3
|
||||
move 2 from 4 to 8
|
||||
move 1 from 7 to 9
|
||||
move 5 from 7 to 8
|
||||
move 2 from 7 to 3
|
||||
move 14 from 3 to 2
|
||||
move 3 from 9 to 5
|
||||
move 1 from 3 to 1
|
||||
move 1 from 7 to 4
|
||||
move 3 from 9 to 8
|
||||
move 7 from 8 to 9
|
||||
move 7 from 2 to 5
|
||||
move 2 from 3 to 7
|
||||
move 2 from 7 to 6
|
||||
move 16 from 8 to 9
|
||||
move 4 from 6 to 5
|
||||
move 1 from 2 to 5
|
||||
move 21 from 9 to 5
|
||||
move 3 from 9 to 3
|
||||
move 6 from 1 to 4
|
||||
move 1 from 1 to 9
|
||||
move 1 from 1 to 4
|
||||
move 2 from 6 to 3
|
||||
move 3 from 4 to 6
|
||||
move 3 from 4 to 8
|
||||
move 1 from 9 to 4
|
||||
move 2 from 4 to 6
|
||||
move 4 from 3 to 6
|
||||
move 1 from 3 to 4
|
||||
move 1 from 4 to 9
|
||||
move 1 from 9 to 8
|
||||
move 1 from 8 to 6
|
||||
move 6 from 2 to 1
|
||||
move 2 from 8 to 4
|
||||
move 6 from 1 to 8
|
||||
move 23 from 5 to 9
|
||||
move 1 from 4 to 7
|
||||
move 1 from 7 to 1
|
||||
move 22 from 9 to 7
|
||||
move 4 from 8 to 7
|
||||
move 1 from 5 to 2
|
||||
move 1 from 1 to 9
|
||||
move 2 from 8 to 4
|
||||
move 6 from 6 to 3
|
||||
move 2 from 9 to 5
|
||||
move 18 from 7 to 4
|
||||
move 18 from 4 to 5
|
||||
move 1 from 2 to 7
|
||||
move 1 from 8 to 4
|
||||
move 6 from 7 to 2
|
||||
move 5 from 4 to 5
|
||||
move 1 from 3 to 1
|
||||
move 1 from 7 to 2
|
||||
move 4 from 3 to 4
|
||||
move 1 from 3 to 4
|
||||
move 1 from 1 to 7
|
||||
move 1 from 5 to 8
|
||||
move 3 from 4 to 3
|
||||
move 3 from 3 to 8
|
||||
move 2 from 8 to 3
|
||||
move 2 from 4 to 8
|
||||
move 2 from 7 to 5
|
||||
move 1 from 7 to 9
|
||||
move 2 from 3 to 1
|
||||
move 1 from 9 to 7
|
||||
move 4 from 2 to 3
|
||||
move 1 from 8 to 9
|
||||
move 2 from 1 to 8
|
||||
move 2 from 2 to 4
|
||||
move 1 from 9 to 1
|
||||
move 4 from 6 to 8
|
||||
move 1 from 2 to 7
|
||||
move 1 from 4 to 7
|
||||
move 4 from 8 to 2
|
||||
move 1 from 4 to 3
|
||||
move 1 from 1 to 9
|
||||
move 4 from 8 to 1
|
||||
move 2 from 2 to 1
|
||||
move 3 from 3 to 9
|
||||
move 2 from 7 to 1
|
||||
move 32 from 5 to 1
|
||||
move 1 from 8 to 7
|
||||
move 6 from 5 to 1
|
||||
move 2 from 7 to 6
|
||||
move 1 from 9 to 5
|
||||
move 1 from 3 to 2
|
||||
move 1 from 5 to 9
|
||||
move 2 from 6 to 1
|
||||
move 1 from 3 to 7
|
||||
move 1 from 9 to 8
|
||||
move 36 from 1 to 4
|
||||
move 1 from 8 to 9
|
||||
move 5 from 4 to 9
|
||||
move 6 from 9 to 3
|
||||
move 2 from 2 to 9
|
||||
move 3 from 1 to 9
|
||||
move 1 from 3 to 2
|
||||
move 30 from 4 to 8
|
||||
move 1 from 7 to 5
|
||||
move 1 from 3 to 5
|
||||
move 3 from 3 to 4
|
||||
move 2 from 8 to 5
|
||||
move 3 from 9 to 8
|
||||
move 3 from 9 to 3
|
||||
move 19 from 8 to 6
|
||||
move 2 from 3 to 5
|
||||
move 3 from 4 to 3
|
||||
move 1 from 4 to 7
|
||||
move 8 from 1 to 8
|
||||
move 1 from 3 to 2
|
||||
move 1 from 7 to 6
|
||||
move 4 from 5 to 3
|
||||
move 1 from 1 to 7
|
||||
move 2 from 5 to 4
|
||||
move 1 from 9 to 4
|
||||
move 12 from 6 to 2
|
||||
move 1 from 7 to 8
|
||||
move 6 from 2 to 9
|
||||
move 3 from 6 to 7
|
||||
move 2 from 7 to 5
|
||||
move 6 from 2 to 3
|
||||
move 8 from 3 to 5
|
||||
move 5 from 6 to 8
|
||||
move 5 from 3 to 6
|
||||
move 1 from 9 to 4
|
||||
move 1 from 9 to 8
|
||||
move 5 from 5 to 9
|
||||
move 3 from 4 to 6
|
||||
move 1 from 4 to 9
|
||||
move 1 from 7 to 5
|
||||
move 1 from 3 to 5
|
||||
move 8 from 9 to 2
|
||||
move 3 from 9 to 6
|
||||
move 27 from 8 to 2
|
||||
move 10 from 6 to 9
|
||||
move 1 from 6 to 4
|
||||
move 1 from 4 to 9
|
||||
move 2 from 5 to 6
|
||||
move 5 from 5 to 3
|
||||
move 2 from 6 to 9
|
||||
move 5 from 3 to 2
|
||||
move 12 from 9 to 3
|
||||
move 5 from 3 to 1
|
||||
move 3 from 1 to 5
|
||||
move 1 from 9 to 8
|
||||
move 1 from 5 to 2
|
||||
move 1 from 2 to 1
|
||||
move 1 from 1 to 6
|
||||
move 1 from 5 to 3
|
||||
move 34 from 2 to 4
|
||||
move 8 from 3 to 9
|
||||
move 1 from 6 to 1
|
||||
move 1 from 8 to 5
|
||||
move 4 from 2 to 8
|
||||
move 3 from 8 to 7
|
||||
move 1 from 7 to 2
|
||||
move 7 from 9 to 8
|
||||
move 1 from 9 to 6
|
||||
move 2 from 5 to 1
|
||||
move 1 from 6 to 9
|
||||
move 1 from 9 to 5
|
||||
move 2 from 2 to 5
|
||||
move 5 from 8 to 6
|
||||
move 2 from 8 to 5
|
||||
move 1 from 1 to 3
|
||||
move 12 from 4 to 6
|
||||
move 2 from 7 to 1
|
||||
move 4 from 1 to 6
|
||||
move 3 from 2 to 3
|
||||
move 1 from 8 to 5
|
||||
move 1 from 2 to 6
|
||||
move 1 from 1 to 9
|
||||
move 1 from 9 to 5
|
||||
move 16 from 4 to 1
|
||||
move 4 from 3 to 1
|
||||
move 8 from 1 to 8
|
||||
move 1 from 4 to 1
|
||||
move 6 from 5 to 8
|
||||
move 1 from 5 to 7
|
||||
move 12 from 6 to 9
|
||||
move 7 from 1 to 5
|
||||
move 2 from 1 to 7
|
||||
move 1 from 7 to 1
|
||||
move 9 from 9 to 6
|
||||
move 15 from 6 to 2
|
||||
move 2 from 9 to 7
|
||||
move 4 from 4 to 5
|
||||
move 2 from 2 to 9
|
||||
move 3 from 7 to 5
|
||||
move 2 from 1 to 3
|
||||
move 1 from 7 to 1
|
||||
move 10 from 2 to 3
|
||||
move 6 from 8 to 6
|
||||
move 3 from 9 to 2
|
||||
move 14 from 5 to 6
|
||||
move 1 from 8 to 4
|
||||
move 5 from 8 to 2
|
||||
move 2 from 2 to 3
|
||||
move 24 from 6 to 1
|
||||
move 3 from 1 to 2
|
||||
move 9 from 2 to 9
|
||||
move 1 from 4 to 3
|
||||
move 1 from 4 to 2
|
||||
move 1 from 8 to 4
|
||||
move 23 from 1 to 4
|
||||
move 3 from 2 to 4
|
||||
move 2 from 1 to 2
|
||||
move 1 from 8 to 4
|
||||
move 3 from 3 to 5
|
||||
move 3 from 3 to 4
|
||||
move 3 from 5 to 8
|
||||
move 3 from 2 to 7
|
||||
move 2 from 3 to 8
|
||||
move 15 from 4 to 3
|
||||
move 2 from 4 to 1
|
||||
move 19 from 3 to 9
|
||||
move 1 from 7 to 2
|
||||
move 1 from 2 to 5
|
||||
move 1 from 5 to 4
|
||||
move 1 from 7 to 6
|
||||
move 1 from 7 to 4
|
||||
move 3 from 8 to 3
|
||||
move 1 from 8 to 4
|
||||
move 5 from 3 to 8
|
||||
move 1 from 3 to 6
|
||||
move 22 from 9 to 2
|
||||
move 17 from 2 to 6
|
||||
move 3 from 9 to 3
|
||||
move 9 from 4 to 9
|
||||
move 6 from 4 to 9
|
||||
move 5 from 2 to 6
|
||||
move 1 from 4 to 2
|
||||
move 1 from 4 to 9
|
||||
move 1 from 1 to 6
|
||||
move 19 from 9 to 2
|
||||
move 4 from 8 to 7
|
||||
move 1 from 1 to 5
|
||||
move 1 from 5 to 3
|
||||
move 1 from 8 to 1
|
||||
move 1 from 8 to 2
|
||||
move 4 from 3 to 7
|
||||
move 12 from 6 to 1
|
||||
move 3 from 7 to 3
|
||||
move 7 from 2 to 7
|
||||
move 9 from 2 to 6
|
||||
move 4 from 2 to 6
|
||||
move 13 from 1 to 4
|
||||
move 8 from 6 to 4
|
||||
move 16 from 4 to 8
|
||||
move 12 from 7 to 6
|
||||
move 3 from 8 to 3
|
||||
move 1 from 1 to 2
|
||||
move 4 from 3 to 8
|
||||
move 5 from 8 to 9
|
||||
move 27 from 6 to 8
|
||||
move 2 from 3 to 7
|
||||
move 2 from 2 to 8
|
||||
move 2 from 7 to 5
|
||||
move 1 from 5 to 9
|
||||
move 1 from 5 to 1
|
||||
move 1 from 6 to 9
|
||||
move 2 from 6 to 2
|
||||
move 2 from 2 to 6
|
||||
move 2 from 9 to 2
|
||||
move 3 from 4 to 3
|
||||
move 1 from 1 to 9
|
||||
move 5 from 9 to 8
|
||||
move 1 from 9 to 5
|
||||
move 2 from 2 to 6
|
||||
move 2 from 4 to 6
|
||||
move 1 from 3 to 7
|
||||
move 1 from 5 to 6
|
||||
move 1 from 6 to 7
|
||||
move 6 from 6 to 8
|
||||
move 2 from 7 to 5
|
||||
move 2 from 3 to 2
|
||||
move 34 from 8 to 1
|
||||
move 1 from 5 to 6
|
||||
move 1 from 5 to 3
|
||||
move 1 from 6 to 1
|
||||
move 32 from 1 to 8
|
||||
move 23 from 8 to 4
|
||||
move 1 from 2 to 1
|
||||
move 24 from 8 to 4
|
||||
move 1 from 3 to 6
|
||||
move 47 from 4 to 6
|
||||
move 2 from 6 to 1
|
||||
move 3 from 1 to 5
|
||||
move 1 from 2 to 1
|
||||
move 3 from 5 to 7
|
||||
move 21 from 6 to 2
|
||||
move 3 from 7 to 8
|
||||
move 2 from 1 to 6
|
||||
move 8 from 6 to 4
|
||||
move 4 from 8 to 9
|
||||
move 3 from 2 to 8
|
||||
move 4 from 4 to 2
|
||||
move 2 from 2 to 5
|
||||
move 4 from 9 to 8
|
||||
move 2 from 1 to 5
|
||||
move 11 from 6 to 1
|
||||
move 14 from 2 to 6
|
||||
move 2 from 4 to 3
|
||||
move 1 from 2 to 9
|
||||
move 3 from 2 to 9
|
||||
move 20 from 6 to 5
|
||||
move 2 from 4 to 2
|
||||
move 4 from 9 to 1
|
||||
move 8 from 8 to 9
|
||||
move 1 from 6 to 9
|
||||
move 14 from 5 to 2
|
||||
move 10 from 2 to 7
|
||||
move 7 from 9 to 6
|
||||
move 1 from 6 to 8
|
||||
move 6 from 2 to 6
|
||||
move 1 from 2 to 5
|
||||
move 1 from 3 to 5
|
||||
move 9 from 6 to 3
|
||||
move 1 from 5 to 2
|
||||
move 9 from 7 to 3
|
||||
move 12 from 3 to 2
|
||||
move 9 from 5 to 9
|
||||
move 1 from 8 to 6
|
||||
move 3 from 3 to 5
|
||||
move 1 from 7 to 6
|
||||
move 14 from 2 to 6
|
||||
move 3 from 9 to 7
|
||||
move 6 from 1 to 2
|
||||
move 5 from 1 to 8
|
||||
move 10 from 6 to 9
|
||||
move 4 from 5 to 6
|
||||
move 3 from 2 to 4
|
||||
move 9 from 9 to 7
|
||||
move 1 from 8 to 7
|
||||
move 3 from 9 to 6
|
||||
move 3 from 3 to 7
|
||||
move 1 from 5 to 1
|
||||
move 15 from 7 to 1
|
||||
move 2 from 8 to 5
|
||||
move 2 from 5 to 4
|
||||
move 1 from 7 to 4
|
||||
move 1 from 3 to 1
|
||||
move 15 from 6 to 7
|
||||
move 2 from 4 to 9
|
||||
move 3 from 4 to 7
|
||||
move 18 from 1 to 6
|
||||
move 1 from 8 to 9
|
||||
move 6 from 9 to 7
|
||||
move 3 from 6 to 8
|
||||
move 1 from 1 to 2
|
||||
move 2 from 9 to 5
|
||||
move 2 from 2 to 9
|
||||
move 16 from 6 to 3
|
||||
move 15 from 3 to 7
|
||||
move 2 from 8 to 4
|
||||
move 1 from 3 to 7
|
||||
move 3 from 4 to 9
|
||||
move 2 from 1 to 9
|
||||
move 26 from 7 to 4
|
||||
move 1 from 2 to 1
|
||||
move 7 from 9 to 8
|
||||
move 1 from 2 to 5
|
||||
move 2 from 5 to 2
|
||||
move 8 from 7 to 5
|
||||
move 1 from 7 to 3
|
||||
move 1 from 3 to 9
|
||||
move 2 from 2 to 7
|
||||
move 1 from 6 to 4
|
||||
move 4 from 8 to 9
|
||||
move 1 from 1 to 3
|
||||
move 1 from 5 to 6
|
||||
move 2 from 5 to 7
|
||||
move 17 from 4 to 9
|
||||
move 6 from 4 to 9
|
||||
move 1 from 3 to 4
|
||||
move 6 from 7 to 9
|
||||
move 3 from 5 to 6
|
||||
move 2 from 7 to 9
|
||||
move 4 from 8 to 9
|
||||
move 4 from 6 to 4
|
||||
move 8 from 4 to 6
|
||||
move 1 from 8 to 4
|
||||
move 3 from 5 to 2
|
||||
move 2 from 4 to 3
|
||||
move 1 from 7 to 9
|
||||
move 2 from 3 to 5
|
||||
move 4 from 6 to 9
|
||||
move 1 from 6 to 1
|
||||
move 36 from 9 to 4
|
||||
move 2 from 5 to 3
|
||||
move 3 from 2 to 1
|
||||
move 3 from 1 to 4
|
||||
move 14 from 4 to 1
|
||||
move 1 from 8 to 5
|
||||
move 4 from 1 to 3
|
||||
move 5 from 9 to 5
|
||||
move 2 from 5 to 8
|
||||
move 1 from 8 to 9
|
||||
move 4 from 9 to 6
|
||||
move 3 from 5 to 8
|
||||
move 1 from 5 to 6
|
||||
move 2 from 1 to 6
|
||||
move 2 from 9 to 7
|
||||
move 6 from 6 to 4
|
||||
move 1 from 1 to 3
|
||||
move 29 from 4 to 6
|
||||
move 7 from 3 to 4
|
||||
move 1 from 8 to 9
|
||||
move 3 from 1 to 6
|
||||
move 4 from 1 to 4
|
||||
move 1 from 8 to 4
|
||||
move 4 from 4 to 3
|
||||
move 15 from 6 to 8
|
||||
move 9 from 4 to 9
|
||||
move 1 from 7 to 9
|
||||
move 8 from 8 to 3
|
||||
move 3 from 6 to 7
|
||||
move 1 from 1 to 2
|
||||
move 4 from 7 to 6
|
||||
move 7 from 8 to 5
|
||||
move 1 from 8 to 4
|
||||
move 2 from 5 to 7
|
||||
move 1 from 2 to 4
|
||||
move 5 from 6 to 1
|
||||
move 4 from 3 to 2
|
1
2022/inputs/day6.txt
Normal file
1
2022/inputs/day6.txt
Normal file
@ -0,0 +1 @@
|
||||
qfmfhmhjmjggwbbvdvwvlvrrtsrsccwsslvlffjrrtprprjjvmmclmmghhddpvddclctcqtccgbgdbgdgsdgghqhtqtvvptvppwrwprpvrrrhpphththvhhrnnhnlnslnlhnhnhgnhnpnqqsmsgsllprlprrlzzqzffmzztctbtnbtthlttqvqcqmcmpcpbbczzbqbgghcghchhvwvllfrfnnbssfzsszpsplpglpprnpnfnbnhbnbtbzzvbvpbbhjjlzzbtbvbppczppbwppqwwnwlwccglgvgrgmmdwmwrmrppnfnhhhhqthqthqqrhrshhhqbhqqjgjvjllzvzbzhbbpttjsszvzqqtzzmbmddpldpdcdnccrmcrmmpwprplrrqssvddmpdmmwfwwlrljrrdsssmhsspnpffjggqllnzlnlhnnmddfrfpfbbvssjsrrznngcghgchcmhmrrrtzztjzzhchssslsmlmvvpwpqpjqjdddmsdmmtgtmgtglttfbbgrrcprrqffmmjnjttcmczzgbzggthhsttpggrmmgwwnpnqnqvnqvqppmlpmlpmpjpljljmmtpptfppfrppfdpfdppddmdttgzgzzdbzdzhzhnnsqssvmvbbpjjzwwvnwvvzmvzmzpmpttvrvccqddpgdppgmmthmthtggsfsbbvfbvfvhfvhvvpwpddqrqgqhghnnfmfbbwrbrgbgbvgbbdttffrddqbqpqzzmttlhhsqhsqhsqhhlplttpnpsstpthhpfhpfplprrgfrgffjppghgppghgdggjmmcgmccjvvsrvsrrwgrgmrrngrgttvbtbltthrthrttmfffjpfpssncnrngrrltrltlggjgcgllrzzllhwwjwrwgrgsrgrhrphrhhqwqsqmqlmqlmqmqrmrnnwnhwnhwhzwzjwwgbghhsjspszsznzfztfzfpzzlczztctsstctqtfqfqcfqqjrjccttmqqfpfdfnfwnffqbfbblpbpfpcfcwfccblbwwmqwqrrgprpccngnhghpppwmpplcppfrfjjgmmbzbhbcbzzgdgsdsvvqllzlppnfnlnlslsljlppcscqqfjjjwzwppfgfjjsvvsggjbjljpjpzjzrzjrzzfnfpnfpnfpnfnsnggmpggdllpmmrhhdqqppttgqqcsqsjsbjsjrsrqrbqqmbmcbmcbmbfmfvfqqdbdppmrprnrggmjjhnhbhdhbbfcbbcjjdhhwjwmjmssjswscswcwzccbgbqqmqgmmsdsjsbsdbsddvttjpppcqpcqcgqqslqsssczszrzvvrtvvjppswwhnnwlwtwhhwwzfwwpfpddlvvnvnnvlnntjtqjqjzzjttvvbqbhqbhbbbwnwhnwnppdbpdpvddrqdqjjlvlqqdfdhdjhdjdcjcrcjjggfmfvvfllvfvgglzllmhmzmdddfwddqjjqjfqfcfrrstrssptsstllrflfwwgswslwlbwbwjjvhvfvhfhffhsslwsllbnbblccbwwjqwqqdllrdrnrnffcbbqqpnqqdmdndtntvvrjvvsvmvgvnnmjlwgnjcwljgwnrwpqlztwrpmpgqtwlhrcwsrrhqhjhznrtpqfdnzbfqrzwslptdbdcnqvcllpjsfdvmzqwvzbpnmfcfcjnbmhtwhttjgtnczwctpdthhwmzvzrrgsnmbflgmszgsbvghbzgcmcmszgsbfmlmpbdspqlftmqrcjtmvgcrzznlfwjcbmddplsqrfflqnqfsldwhnncczdmfrrrsbjjqsdzrsgbdbwjbslfcqglsqfddhdsrcdrgqfqthgmfjvnfdfgdncfzpvqcpscnpmfgvqbfwszwzgmqvmcrdrwplfshdgqrchmccpqfznbmfvlhdpctlqgjslrwhjfjlmqfblgjrdlnzdtwlpwhnrhrcrpfwqpmjlgrdbgpbljntmbqlblqqqpgrnjtmjqvjpzvsqdpgtchmmwbhtmgcjqdplrtptqcvdjjpqdzsrcjhcwvdcghlwrdhtdfctmqfcjcqhcvvbzgsvlggcrdgqbtznwwmnbgsfrjprqgcmlswftlwpqqqvshdprldrsghmhrqvmqmvglbvzpvtrjbhcvhqmvdtcvsllznqzjmhpnlbhmlzthbwwhhvdtcdfdcdzhnbsrnqqjvzzsvfjhbsdlsbdlqjnlpnhfcjtdppzmphghltztzcdvzwbftbvwhvgmrllqfzrpbltptdtjjqtfwjfmczzgdvclqbsbftgtlhnhrrvbpvdltstdnhqvpvtjhmghptvsfnlspslmfsftzdrwljrgblgmcbmlszmhnlfdtmsrnjqwrfmsnfgpcqgzmlwppffrmbvhnlstfpgzwwmwffrqpdfvrspbczbrclwljgzfhpsrwwpdndfgjwbjtftnjrqvmtmzvjmtlmjhhptmgjvfrlzncmhnmpfcwpjbcpftqfzvmtldqhjpwvzrdnvnwnscgzslvfgjjpcvjshctmmpjbgdwtdjtlmztsbmwrjtmltnlsmwmjnpcgpprnfwcqdldbbqbfmdnvprzqwvntgzdbrsgdpgdjbcblmqpdphmwgvbgwlpblflphvjgjsjfshbjdftcqmsdnrzbgngcvddddjvrndhdcscqqswrnvslfrlvvncqjhzlbhdqhtrlvdsvjsbglhfzfphmzfmzqdvjqdwhjgfdwmzsdmbjzstjddfmfqjhmbdgdbvvhbqgstrzpvhpthhbwljczzrmvgsmbqvzdrmhvvjlmphzjfbmfqvwhtnrlfnfmqnnjvnwjswzshwgljmfjhrwbwgtpdqnqgqdzbssbjfbsgwmfzpfjdrtrnmsdffhnbgnrdlbjzfjrvtjgjgcvvzgllljrcrshczvpfqgnwnjjnhbwgvzwrptrgrdgtczjfzzndsqhqpmtqsvmcncfszsjllzzsjjmwgplpjwlhnhgbhctrttgzqbbcflzqvqgmhgdtlvfpbtncbwsjgnzpmbspcqzzwfplfprqlnbctwwrzpjtpfrmnpvnjrjppqrzjrcmggfmhrstzhmsjllcgjhwrbhcrvdvgmvjqqgmczlmhstmthzphlvrrvqmhjzzfzbhphstflhfjdlwqvzlsszctrdchwjssdfjjfzszlqdtwwthfjdqprpfftgdrpdhhcsdcpjbhdrgzwbgjspmffcmgcjnpmwsqwsvpfwzddlcpvlgpvctrssghndhvdmmmgndcjvhdjwttqphsjpgfbsdczmplfpwpzzjlbhrjptmsshfttnmhzdzmjctbltqjmfnpndqgwjzwdwrgdjdmcbtvjqwjngrtbfrwcttpdvcqtwqndznbchjqcqttrhjpjgwdbwzvwgmdsdfmpdwctvntvnsdmfnznfrsdcllpgpnstrrfrwrfrwnhbclnqhltrcdwqwzzldgbbtzmcvnbzmwcmntqpbscqrpzcjnbgbrzpcrcmdmdfsfgdpmgvwccqjrltrgfvjdgbhjndnmtnjjhzvghscdhnhflwplrqdzrnlnsvrtrdnphgqwjwqcjvtfdfshqdwbsvgrqbdlncjmhdmrlsvdnrhztznczzllsvpqlvwgqjvgvvwgrjcvtjvhrsgbdgvlmmtjbwrnftzphnqslcpggztgsdbjsbdtzwprsbcljpbwjhcrffnvtplcdlgmbtcgbllbdmwhwcllbqstnqqvdbcjrglwbmcfqvlvtpqncbspbphflvvrrsprlhqspfmqrsdtdlftsfzrqwdfffbhccvpfdtlptqzllfsbbrfnhjgwhlfcwmmjgjndcwfhdzvvvrzmwllthwsdmbbsrfrzmqnlnqnjnfpgfvrhsbzhjftmvzrzpqpmlcbnwmbssmvssmmqpvwnsjppdhmnhpntlvqmjnbmtvjnmtbpbzrcfhjfhvztnwrmthbswwthjddjmsdnjmzhhpjdllgscdrgmhfpljfzsmszqsqqgrznddhfmstzdcqpgztgwwqpvrghtmqlgdddlqqwwwtnpldbqtf
|
934
2022/inputs/day7.txt
Normal file
934
2022/inputs/day7.txt
Normal file
@ -0,0 +1,934 @@
|
||||
$ cd /
|
||||
$ ls
|
||||
dir bgmjrlz
|
||||
dir bhp
|
||||
dir cbcwz
|
||||
169838 fddw.bgw
|
||||
dir fvhmzqc
|
||||
dir hqmlnpn
|
||||
248637 jtwpn.lnr
|
||||
319470 lnmrrht.zbn
|
||||
99548 pqpslbtn
|
||||
dir rbztmqjn
|
||||
102720 rqpt
|
||||
dir vfrtt
|
||||
$ cd bgmjrlz
|
||||
$ ls
|
||||
dir dhqzgdl
|
||||
dir djtchhmw
|
||||
dir tvq
|
||||
$ cd dhqzgdl
|
||||
$ ls
|
||||
dir jjshzrhd
|
||||
dir jlfz
|
||||
dir vqvvwgt
|
||||
dir zcqbt
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
dir jjshzrhd
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
81645 gfhfplmm
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jlfz
|
||||
$ ls
|
||||
dir hgzg
|
||||
189290 wgdffcr
|
||||
$ cd hgzg
|
||||
$ ls
|
||||
121740 vmmcdr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd vqvvwgt
|
||||
$ ls
|
||||
142209 djtchhmw.tgr
|
||||
$ cd ..
|
||||
$ cd zcqbt
|
||||
$ ls
|
||||
204760 mlsfnt
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
287664 cgjmd.vrb
|
||||
307590 ghrntg.zsw
|
||||
$ cd ..
|
||||
$ cd tvq
|
||||
$ ls
|
||||
270869 jjshzrhd.lzb
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd bhp
|
||||
$ ls
|
||||
231648 gmj.srn
|
||||
260008 hrtbfww.gts
|
||||
287048 jgqjszsr
|
||||
dir mps
|
||||
dir sjt
|
||||
dir zvbwsw
|
||||
$ cd mps
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
153066 dnpv.vff
|
||||
185096 slpz.phm
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
310736 ddhfvv.lzl
|
||||
234532 hghrcqfd.hpn
|
||||
276144 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd sjt
|
||||
$ ls
|
||||
dir btgrv
|
||||
dir csn
|
||||
dir ddhfvv
|
||||
dir dfbjz
|
||||
dir djtchhmw
|
||||
dir qdms
|
||||
45629 qgj.jjs
|
||||
dir rdqbdtdh
|
||||
235189 wcrsz.ccc
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir rnhq
|
||||
$ cd rnhq
|
||||
$ ls
|
||||
205285 vmmcdr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd csn
|
||||
$ ls
|
||||
234221 nhw.rml
|
||||
$ cd ..
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
dir glbf
|
||||
56038 gvbzwds.cff
|
||||
dir qtc
|
||||
308363 rdzj.sqr
|
||||
dir vlrs
|
||||
dir vzhm
|
||||
dir wwghpsds
|
||||
287177 zznmdh.nhn
|
||||
$ cd glbf
|
||||
$ ls
|
||||
128210 btgrv.zqp
|
||||
205284 dnt.jrd
|
||||
135774 pmnbbb
|
||||
$ cd ..
|
||||
$ cd qtc
|
||||
$ ls
|
||||
292185 zsqz
|
||||
$ cd ..
|
||||
$ cd vlrs
|
||||
$ ls
|
||||
dir btgrv
|
||||
dir jlbjlzzs
|
||||
dir lnqcr
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
277089 bcpdvwqs.dmw
|
||||
262922 hghrcqfd.hpn
|
||||
$ cd ..
|
||||
$ cd jlbjlzzs
|
||||
$ ls
|
||||
95245 vmmcdr
|
||||
$ cd ..
|
||||
$ cd lnqcr
|
||||
$ ls
|
||||
172326 qsrcb.fpd
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd vzhm
|
||||
$ ls
|
||||
203623 fvhmzqc.dmm
|
||||
$ cd ..
|
||||
$ cd wwghpsds
|
||||
$ ls
|
||||
60280 vmmcdr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd dfbjz
|
||||
$ ls
|
||||
262505 blc.lhp
|
||||
24423 ddhfvv
|
||||
296606 fvhmzqc.ptz
|
||||
98808 hghrcqfd.hpn
|
||||
$ cd ..
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
278654 hghrcqfd.hpn
|
||||
$ cd ..
|
||||
$ cd qdms
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
154536 jjshzrhd.stf
|
||||
dir sgh
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
246903 hghrcqfd.hpn
|
||||
$ cd ..
|
||||
$ cd sgh
|
||||
$ ls
|
||||
265535 btgrv.frs
|
||||
299957 hffpl.qzw
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd rdqbdtdh
|
||||
$ ls
|
||||
dir btgrv
|
||||
dir djtchhmw
|
||||
182591 jjshzrhd
|
||||
22987 jjshzrhd.qwp
|
||||
dir jmc
|
||||
185957 mthrpb.qmm
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir btgrv
|
||||
9328 ddhfvv
|
||||
7652 hghrcqfd.hpn
|
||||
53498 wgdffcr
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir czgrcv
|
||||
171099 hrtbfww.gts
|
||||
22232 lqwvnz
|
||||
dir mfhbd
|
||||
193089 scld.jpg
|
||||
75876 vmmcdr
|
||||
226425 wgdffcr
|
||||
$ cd czgrcv
|
||||
$ ls
|
||||
276374 lfctmv.dbp
|
||||
268014 mpvb.rfg
|
||||
180548 wgdffcr
|
||||
$ cd ..
|
||||
$ cd mfhbd
|
||||
$ ls
|
||||
67713 fvhmzqc.llz
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
3290 ddhfvv.vsl
|
||||
dir fvhmzqc
|
||||
168684 hghrcqfd.hpn
|
||||
dir jmqwll
|
||||
80802 qmfhm.gtf
|
||||
282318 rzn.chg
|
||||
148018 wgdffcr
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
dir bjpvn
|
||||
87780 hghrcqfd.hpn
|
||||
209282 vtv.wbt
|
||||
$ cd bjpvn
|
||||
$ ls
|
||||
126911 rcq
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jmqwll
|
||||
$ ls
|
||||
240811 vmmcdr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jmc
|
||||
$ ls
|
||||
320199 btgrv.ntz
|
||||
11100 jwcvvfnb.grd
|
||||
145758 wgdffcr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd zvbwsw
|
||||
$ ls
|
||||
dir fvhmzqc
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
169680 rlnvr.bwd
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd cbcwz
|
||||
$ ls
|
||||
82379 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
140571 hrtbfww.gts
|
||||
dir hvnt
|
||||
dir jbc
|
||||
dir mzzfssn
|
||||
dir npdccs
|
||||
dir wrzzq
|
||||
$ cd hvnt
|
||||
$ ls
|
||||
102394 hrtbfww.gts
|
||||
29683 hsgstppl
|
||||
dir rmrc
|
||||
134244 rsjrj.gbr
|
||||
231284 wqhndr.hlr
|
||||
207733 wtjz
|
||||
$ cd rmrc
|
||||
$ ls
|
||||
dir btgrv
|
||||
259148 hrjqjdqq.tvm
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
240410 tqv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jbc
|
||||
$ ls
|
||||
140479 fvhmzqc.pvm
|
||||
$ cd ..
|
||||
$ cd mzzfssn
|
||||
$ ls
|
||||
78226 brtbv.gtp
|
||||
61906 btgrv
|
||||
168944 nqll
|
||||
111153 qmrsgwh
|
||||
$ cd ..
|
||||
$ cd npdccs
|
||||
$ ls
|
||||
65889 wfpvp.wsg
|
||||
$ cd ..
|
||||
$ cd wrzzq
|
||||
$ ls
|
||||
dir btgrv
|
||||
82867 djtchhmw
|
||||
dir dzzv
|
||||
dir lpz
|
||||
dir mqqlhnvh
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir dppvz
|
||||
dir glmtpswv
|
||||
dir qfgqfzm
|
||||
dir qhb
|
||||
$ cd dppvz
|
||||
$ ls
|
||||
296857 hrtbfww.gts
|
||||
11272 jjshzrhd
|
||||
$ cd ..
|
||||
$ cd glmtpswv
|
||||
$ ls
|
||||
268244 cgntm.tcf
|
||||
dir jjshzrhd
|
||||
dir lqnb
|
||||
128070 tzctcnq.gwr
|
||||
110659 wnrblpbs.wqf
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
dir cwdwh
|
||||
173945 fzstdt.pdn
|
||||
224834 nnvnqrh.zld
|
||||
dir tfzp
|
||||
$ cd cwdwh
|
||||
$ ls
|
||||
dir btgrv
|
||||
315172 ddhfvv.vdc
|
||||
109603 dsqjgv
|
||||
dir hnp
|
||||
284882 mnsb.cdh
|
||||
247067 qtntt.jhn
|
||||
200809 tvtbfn
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
74389 ndfzlfzf.lth
|
||||
$ cd ..
|
||||
$ cd hnp
|
||||
$ ls
|
||||
242535 ddhfvv
|
||||
256542 nslg.qcc
|
||||
143475 wbzjdrhd.gbr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd tfzp
|
||||
$ ls
|
||||
46652 djtchhmw
|
||||
167857 rtqcpsd
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd lqnb
|
||||
$ ls
|
||||
186160 ddhfvv
|
||||
287136 wgdffcr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd qfgqfzm
|
||||
$ ls
|
||||
212359 btgrv.hjj
|
||||
$ cd ..
|
||||
$ cd qhb
|
||||
$ ls
|
||||
15584 djtchhmw
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd dzzv
|
||||
$ ls
|
||||
141830 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd lpz
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
14679 jjshzrhd
|
||||
dir pbcrz
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
dir fvhmzqc
|
||||
250329 hnhzlwrm.bqp
|
||||
dir jjshzrhd
|
||||
262196 jjshzrhd.gnz
|
||||
dir qpc
|
||||
dir svmmjlr
|
||||
dir tddmdzd
|
||||
236002 vmmcdr
|
||||
101814 vwpnztc
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
44990 fvhmzqc.ngb
|
||||
235856 hlbhsz
|
||||
219184 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
190311 clbzz
|
||||
$ cd ..
|
||||
$ cd qpc
|
||||
$ ls
|
||||
217404 jjshzrhd.nwv
|
||||
142286 pgjgsh.sdd
|
||||
$ cd ..
|
||||
$ cd svmmjlr
|
||||
$ ls
|
||||
82636 cvbhsch
|
||||
287045 fvhmzqc.rjh
|
||||
48607 vmmcdr
|
||||
$ cd ..
|
||||
$ cd tddmdzd
|
||||
$ ls
|
||||
dir cjfjmjnh
|
||||
dir fjwwn
|
||||
7777 hghrcqfd.hpn
|
||||
220410 tgfqgcc.ngd
|
||||
$ cd cjfjmjnh
|
||||
$ ls
|
||||
dir gcs
|
||||
$ cd gcs
|
||||
$ ls
|
||||
210998 nzzjl
|
||||
79843 zltwtmnv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd fjwwn
|
||||
$ ls
|
||||
17068 rht.hhw
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd pbcrz
|
||||
$ ls
|
||||
41401 tzqjl.bhn
|
||||
144639 zqght
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd mqqlhnvh
|
||||
$ ls
|
||||
dir bmcqbq
|
||||
dir cqh
|
||||
dir jjshzrhd
|
||||
dir lbvrm
|
||||
dir lwmbvsjj
|
||||
dir rrcnhbn
|
||||
67325 tfcl.npl
|
||||
$ cd bmcqbq
|
||||
$ ls
|
||||
dir bwjhtvcm
|
||||
dir wzmg
|
||||
$ cd bwjhtvcm
|
||||
$ ls
|
||||
156583 qdjmmdq
|
||||
$ cd ..
|
||||
$ cd wzmg
|
||||
$ ls
|
||||
dir ddhfvv
|
||||
dir tlhc
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
dir jjshzrhd
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
202499 ddhfvv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd tlhc
|
||||
$ ls
|
||||
dir lbpmtft
|
||||
$ cd lbpmtft
|
||||
$ ls
|
||||
43196 lthlvv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd cqh
|
||||
$ ls
|
||||
dir btgrv
|
||||
35483 djtchhmw
|
||||
318895 sfqdbd
|
||||
62778 twdpcn.rzg
|
||||
dir vwdqmtwf
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir hrbjmbf
|
||||
dir npffrswd
|
||||
$ cd hrbjmbf
|
||||
$ ls
|
||||
196766 crw.dht
|
||||
$ cd ..
|
||||
$ cd npffrswd
|
||||
$ ls
|
||||
dir jjshzrhd
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
161401 dsqqh.pqg
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd vwdqmtwf
|
||||
$ ls
|
||||
299604 qrdcnbt.wmh
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
62584 dzfvzrf.tmc
|
||||
255105 hwfh.tfd
|
||||
$ cd ..
|
||||
$ cd lbvrm
|
||||
$ ls
|
||||
dir btgrv
|
||||
dir pvnbdwjj
|
||||
21599 tjfd.jzf
|
||||
315782 wgdffcr
|
||||
dir znz
|
||||
$ cd btgrv
|
||||
$ ls
|
||||
dir qjbhvdm
|
||||
$ cd qjbhvdm
|
||||
$ ls
|
||||
115711 mjhcwn
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd pvnbdwjj
|
||||
$ ls
|
||||
156828 hrtbfww.gts
|
||||
dir jjshzrhd
|
||||
208415 vmmcdr
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
131751 hwfh.tfd
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd znz
|
||||
$ ls
|
||||
dir ddhfvv
|
||||
150828 gpcpnwj.fzv
|
||||
119331 hrtbfww.gts
|
||||
263285 nntqssp.hqg
|
||||
dir pwtbr
|
||||
236806 vmmcdr
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
265355 ddhfvv.bpb
|
||||
$ cd ..
|
||||
$ cd pwtbr
|
||||
$ ls
|
||||
212361 jjshzrhd.nmh
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd lwmbvsjj
|
||||
$ ls
|
||||
275264 bvbq.rdf
|
||||
dir ddhfvv
|
||||
257257 fsql
|
||||
210469 jmvchpn
|
||||
57627 lrnhn
|
||||
270278 vmmcdr
|
||||
dir vrqmtl
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
244640 nhdztzsg
|
||||
$ cd ..
|
||||
$ cd vrqmtl
|
||||
$ ls
|
||||
123207 btgrv.qsg
|
||||
152242 qsqt
|
||||
259711 scvzvns.vvh
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd rrcnhbn
|
||||
$ ls
|
||||
dir jjshzrhd
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
63581 btgrv.pbj
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd hqmlnpn
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
dir dlqjbqbr
|
||||
240226 fdmchrth
|
||||
dir fvhmzqc
|
||||
39519 hvtvcdv
|
||||
140559 hwfh.tfd
|
||||
243880 lvcwjnzb.ptf
|
||||
dir nppp
|
||||
162576 rmqmd.wdt
|
||||
dir rscgvrdt
|
||||
dir sdcbr
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
33004 ddhfvv.ghw
|
||||
$ cd ..
|
||||
$ cd dlqjbqbr
|
||||
$ ls
|
||||
dir fvhmzqc
|
||||
dir jjshzrhd
|
||||
dir ncwldt
|
||||
dir wfw
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
dir brfl
|
||||
dir ccnlzrb
|
||||
dir cjtl
|
||||
dir dfvt
|
||||
123279 fvhmzqc.qfp
|
||||
dir ppshjv
|
||||
dir smprwhmg
|
||||
$ cd brfl
|
||||
$ ls
|
||||
291222 djtchhmw.grj
|
||||
102020 hghrcqfd.hpn
|
||||
197538 hwfh.tfd
|
||||
82351 qqq.cqf
|
||||
254314 ztthgs
|
||||
$ cd ..
|
||||
$ cd ccnlzrb
|
||||
$ ls
|
||||
dir rzmdmq
|
||||
$ cd rzmdmq
|
||||
$ ls
|
||||
265088 rqtm.zmv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd cjtl
|
||||
$ ls
|
||||
107485 djtchhmw.phc
|
||||
$ cd ..
|
||||
$ cd dfvt
|
||||
$ ls
|
||||
114165 dts.rlc
|
||||
201057 frljlqzr.clp
|
||||
$ cd ..
|
||||
$ cd ppshjv
|
||||
$ ls
|
||||
305733 djtchhmw.ntn
|
||||
$ cd ..
|
||||
$ cd smprwhmg
|
||||
$ ls
|
||||
76792 ddhfvv
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
19740 fvhmzqc
|
||||
dir lqgsw
|
||||
dir lsmccpj
|
||||
17490 mlzznrc.mst
|
||||
$ cd lqgsw
|
||||
$ ls
|
||||
297439 crqjmhrb.grs
|
||||
$ cd ..
|
||||
$ cd lsmccpj
|
||||
$ ls
|
||||
89758 btgrv.cpt
|
||||
49280 ddhfvv.drt
|
||||
dir gclrgz
|
||||
dir gnrztgj
|
||||
275064 jjshzrhd.jzv
|
||||
98597 nbscl.wvs
|
||||
225844 vmmcdr
|
||||
$ cd gclrgz
|
||||
$ ls
|
||||
63611 djtchhmw.vfn
|
||||
156340 gbhsz
|
||||
$ cd ..
|
||||
$ cd gnrztgj
|
||||
$ ls
|
||||
23195 btgrv
|
||||
287815 fhthsd
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ncwldt
|
||||
$ ls
|
||||
70881 vmwllc.fbf
|
||||
$ cd ..
|
||||
$ cd wfw
|
||||
$ ls
|
||||
309325 ddhfvv.pqm
|
||||
201372 fvhmzqc.rfl
|
||||
143184 hghrcqfd.hpn
|
||||
51325 vlq.wgr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
234497 ddhfvv.wlg
|
||||
dir fvhmzqc
|
||||
197961 fzbsr
|
||||
dir jsfbvwb
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
208299 bgpncvh.jhl
|
||||
$ cd ..
|
||||
$ cd jsfbvwb
|
||||
$ ls
|
||||
175184 ddhfvv.tpq
|
||||
85214 djtchhmw.btf
|
||||
2012 ttbpmsg.mlb
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd nppp
|
||||
$ ls
|
||||
223933 wgdffcr
|
||||
$ cd ..
|
||||
$ cd rscgvrdt
|
||||
$ ls
|
||||
207388 glgbngv.lcd
|
||||
$ cd ..
|
||||
$ cd sdcbr
|
||||
$ ls
|
||||
277288 btgrv.phv
|
||||
49684 ddhfvv
|
||||
195222 dntzwh
|
||||
dir frcj
|
||||
206408 gfttdcnq
|
||||
147023 hrtbfww.gts
|
||||
dir tcwpvrr
|
||||
$ cd frcj
|
||||
$ ls
|
||||
37309 ctpjbmh
|
||||
54747 hwfh.tfd
|
||||
151065 phvllpq.gvh
|
||||
$ cd ..
|
||||
$ cd tcwpvrr
|
||||
$ ls
|
||||
63500 chsgcw.frm
|
||||
dir ltwvvrv
|
||||
113779 mgdqjg
|
||||
177222 vzgpfpq.qln
|
||||
$ cd ltwvvrv
|
||||
$ ls
|
||||
102472 vmmcdr
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd rbztmqjn
|
||||
$ ls
|
||||
216106 fnzwzdb.wrc
|
||||
$ cd ..
|
||||
$ cd vfrtt
|
||||
$ ls
|
||||
dir ddhfvv
|
||||
dir ftrqt
|
||||
dir fvhmzqc
|
||||
186081 hwfh.tfd
|
||||
dir jjshzrhd
|
||||
dir mzfq
|
||||
dir nhzz
|
||||
dir zblsznh
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
28659 glfpm.hnp
|
||||
274896 hrtbfww.gts
|
||||
dir lwblgr
|
||||
dir qmc
|
||||
dir thwccb
|
||||
dir tmlwvtmc
|
||||
228636 zrn.ftn
|
||||
$ cd lwblgr
|
||||
$ ls
|
||||
237410 djtchhmw.fjz
|
||||
209100 hghrcqfd.hpn
|
||||
317411 nsgtmddt.jvj
|
||||
30033 pbhc.blz
|
||||
8818 pwf.vjv
|
||||
$ cd ..
|
||||
$ cd qmc
|
||||
$ ls
|
||||
249328 cwftvdws
|
||||
41124 pwmzz
|
||||
99884 qbvpslt
|
||||
$ cd ..
|
||||
$ cd thwccb
|
||||
$ ls
|
||||
dir ddhfvv
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
49107 fvhmzqc.slp
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd tmlwvtmc
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
115288 gfdzqrb
|
||||
248419 hrtbfww.gts
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
14211 qffwlmvm.fhp
|
||||
dir tzbd
|
||||
67495 wwttgflg.rcl
|
||||
$ cd tzbd
|
||||
$ ls
|
||||
278463 btgrv.ldc
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ftrqt
|
||||
$ ls
|
||||
95545 ddhfvv
|
||||
180375 hwfh.tfd
|
||||
$ cd ..
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
161318 gtwj
|
||||
$ cd ..
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
91626 prmznc.gwp
|
||||
dir wltvrv
|
||||
$ cd wltvrv
|
||||
$ ls
|
||||
299813 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd mzfq
|
||||
$ ls
|
||||
101218 jjshzrhd.nwz
|
||||
200289 njwfbc.bhb
|
||||
$ cd ..
|
||||
$ cd nhzz
|
||||
$ ls
|
||||
225881 hwfh.tfd
|
||||
210133 mlb.wrt
|
||||
$ cd ..
|
||||
$ cd zblsznh
|
||||
$ ls
|
||||
dir fvhmzqc
|
||||
214252 hrtbfww.gts
|
||||
250855 qbjphgwn.vvj
|
||||
dir tdpv
|
||||
173807 wgdffcr
|
||||
$ cd fvhmzqc
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
dir fsqdcwr
|
||||
dir jjshzrhd
|
||||
dir zljhz
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
dir sdrjlqqm
|
||||
$ cd sdrjlqqm
|
||||
$ ls
|
||||
91244 fvhmzqc
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd fsqdcwr
|
||||
$ ls
|
||||
dir ddhfvv
|
||||
dir nhmhgzt
|
||||
dir pdhbd
|
||||
$ cd ddhfvv
|
||||
$ ls
|
||||
199548 qwc
|
||||
$ cd ..
|
||||
$ cd nhmhgzt
|
||||
$ ls
|
||||
106393 ddhfvv.sjg
|
||||
$ cd ..
|
||||
$ cd pdhbd
|
||||
$ ls
|
||||
207023 hngmj.qls
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jjshzrhd
|
||||
$ ls
|
||||
84955 vmmcdr
|
||||
$ cd ..
|
||||
$ cd zljhz
|
||||
$ ls
|
||||
dir dmqmc
|
||||
dir jnlgsgn
|
||||
dir mhtmt
|
||||
dir mqtmpht
|
||||
$ cd dmqmc
|
||||
$ ls
|
||||
dir djtchhmw
|
||||
$ cd djtchhmw
|
||||
$ ls
|
||||
166369 hrtbfww.gts
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd jnlgsgn
|
||||
$ ls
|
||||
289581 vrbqvt.bgn
|
||||
$ cd ..
|
||||
$ cd mhtmt
|
||||
$ ls
|
||||
182104 hrtbfww.gts
|
||||
285446 spgtjm.lhj
|
||||
$ cd ..
|
||||
$ cd mqtmpht
|
||||
$ ls
|
||||
179017 bgfgtqr.snr
|
||||
dir czqj
|
||||
dir gdc
|
||||
104624 jjshzrhd
|
||||
314246 mhvzncnt.vjd
|
||||
$ cd czqj
|
||||
$ ls
|
||||
69494 hft.fsp
|
||||
$ cd ..
|
||||
$ cd gdc
|
||||
$ ls
|
||||
84423 bhqnfj.cts
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd ..
|
||||
$ cd tdpv
|
||||
$ ls
|
||||
dir frgfgd
|
||||
dir sggm
|
||||
274423 zzfsmdf
|
||||
$ cd frgfgd
|
||||
$ ls
|
||||
205662 vmmcdr
|
||||
$ cd ..
|
||||
$ cd sggm
|
||||
$ ls
|
||||
260269 wzpjsjnq.nvt
|
99
2022/inputs/day8.txt
Normal file
99
2022/inputs/day8.txt
Normal file
@ -0,0 +1,99 @@
|
||||
020110220332333020110144320304042020444223003535441353331002333431100300241023221210123003331021020
|
||||
002120010112022233203323334422340102033151553341235324543343233301202102130210343113312320222102020
|
||||
000000000301021002423224442341031145215244543444223314545524515335404222310244314423023331200102012
|
||||
011200302010212334422213334343335452314532352111122533515334412241512412033340322004232020212310011
|
||||
110111200102310120411101020333232255345143342245212323552344535253214434143032323213200301101020121
|
||||
122001020113011314043121413025543341512335111452355331355351515421515411500421204113413212021112302
|
||||
011210211003201420103123304513544114145311452334355144111521441452154223512022101102111221311323311
|
||||
011030200312240341224434214241313322323544154242345656634321531531424124544551344224331443202111303
|
||||
031023120224010220144244342511241334331166432443322363352643453525244443222142533014331212133113031
|
||||
331033331100013013431114214253543323143222523423236646456363626622312534521454454123324132323233200
|
||||
313320023430241044213221132131122135436564345625426422255326234363243521151144414344130023210131130
|
||||
002203011410101343345413454143416333665335233566235623536644652644522345535525153521230411343303211
|
||||
022030323311323124542521154345356626352343324652424464566645425223224521453553252234321033403323130
|
||||
331222243010032043452454232565665256426536435254566436633323343652534544214412242551144312310221231
|
||||
231133233004211422411531255443363333555345434532475762623642433466363266634413551244254134333243030
|
||||
020231113200002214145443133533534653326664654474363645366343345466265644554325342415122332200024311
|
||||
311032340032414323451542554464466352256347635357637447736577667463426532442564245132242343241314212
|
||||
210342413212232542421452232234546643373633347344743377376553465333423522425436534352355150302110320
|
||||
012302042023135125251364365232626547463576733637455663764376436734352545425434331543241124042312202
|
||||
304042410233125532432523224245663443763753734647533535565636563665334542556665554245524241400402122
|
||||
100324144335411111343624365526556753335435457754653754663647544353454443256623466532421524442220212
|
||||
004310002315421423634565264237567445665436743333467647547754434765353667542365233361541321530411122
|
||||
340100133133254351662534562377644656735477678648447854646765556636735646456562322345353223545130204
|
||||
223422234555541234336653556365464346366386775667444744567758637737757667635354324626442355153142402
|
||||
301202352352311332364654446567354376644665887886878854847858588356564773766244445222614543212440041
|
||||
121010254322255546522625235356663453785775455846758588786788567566653645763532436352663334521520342
|
||||
223123122512444365553626454767563488464886467858877655766685458675437556363673526236645213411512224
|
||||
003314511142456453664565476333555654845565878476575468776548666885476777366354622652365442341232330
|
||||
100434351354142623236353735657745766665557455465675844665578767675874476556574642555262344222545124
|
||||
310035122251134332246455666547787878577677667587668567788744875844888844364453536232254344234442004
|
||||
332355524421462334544344655646458867688886798865795569865997666688465755335745555656646243433122421
|
||||
212252432545222565265377376368574784887787696558698987968675547855656555445333366624445325141553342
|
||||
113535121253534442546646364347455675758878676575695576785998796454646647555637657565266546254424513
|
||||
023531155256556443573534665476784478579889966685965558767695667786588646763565366352565623135242132
|
||||
332235311465633455637577656876574774599858977857599877979855878694546488485435736564352255345534352
|
||||
423312331346353345545646578646466549968669789766955768696578957665488458568376747735452426221223133
|
||||
042131555255526335474354376567744577697576655686887997959968659596857774864465577464334245541411144
|
||||
314335533542324633457667677854784879668896688676989899996875778858675674784535777333543532331142411
|
||||
342431321343652634443346854886679789759856968779866777899677797959996774647753365556465426225312415
|
||||
443122331352464374355445874586585857875568898788666678776787986756859447544446666763365552244452322
|
||||
434332122456323647344556476668759666569568769987679766689798887678765548587477474536465533643451422
|
||||
012515214225433447464677777487776597697976998888987789798887796967785955887765466437333665342324523
|
||||
151212435544622335634548655777875966867886867777679699887698988956977857868655457465635544364542154
|
||||
425332155643342656676678888575989888788767888899689899798688796666757955465858667777362363434424542
|
||||
531532414223243445466348848575895777968779899997887798776667989655588765447757447347342252524115215
|
||||
155245334655555376575664568856876978978787888977789987998877778796686666588544843473375333466131323
|
||||
442223263655353573545578848875879796997899897789887987979686977788898887848487563664644353624212355
|
||||
532342436423523433743374566649565796978689677778887988977986779775985585775684847364464225436344143
|
||||
144131162643455446377457566657777998676869667898877798979888978868889578745676553337663625625354412
|
||||
212531125562654464546354657756555595879978788779777999979988869895856856488587466676673534564554215
|
||||
515521136425625643733788668547967896969879989899779977888986996776697776777887634766746536654352314
|
||||
533115456346557773554457648785576555967877979777897997977979879979889786544548474557775226255314122
|
||||
432554142445363766476368787846679896977899887779797978979969889696765986666844737665565256236231155
|
||||
125253442625345476646468778468579567787976888987879797899978977695756855477657433457362446432521533
|
||||
451335344244435635354545558745856999567779868887799878899867977959975677866558447464563253543641554
|
||||
412221312464362643575387865576575778679997969899879799897898997777656968646646747476434353234412443
|
||||
132123436534443354553586484485777568678779897878779989966877968659558598445764456573762542646254544
|
||||
024143156436353736354736885476858987768978898698789976987668878886568974574565737457544455543452243
|
||||
413135313643263775675578866878568599957868689889887898688888897699957964455656556464353643525222353
|
||||
151155234625524455454576866886566769799886776697778986968676996687578554546778475347663665445441542
|
||||
225335432336665664467554464786765996688599897886876679899878795577796866847588643664352344525425543
|
||||
231314414363454365656445447648785668665699968677877867679686575989979554888874435546345632362455211
|
||||
215225154624264466667536475884866766856799777898688869799678789658958655666655664763723652345235254
|
||||
035354151466424636347656474544888889966575676978876877797665689589954588444647355553546242434541533
|
||||
001253252266442433343367457848868577696576876956987767987878766766685545864636355333223636351531525
|
||||
432114153244234344474473336455665467595685659677769775776598955788485844764764774633253355345153344
|
||||
440231335123622442356777766866685464699576999777998779679677676798556674878735743562224245652132511
|
||||
321533313113424533355576556587855784598797699998756887876998858868457756543476743664332364153212141
|
||||
003415211213442534357575744467674686668987887956977567898997789587764784753377657636326255155213240
|
||||
224445525333436434526743474634674544887785577959758998579798555487687877644644777665225554533252422
|
||||
114025431113445462556535777346657775747764689775588768859877487468477864653336547436625221413353402
|
||||
444431445545324552322733365535555774656466544687955795855665775645668663457547655566226341423452434
|
||||
410445115125126462226236353755455888548674587788447578688475766447586446763443644432535242233435244
|
||||
124340412535436432636663557555763744747854587474866557668648548584743443577534342355356535325312231
|
||||
200313132541126432532542747437536486654767558545587875558487658465577773437664544545354413212211212
|
||||
101333454545223643623655465756576356785656755457885765456674785763465474656725224222541315314114031
|
||||
131233142323341366245232435554365765545574774767785475776848668453355554474332533326544433554514201
|
||||
321411402434455156645353526473756763444567846554465464446465455445745336435566265254512531525210112
|
||||
030131034355454454644464565464475577344753366858566476585577545346763733342656446563454444451042420
|
||||
123233024345514531322525463344645673755773347575544437475656346736346777342352464432215452454013411
|
||||
014322323421235432556233655455544546633674634474456664346664375533773475562242423541545331424443423
|
||||
103044012005453352356343445634325645434337637364655565435774676736733553262634342435541343244030000
|
||||
320224321434222311444445623462256346445463567453434633465443337646352226626622452524224345304403330
|
||||
212420324020443535541356556336654222753455556557453353546474577342535554563532343321131244211234443
|
||||
122201202000423112251512562424625443344753367744337643545467743645523543344535431154212330403302410
|
||||
302200224224202341324112146243633653523426575646533673677763345633345645554351214352331400423031333
|
||||
123001320330302415435532414224224226352235334353577574436324344226425624263133551342153034141032032
|
||||
213131040401103044255424155325562642646633364323565455323646566426224245451451423431324433130343033
|
||||
231211142003310021532152553311226325626362465244625533422332633634454451545253314415220400420413203
|
||||
312320130422410131322514243524545532465435666446335525623552365342455442353243151122403024303312021
|
||||
133332233112042420435241253424143243654366264342464546256332442465235435334432132240241304411322221
|
||||
333302213333240222002452421142454145262355663455246362444253326353144344554554324413300122011222021
|
||||
202310030210410440001115535553444131333333663342464256255352255253344353414423520402213424030101331
|
||||
020120023231001430421410113431542415212332151336254445313532121145524443121220343020012020230032230
|
||||
210023323121322121303302233233245321224455333332343322323215223451525532222223304043001030230132022
|
||||
002222021003231011234340303045243412535411232132142332533521354111141433134004443142111110122121100
|
||||
022122131333022231003311233440122445251415343142141523345254553214425533033042143220401300010213100
|
||||
122110132221332212341431023220242412121544355542132225542445544553234342030402442141111321103231211
|
||||
122021200131211021314010312001241211235253115315252213451111223452204220130001212341202130012001221
|
2000
2022/inputs/day9.txt
Normal file
2000
2022/inputs/day9.txt
Normal file
File diff suppressed because it is too large
Load Diff
7
README.md
Normal file
7
README.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Advent Of Code
|
||||
|
||||
To run any script, you need to pipe the input:
|
||||
|
||||
```bash
|
||||
cat 2022/inputs/day2.txt | python 2022/day2.py
|
||||
```
|
3
run.ps1
Normal file
3
run.ps1
Normal file
@ -0,0 +1,3 @@
|
||||
param ($day)
|
||||
|
||||
Get-Content ".\2022\inputs\day$day.txt" | python ".\2022\day$day.py"
|
Loading…
Reference in New Issue
Block a user