176 Commits

Author SHA1 Message Date
Mikaël Capelle
279f6cdde2 Ignore root files folder.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-26 15:27:36 +01:00
Mikaël Capelle
b881bf9ce4 Remove old print. 2024-12-26 15:26:36 +01:00
Mikaël Capelle
0acb51ca97 2024 day 25.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-25 10:16:27 +01:00
Mikaël Capelle
1e2db73b52 2024 day 21 part 2.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-24 14:27:27 +01:00
Mikaël Capelle
d61d9d4559 2024 day 24.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-24 12:33:53 +01:00
Mikaël Capelle
77b24dd148 2024 day 23.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-23 11:35:42 +01:00
Mikaël Capelle
b9341bdecc 2024 day 22.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-22 14:07:40 +01:00
Mikaël Capelle
ae5527b72d 2024 day 21 part 1.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-21 13:13:31 +01:00
Mikaël Capelle
96f139fe10 2024 day 20.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-20 09:19:12 +01:00
Mikael CAPELLE
683cac334c 2024 day 19.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-19 12:13:00 +01:00
Mikael CAPELLE
146d025d41 Add generic simple dijkstra method.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-18 10:41:01 +01:00
Mikael CAPELLE
954ef1e6ce 2024 day 18.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-18 08:54:06 +01:00
Mikael CAPELLE
24580fdfd8 Add Thomas input for 2024 day 17.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-17 15:27:21 +01:00
Mikael CAPELLE
7c0a124a5d 2024 day 17 kind-of-generic. 2024-12-17 15:20:30 +01:00
Mikael CAPELLE
11e32ddfda 2024 day 17 specific to me.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-17 14:28:37 +01:00
Mikael CAPELLE
4dcdab9931 2024 day 17 WIP.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-17 09:45:27 +01:00
Mikael CAPELLE
f965eea33a 2024 day 16 no networkx.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-16 16:48:45 +01:00
Mikael CAPELLE
c3c73ee517 2024 day 16, networkx version.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-16 08:19:42 +01:00
Mikaël Capelle
8308940674 Allow creation of avi video.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 14:07:32 +01:00
Mikaël Capelle
bc06f86fdc 2024 day 15 colored gif output.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 11:46:07 +01:00
Mikaël Capelle
2c25b33bcc Optimize generated gifs.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 11:30:23 +01:00
Mikaël Capelle
8651884ca6 2024 day 15 gif output.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 11:21:01 +01:00
Mikaël Capelle
7447c7b536 2024 day 15.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 10:56:28 +01:00
Mikaël Capelle
3e8d796b2e 2024 day 15.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 10:44:47 +01:00
Mikaël Capelle
fcd4b47951 Use imageio instead of matplotlib to generate image.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-15 10:13:42 +01:00
Mikaël Capelle
b15131bf1e Add dot file to 2021 day 12.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 22:35:18 +01:00
Mikaël Capelle
2c5c51e05f 2021 day 12.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 22:29:20 +01:00
Mikaël Capelle
51275dd539 2021 day 11.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 22:07:05 +01:00
Mikaël Capelle
f1ae1c598f 2021 day 10. 2024-12-14 21:49:05 +01:00
Mikaël Capelle
91ba8ec86f 2015 day 25.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 21:02:23 +01:00
Mikaël Capelle
323f810fcd 2015 day 24.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 15:21:19 +01:00
Mikaël Capelle
8969ea895f Handle PNG file generation.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 11:52:32 +01:00
Mikaël Capelle
67f7eef636 Update poetry dependencies.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 11:10:46 +01:00
Mikaël Capelle
4f8b50577a 2024 day 14.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-14 10:23:00 +01:00
Mikaël Capelle
67e41503c9 2024 day 13.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-13 09:15:23 +01:00
Mikael CAPELLE
30e0bb3665 2015 day 23.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-12 17:19:25 +01:00
Mikael CAPELLE
291c627c79 2024 day 12.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-12 17:19:00 +01:00
Mikaël Capelle
89306f4a04 UGLY, 2024 day 12.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-12 07:21:12 +01:00
Mikael CAPELLE
721d69e766 Remove unused functions from previous years.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-11 15:48:38 +01:00
Mikael CAPELLE
356fd35b08 2024 day 11 without str. 2024-12-11 09:57:47 +01:00
Mikaël Capelle
92bd85e1dd 2024 day 11. 2024-12-11 07:13:28 +01:00
Mikael CAPELLE
22129048e7 Fix 2023 day 20 for API. 2024-12-10 16:54:18 +01:00
Mikael CAPELLE
781e4cd6e1 Remove bad print in 2023 day 21. 2024-12-10 16:22:03 +01:00
Mikael CAPELLE
46558672e8 File handling for API. 2024-12-10 15:39:00 +01:00
Mikael CAPELLE
3c544c559b Clean 2024 day 10. 2024-12-10 08:46:44 +01:00
Mikaël Capelle
4367a5183a 2024 day 10. 2024-12-10 07:02:39 +01:00
Mikael CAPELLE
03e4e75978 Add TQDM to 2024 day 9. 2024-12-09 10:33:28 +01:00
Mikaël Capelle
98eb515c19 2024 day 9. 2024-12-09 06:55:27 +01:00
Mikaël Capelle
dd3f332870 Fix 2022 day 16 for progress API. 2024-12-08 19:25:21 +01:00
Mikaël Capelle
9d7ef94fa6 Force string type for answer value. 2024-12-08 14:34:57 +01:00
ce315b8778 Refactor code for API (#3)
Co-authored-by: Mikael CAPELLE <mikael.capelle@thalesaleniaspace.com>
Co-authored-by: Mikaël Capelle <capelle.mikael@gmail.com>
Reviewed-on: #3
2024-12-08 13:06:41 +00:00
Mikael CAPELLE
ab4e3e199c Refactor 2024 day 6 to be a little bit faster. 2024-12-06 14:10:51 +01:00
Mikaël Capelle
2c1a0b919b 2024 day 6, brute force. 2024-12-06 06:50:35 +01:00
Mikael CAPELLE
cd6f97cd7e Refactor 2024 day 5 without networkx. 2024-12-05 08:28:55 +01:00
Mikaël Capelle
5312755f32 2024 day 5. 2024-12-05 07:25:55 +01:00
Mikael CAPELLE
55cb5ed745 Refactor 2024 day 4. 2024-12-04 09:31:47 +01:00
Mikaël Capelle
f0d8e156a9 2024 day 4. 2024-12-04 07:35:22 +01:00
Mikael CAPELLE
c19279fad3 Refactor 2024 day 3. 2024-12-03 15:22:54 +01:00
0d50b44c37 Add .drone.yml for CI. (#2) 2024-12-03 13:38:03 +00:00
Mikael CAPELLE
b32d46b641 Fix linting. 2024-12-03 14:11:29 +01:00
Mikael CAPELLE
5c43eb2c73 2024 day 3. 2024-12-03 08:29:25 +01:00
Mikaël Capelle
540fe37b9d Fix 2024 day 2. 2024-12-02 18:44:50 +01:00
Mikael CAPELLE
2a4f923552 Update Python dependencies. 2024-12-02 17:08:50 +01:00
Mikael CAPELLE
4821db89cc 2024 day 2. 2024-12-02 15:42:56 +01:00
Mikaël Capelle
d1733a5888 2024 day 1. 2024-12-01 10:26:02 +01:00
Mikaël Capelle
dd8458fa96 2015 day 22, part 1. 2024-12-01 10:25:49 +01:00
Mikaël Capelle
850c66cd8d 2015 day 21. 2024-01-20 17:57:37 +01:00
Mikaël Capelle
2597235d0c 2015 day 20. 2024-01-06 22:07:34 +01:00
Mikaël Capelle
db9a3b3ed3 2015 day 19. 2024-01-06 21:35:48 +01:00
Mikaël Capelle
31b0e9f195 2015 day 18. 2024-01-06 16:43:35 +01:00
Mikaël Capelle
5b07e73382 2015 day 17. 2024-01-06 15:46:43 +01:00
Mikaël Capelle
c1732baa0d 2015 day 16. 2024-01-06 15:27:45 +01:00
Mikaël Capelle
de96ab0e25 2015 day 15. 2024-01-06 15:11:47 +01:00
Mikaël Capelle
cd58b7861b 2015 day 12, 13 & 14. 2024-01-06 14:56:30 +01:00
Mikaël Capelle
8d2f61fa65 2015 day 11. 2024-01-06 11:46:59 +01:00
Mikaël Capelle
3d7dd37c11 2015 day 10. 2024-01-06 11:30:10 +01:00
Mikael CAPELLE
f373528b06 2015 day 9. 2024-01-05 14:46:05 +01:00
Mikael CAPELLE
3fe9555cb1 2015 day 8. 2024-01-05 10:01:02 +01:00
Mikaël Capelle
f94e2bd831 2015 day 4, 5, 6, 7. 2024-01-04 21:05:42 +01:00
Mikael CAPELLE
685f1e56d7 2015 day 3. 2024-01-04 18:36:30 +01:00
Mikael CAPELLE
ea0c9e7812 2015 day 1 & 2. 2024-01-04 18:27:17 +01:00
Mikaël Capelle
52cb793d06 Faster 2023 day 24 (part 1). 2024-01-01 18:44:13 +01:00
Mikaël Capelle
4a2a63b0b0 Minor cleaning 2023. 2023-12-30 19:35:06 +01:00
Mikaël Capelle
9f96abbd43 2023 day 25. 2023-12-25 10:36:36 +01:00
Mikaël Capelle
57bf025622 2023 day 24. 2023-12-25 10:36:29 +01:00
Mikaël Capelle
bcadb68189 2023 day 23. 2023-12-23 11:05:35 +01:00
Mikaël Capelle
d7d7837c1f 2021 day 9. 2023-12-22 21:26:13 +01:00
Mikaël Capelle
82fab771ab 2023 day 22. 2023-12-22 14:49:31 +01:00
Mikaël Capelle
85fff24cc1 2023 day 21, version 2. 2023-12-21 21:56:38 +01:00
Mikael CAPELLE
9326d6c76c 2023 day 21. 2023-12-21 16:47:43 +01:00
Mikael CAPELLE
eefb3ceb44 2023 day 20. 2023-12-20 14:27:25 +01:00
Mikael CAPELLE
2959387bcd Poetry stuff. 2023-12-19 17:45:33 +01:00
Mikaël Capelle
41b07cfe83 2023 day 19. 2023-12-19 10:41:53 +01:00
Mikael CAPELLE
981e745eb0 2023 day 18. 2023-12-18 11:40:32 +01:00
Mikaël Capelle
8760e47283 2023 day 17. 2023-12-17 18:19:49 +01:00
Mikaël Capelle
1db3ab9090 2023 day 16. 2023-12-16 18:33:11 +01:00
Mikaël Capelle
9a1769e200 2023 day 15. 2023-12-15 16:18:21 +01:00
Mikaël Capelle
8c150c0bb1 2023 day 14. 2023-12-14 19:34:38 +01:00
Mikaël Capelle
69929b28dd 2023 day 13. 2023-12-13 20:05:05 +01:00
f41b50c9e0 2023 day 12. 2023-12-12 20:20:26 +00:00
Mikaël Capelle
d6b99454d2 2023 day 11. 2023-12-11 10:25:56 +01:00
Mikaël Capelle
1fc3c1632d 2021 day 8. 2023-12-10 20:23:22 +01:00
Mikaël Capelle
9141029557 2023 day 10. 2023-12-10 10:09:12 +01:00
Mikaël Capelle
9d5b57fd56 2021 day 7. 2023-12-09 12:52:46 +01:00
Mikaël Capelle
0756cf74c4 2021 day 6. 2023-12-09 12:36:10 +01:00
Mikaël Capelle
bd5727c758 2021 day 1-5. 2023-12-09 11:01:28 +01:00
Mikaël Capelle
0ebd823656 Clean 2022. 2023-12-09 09:54:53 +01:00
Mikaël Capelle
7c6c9e5995 2023 day 9. 2023-12-09 08:08:46 +01:00
Mikaël Capelle
f4cd8318b0 2023 day 8. 2023-12-08 08:44:03 +01:00
Mikaël Capelle
e06f3da2bd 2023 day 7. 2023-12-08 08:38:08 +01:00
Mikael CAPELLE
fb8a911d4d Clean 2023. 2023-12-06 08:47:59 +01:00
Mikaël Capelle
4e1c71b221 2023 day 6. 2023-12-06 07:14:26 +01:00
Mikael CAPELLE
0f8a272b71 2023 day 5. 2023-12-05 13:41:17 +01:00
Mikaël Capelle
508c8cdc42 2023 day 5 part 1. 2023-12-05 07:22:56 +01:00
Mikaël Capelle
ee55c807ef Prepare 2023 days. 2023-12-04 19:32:41 +01:00
Mikaël Capelle
10a5b92740 2023 day 4. 2023-12-04 19:30:44 +01:00
Mikaël Capelle
d3eacd48aa 2023 day 3. 2023-12-03 09:09:25 +01:00
Mikaël Capelle
53f05058f3 2023 day 2. 2023-12-02 09:47:52 +01:00
Mikaël Capelle
c0ea724d4c Fix 2023 day 1. 2023-12-01 20:27:42 +01:00
Mikael CAPELLE
57c15270dc 2023: Day 1. 2023-12-01 10:41:13 +01:00
Mikael CAPELLE
7533dd0b11 Post-christmas cleaning. 2023-01-06 13:48:18 +01:00
Mikaël Capelle
dd80b30e26 Day 25. 2022-12-25 11:34:49 +01:00
Mikaël Capelle
0508d95e33 Faster day 24. 2022-12-24 23:00:14 +01:00
Mikaël Capelle
f2cc3e4d16 Day 24. 2022-12-24 20:50:37 +01:00
Mikael CAPELLE
9526c383f3 Add day 23. 2022-12-23 13:25:22 +01:00
Mikaël Capelle
dd88a1838d Ugly day 22. 2022-12-22 23:00:36 +01:00
Mikaël Capelle
72ffd399b3 Update day 22. 2022-12-22 18:46:59 +01:00
Mikael CAPELLE
020ad7c6d1 Update day 22. 2022-12-22 17:22:56 +01:00
Mikael CAPELLE
1fc4d6531d Update day 22. 2022-12-22 17:00:09 +01:00
Mikael CAPELLE
d8bb659e78 Day 22 part 1. 2022-12-22 14:10:30 +01:00
Mikael CAPELLE
6ade69ac35 Start day 22. 2022-12-22 08:20:09 +01:00
Mikael CAPELLE
ed7149e5f4 Remove tqdm from day 19. 2022-12-21 17:39:43 +01:00
Mikael CAPELLE
e2df3c4825 Day 21. 2022-12-21 09:44:05 +01:00
Mikaël Capelle
266703cdc0 Clean day 20. 2022-12-20 23:39:26 +01:00
Mikaël Capelle
f635ea3c97 Add empty files for following days. 2022-12-20 21:51:38 +01:00
Mikael CAPELLE
304aeb16bd Faster day 20. 2022-12-20 18:27:09 +01:00
Mikael CAPELLE
ed00c72e59 Day 20, slow. 2022-12-20 13:39:36 +01:00
Mikael CAPELLE
835458e0f3 Start day 20. 2022-12-20 12:35:01 +01:00
Mikaël Capelle
3b9e9a2c8f Add all tests from previous days. 2022-12-19 22:32:15 +01:00
Mikaël Capelle
fadb2a71c2 Day 19. 2022-12-19 22:09:20 +01:00
Mikael CAPELLE
91434051c6 Tmp 2022-12-19 18:46:16 +01:00
Mikael CAPELLE
c1161f6c1f Start working on day 19. 2022-12-19 13:51:32 +01:00
Mikaël Capelle
3b4efce02f Clean day 17. 2022-12-18 16:46:00 +01:00
Mikaël Capelle
2aaf55b72f Day 18. 2022-12-18 09:57:35 +01:00
Mikaël Capelle
d493856d20 Day 17. 2022-12-17 12:27:05 +01:00
Mikaël Capelle
67647c7923 Day 17. 2022-12-17 12:25:48 +01:00
Mikaël Capelle
3c61e5cb7f Less BFS for day 16. 2022-12-16 22:56:34 +01:00
Mikaël Capelle
37e0e1ef06 Better day 16. 2022-12-16 22:52:03 +01:00
Mikael CAPELLE
725e18d480 Update ugly day 16. 2022-12-16 18:40:21 +01:00
Mikael CAPELLE
3d383527e4 Add ugly day 16, to be improved... 2022-12-16 09:21:54 +01:00
Mikael CAPELLE
48e8dff52b Update day 15. 2022-12-15 14:17:04 +01:00
Mikael CAPELLE
0b53406b52 Add day 15. 2022-12-15 09:36:19 +01:00
Mikael CAPELLE
232d019b40 Add day 14. 2022-12-14 09:29:56 +01:00
Mikael CAPELLE
35190adcdf Clean day 9. 2022-12-13 11:18:31 +01:00
Mikael CAPELLE
d4199b2810 Clean day 13. 2022-12-13 08:59:53 +01:00
Mikael CAPELLE
971c1b0dda Add day 13. 2022-12-13 08:54:15 +01:00
Mikael CAPELLE
4fe1f521b7 Clean day 12. 2022-12-12 17:55:24 +01:00
Mikael CAPELLE
38b1d86514 One to many Dijkstra. 2022-12-12 17:50:48 +01:00
Mikael CAPELLE
4899583b15 Generic Dijkstra for day 12. 2022-12-12 15:59:19 +01:00
Mikael CAPELLE
792951afa8 Clean day 12. 2022-12-12 10:48:37 +01:00
Mikael CAPELLE
5004aa3376 Add day 12. 2022-12-12 09:35:12 +01:00
Mikaël Capelle
9ba338a4f1 Clean monkey code. 2022-12-11 11:50:23 +01:00
Mikaël Capelle
8795d7a276 Add day 11. 2022-12-11 11:42:47 +01:00
Mikaël Capelle
89adfb151a Add day 10. 2022-12-10 10:24:23 +01:00
Mikaël Capelle
9fd8a5866a Add day 9. 2022-12-09 10:45:00 +01:00
Mikael CAPELLE
7564fac345 Add 2022 day 8. 2022-12-08 08:59:25 +01:00
Mikael CAPELLE
6bd27e4bca Add 2021 day 5. 2022-12-07 18:41:39 +01:00
Mikael CAPELLE
26cfe60f16 Add day 7. 2022-12-07 09:28:06 +01:00
Mikael CAPELLE
32a1220072 Cleaning. 2022-12-06 15:28:46 +01:00
Mikael CAPELLE
9852aea94b Add day 6. 2022-12-06 09:03:22 +01:00
Mikaël Capelle
f76767ca6d Add day 4. 2022-12-05 19:09:55 +01:00
Mikael CAPELLE
1b60725e9c Add day 5. 2022-12-05 08:58:25 +01:00
Mikaël Capelle
b8cb2cb0b9 Day 3. 2022-12-03 11:42:09 +01:00
Mikael CAPELLE
228f7501bb More comments. 2022-12-02 15:06:37 +01:00
Mikael CAPELLE
f4ef0a2666 Comments. 2022-12-02 09:21:38 +01:00
Mikael CAPELLE
60e68ed31c Day 2. 2022-12-02 09:12:49 +01:00
139 changed files with 20394 additions and 1270 deletions

1
.gitignore vendored
View File

@@ -4,3 +4,4 @@ __pycache__
.ruff_cache
.vscode
build
files

504
poetry.lock generated
View File

@@ -1,4 +1,15 @@
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.1.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = false
python-versions = ">=3.7"
files = [
{file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"},
{file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"},
]
[[package]]
name = "appnope"
@@ -133,6 +144,30 @@ traitlets = ">=4"
[package.extras]
test = ["pytest"]
[[package]]
name = "cplex"
version = "22.1.1.2"
description = "A Python interface to the CPLEX Callable Library, Community Edition."
optional = false
python-versions = "*"
files = [
{file = "cplex-22.1.1.2-cp310-cp310-macosx_10_6_x86_64.whl", hash = "sha256:d74a91f6e9c6f4ad4c7c69f7ab937ea9e91178a556f6f105c87eef9e434ea42e"},
{file = "cplex-22.1.1.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b066b5aa01fcf7cb471ad41920b3fecdd87dc95686e9a7031ff470873f0db10f"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:a7230032928b1a657c384d3f49c04d8b80d0ab8134a2f4c0b26ff50e71ec767a"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:dd81e8ee7a7f1fb5769bcbb1349b084b37c495cbd0db1a095d774f97d790ee3c"},
{file = "cplex-22.1.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:68b33bb9ff84be3442a6f71000e7214781c6aa8674143a9aa79cb9a84e697dfd"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_10_6_x86_64.whl", hash = "sha256:cda2f59af50d6c3d6476b2e38aba1e947f9bd72591d71961a9d53b5582062ba9"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0f69a539ed50994e26e32c3d2b203eb5f112d1ba64400241614e1a91c0933974"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:2a0f6984980779e6878a6cded52ee08806bae49af6bd209c7740549417e69e96"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux2014_ppc64le.whl", hash = "sha256:0ac0005414a09facbeaa976a89b3153d4ed15f23a89bf5d283f65d4e951f63be"},
{file = "cplex-22.1.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:46550cac476d74cc95dc3abf6f9bfe08c9fd61d889e20f2028f754b9fe503b88"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_10_6_x86_64.whl", hash = "sha256:21f6fd1ad4876a7775e64fe8a1fb43f6bb7a010c5e099abdb8c01887a8cc1d84"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d6acbf74c3fe32f2138a98730d1ebe3fa275c8c3fdcd8b1f68d312bfe9ef6899"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3211f9c84f44c6317ea1e83a6c2ff1cfdc08532f421987b7faa8c07a018dfae5"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:648ad8c1c83ea30b0802c571a0dbf7fac23dcb9dc121ea0768c1794313aec2a7"},
{file = "cplex-22.1.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:285b26008a77942c6c9c29bff91e1658c1beed2aa520e1a8b26137d81abf81dc"},
]
[[package]]
name = "debugpy"
version = "1.8.9"
@@ -179,6 +214,19 @@ files = [
{file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
]
[[package]]
name = "docplex"
version = "2.28.240"
description = "The IBM Decision Optimization CPLEX Modeling for Python"
optional = false
python-versions = "*"
files = [
{file = "docplex-2.28.240.tar.gz", hash = "sha256:c0de407e33f8709bb4cd91b6efeb96fd88bfecbdce2caec51afb79253bde6ff5"},
]
[package.dependencies]
six = "*"
[[package]]
name = "exceptiongroup"
version = "1.2.2"
@@ -207,6 +255,50 @@ files = [
[package.extras]
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
[[package]]
name = "imageio"
version = "2.36.1"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
optional = false
python-versions = ">=3.9"
files = [
{file = "imageio-2.36.1-py3-none-any.whl", hash = "sha256:20abd2cae58e55ca1af8a8dcf43293336a59adf0391f1917bf8518633cfc2cdf"},
{file = "imageio-2.36.1.tar.gz", hash = "sha256:e4e1d231f47f9a9e16100b0f7ce1a86e8856fb4d1c0fa2c4365a316f1746be62"},
]
[package.dependencies]
numpy = "*"
pillow = ">=8.3.2"
[package.extras]
all-plugins = ["astropy", "av", "imageio-ffmpeg", "numpy (>2)", "pillow-heif", "psutil", "rawpy", "tifffile"]
all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
build = ["wheel"]
dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"]
docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"]
ffmpeg = ["imageio-ffmpeg", "psutil"]
fits = ["astropy"]
full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpy (>2)", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "rawpy", "sphinx (<6)", "tifffile", "wheel"]
gdal = ["gdal"]
itk = ["itk"]
linting = ["black", "flake8"]
pillow-heif = ["pillow-heif"]
pyav = ["av"]
rawpy = ["numpy (>2)", "rawpy"]
test = ["fsspec[github]", "pytest", "pytest-cov"]
tifffile = ["tifffile"]
[[package]]
name = "immutabledict"
version = "4.2.1"
description = "Immutable wrapper around dictionaries (a fork of frozendict)"
optional = false
python-versions = ">=3.8"
files = [
{file = "immutabledict-4.2.1-py3-none-any.whl", hash = "sha256:c56a26ced38c236f79e74af3ccce53772827cef5c3bce7cab33ff2060f756373"},
{file = "immutabledict-4.2.1.tar.gz", hash = "sha256:d91017248981c72eb66c8ff9834e99c2f53562346f23e7f51e7a5ebcf66a3bcc"},
]
[[package]]
name = "ipykernel"
version = "6.29.5"
@@ -430,68 +522,133 @@ files = [
[[package]]
name = "numpy"
version = "2.1.3"
version = "2.2.0"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff"},
{file = "numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4"},
{file = "numpy-2.1.3-cp310-cp310-win32.whl", hash = "sha256:72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23"},
{file = "numpy-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0"},
{file = "numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d"},
{file = "numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0"},
{file = "numpy-2.1.3-cp311-cp311-win32.whl", hash = "sha256:d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9"},
{file = "numpy-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2"},
{file = "numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e"},
{file = "numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0"},
{file = "numpy-2.1.3-cp312-cp312-win32.whl", hash = "sha256:e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9"},
{file = "numpy-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a"},
{file = "numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f"},
{file = "numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef"},
{file = "numpy-2.1.3-cp313-cp313-win32.whl", hash = "sha256:50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f"},
{file = "numpy-2.1.3-cp313-cp313-win_amd64.whl", hash = "sha256:747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17"},
{file = "numpy-2.1.3-cp313-cp313t-win32.whl", hash = "sha256:08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48"},
{file = "numpy-2.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb"},
{file = "numpy-2.1.3.tar.gz", hash = "sha256:aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761"},
{file = "numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa"},
{file = "numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31"},
{file = "numpy-2.2.0-cp310-cp310-win32.whl", hash = "sha256:b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661"},
{file = "numpy-2.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4"},
{file = "numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6"},
{file = "numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d"},
{file = "numpy-2.2.0-cp311-cp311-win32.whl", hash = "sha256:4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410"},
{file = "numpy-2.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73"},
{file = "numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3"},
{file = "numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef"},
{file = "numpy-2.2.0-cp312-cp312-win32.whl", hash = "sha256:afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1"},
{file = "numpy-2.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3"},
{file = "numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367"},
{file = "numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742"},
{file = "numpy-2.2.0-cp313-cp313-win32.whl", hash = "sha256:3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e"},
{file = "numpy-2.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72"},
{file = "numpy-2.2.0-cp313-cp313t-win32.whl", hash = "sha256:30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066"},
{file = "numpy-2.2.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221"},
{file = "numpy-2.2.0.tar.gz", hash = "sha256:140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0"},
]
[[package]]
name = "opencv-python"
version = "4.10.0.84"
description = "Wrapper package for OpenCV python bindings."
optional = false
python-versions = ">=3.6"
files = [
{file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"},
]
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
]
[[package]]
name = "ortools"
version = "9.11.4210"
description = "Google OR-Tools python libraries and modules"
optional = false
python-versions = ">=3.8"
files = [
{file = "ortools-9.11.4210-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:127f20f03ce04c28f979eac635d1cacdc01597c9e035a1981070506294d7db9c"},
{file = "ortools-9.11.4210-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:250c62ba9e5fcaf18ada449bc0128c71bb0dbea83ddec5559cc506cff920235c"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7c15cefc7bc71aa2f70bee157aaa7e51ed8cb74c3edd499d15b6f5cd79cdf5b"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c3693f0cb07ee0b5d36c4817bcfe05a745e3a613798a2ed62eb998d7fff979c"},
{file = "ortools-9.11.4210-cp310-cp310-win_amd64.whl", hash = "sha256:6b9d4ae6c7e9efac7cbef8a6289e97e238c2f0a8ef587b3e56b71af14c2f04e6"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:0f902caa1576d737714f6a4fa165db62469bce82115e250409607197b3b6b434"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f3e2869396dc6d8ee2d11b65d6f88f6386bb3ad64212c0ad7a6d32ddcb48ca"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c5844ff927ce3c5428159cdd01b7fdbe243e8062bf1dfdb2e0eb305a55a30"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5a17a37aeaa7d149e2fe8c8dfd5f09630ae28ad734a109ad55536605f8059df"},
{file = "ortools-9.11.4210-cp311-cp311-win_amd64.whl", hash = "sha256:d9b858f0273e19f81555428d54d407428d0a70a8cb5df2c320935bb735f2c6bb"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:079bea08c6341dcfe3fb9586eb6edec6ae80f4ed16ed366fd7a46ef4b5709009"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7f55124f9d1afa6434d0d6de07c6a4eb836f29b00b3413d27138634d5d79b606"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f48e3d4053a169440608d881c1abd2a706db885d9b0af85bf45b444a1fec244"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03ecd32e5d760d48e59832ef6bf724f8cac95e4e40db72a7fb912abf7adcf931"},
{file = "ortools-9.11.4210-cp312-cp312-win_amd64.whl", hash = "sha256:bc1b6e4cc0a121ef888481a99194765e6df72d4d3da81f928543171a2bac8cbb"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:a503291dc12dc44da48567c5e1f79c77cd054fb86176f2c99d2860bc5a57e03d"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2fd0aa0b4edfb3088f086bc05d42a381cc3d03da4b8ad18ce18ba213ab2c719f"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c242738a49279c3a58b4611a64dd24634f1638f4dbb435163e3f9308e7c84c9"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9186bbc7a30538f277e704e9e77ff52bc75aa2c17095a125b2dc212a75cf8e"},
{file = "ortools-9.11.4210-cp38-cp38-win_amd64.whl", hash = "sha256:afcca4919e1095a79af0375276c5377a2d75794ebd592c4cc841d9979e0526e7"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:a2828e91960c4e4fcf27bc6e200e2cd61ce1c42d4a3b95481a842a58c8315345"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d7d1a105f105502cf2f785816b09b796e5845fd47efac0dc0e3c0476b4c961a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f250641d7b822be25237fb78aed0878b07e8afdefddb700bafcc52f32ad520a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd2c0b319f4c0999360ab45a85d5764838c9dd0fd33437d12e32b2c07cbe04e4"},
{file = "ortools-9.11.4210-cp39-cp39-win_amd64.whl", hash = "sha256:219ffa56e8e4f52561586cea3dd55eb0f5d174a84c83a819d71debad766338e3"},
]
[package.dependencies]
absl-py = ">=2.0.0"
immutabledict = ">=3.0.0"
numpy = ">=1.13.3"
pandas = ">=2.0.0"
protobuf = ">=5.26.1,<5.27"
[[package]]
name = "packaging"
version = "24.2"
@@ -556,9 +713,9 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
@@ -640,6 +797,98 @@ files = [
[package.dependencies]
ptyprocess = ">=0.5"
[[package]]
name = "pillow"
version = "11.0.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.9"
files = [
{file = "pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947"},
{file = "pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f"},
{file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb"},
{file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97"},
{file = "pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50"},
{file = "pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c"},
{file = "pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1"},
{file = "pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc"},
{file = "pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa"},
{file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306"},
{file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9"},
{file = "pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5"},
{file = "pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291"},
{file = "pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9"},
{file = "pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923"},
{file = "pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7"},
{file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6"},
{file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc"},
{file = "pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6"},
{file = "pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47"},
{file = "pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25"},
{file = "pillow-11.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcd1fb5bb7b07f64c15618c89efcc2cfa3e95f0e3bcdbaf4642509de1942a699"},
{file = "pillow-11.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0e038b0745997c7dcaae350d35859c9715c71e92ffb7e0f4a8e8a16732150f38"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ae08bd8ffc41aebf578c2af2f9d8749d91f448b3bfd41d7d9ff573d74f2a6b2"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d69bfd8ec3219ae71bcde1f942b728903cad25fafe3100ba2258b973bd2bc1b2"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:61b887f9ddba63ddf62fd02a3ba7add935d053b6dd7d58998c630e6dbade8527"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa"},
{file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:73e3a0200cdda995c7e43dd47436c1548f87a30bb27fb871f352a22ab8dcf45f"},
{file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fba162b8872d30fea8c52b258a542c5dfd7b235fb5cb352240c8d63b414013eb"},
{file = "pillow-11.0.0-cp313-cp313-win32.whl", hash = "sha256:f1b82c27e89fffc6da125d5eb0ca6e68017faf5efc078128cfaa42cf5cb38798"},
{file = "pillow-11.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:8ba470552b48e5835f1d23ecb936bb7f71d206f9dfeee64245f30c3270b994de"},
{file = "pillow-11.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:846e193e103b41e984ac921b335df59195356ce3f71dcfd155aa79c603873b84"},
{file = "pillow-11.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4ad70c4214f67d7466bea6a08061eba35c01b1b89eaa098040a35272a8efb22b"},
{file = "pillow-11.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6ec0d5af64f2e3d64a165f490d96368bb5dea8b8f9ad04487f9ab60dc4bb6003"},
{file = "pillow-11.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c809a70e43c7977c4a42aefd62f0131823ebf7dd73556fa5d5950f5b354087e2"},
{file = "pillow-11.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4b60c9520f7207aaf2e1d94de026682fc227806c6e1f55bba7606d1c94dd623a"},
{file = "pillow-11.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1e2688958a840c822279fda0086fec1fdab2f95bf2b717b66871c4ad9859d7e8"},
{file = "pillow-11.0.0-cp313-cp313t-win32.whl", hash = "sha256:607bbe123c74e272e381a8d1957083a9463401f7bd01287f50521ecb05a313f8"},
{file = "pillow-11.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5c39ed17edea3bc69c743a8dd3e9853b7509625c2462532e62baa0732163a904"},
{file = "pillow-11.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:75acbbeb05b86bc53cbe7b7e6fe00fbcf82ad7c684b3ad82e3d711da9ba287d3"},
{file = "pillow-11.0.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2e46773dc9f35a1dd28bd6981332fd7f27bec001a918a72a79b4133cf5291dba"},
{file = "pillow-11.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2679d2258b7f1192b378e2893a8a0a0ca472234d4c2c0e6bdd3380e8dfa21b6a"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eda2616eb2313cbb3eebbe51f19362eb434b18e3bb599466a1ffa76a033fb916"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ec184af98a121fb2da42642dea8a29ec80fc3efbaefb86d8fdd2606619045d"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:8594f42df584e5b4bb9281799698403f7af489fba84c34d53d1c4bfb71b7c4e7"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:c12b5ae868897c7338519c03049a806af85b9b8c237b7d675b8c5e089e4a618e"},
{file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:70fbbdacd1d271b77b7721fe3cdd2d537bbbd75d29e6300c672ec6bb38d9672f"},
{file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5178952973e588b3f1360868847334e9e3bf49d19e169bbbdfaf8398002419ae"},
{file = "pillow-11.0.0-cp39-cp39-win32.whl", hash = "sha256:8c676b587da5673d3c75bd67dd2a8cdfeb282ca38a30f37950511766b26858c4"},
{file = "pillow-11.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:94f3e1780abb45062287b4614a5bc0874519c86a777d4a7ad34978e86428b8dd"},
{file = "pillow-11.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:290f2cc809f9da7d6d622550bbf4c1e57518212da51b6a30fe8e0a270a5b78bd"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5bd2d3bdb846d757055910f0a59792d33b555800813c3b39ada1829c372ccb06"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:375b8dd15a1f5d2feafff536d47e22f69625c1aa92f12b339ec0b2ca40263273"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:daffdf51ee5db69a82dd127eabecce20729e21f7a3680cf7cbb23f0829189790"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7326a1787e3c7b0429659e0a944725e1b03eeaa10edd945a86dead1913383944"},
{file = "pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
typing = ["typing-extensions"]
xmp = ["defusedxml"]
[[package]]
name = "platformdirs"
version = "4.3.6"
@@ -689,6 +938,26 @@ files = [
[package.dependencies]
wcwidth = "*"
[[package]]
name = "protobuf"
version = "5.26.1"
description = ""
optional = false
python-versions = ">=3.8"
files = [
{file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"},
{file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"},
{file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"},
{file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"},
{file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"},
{file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"},
{file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"},
{file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"},
{file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"},
]
[[package]]
name = "psutil"
version = "6.1.0"
@@ -755,6 +1024,19 @@ files = [
{file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
]
[[package]]
name = "pygifsicle"
version = "1.1.0"
description = "Python package wrapping the gifsicle library for editing and optimizing gifs."
optional = false
python-versions = "*"
files = [
{file = "pygifsicle-1.1.0.tar.gz", hash = "sha256:dcef433520ace4c1136dfc7060e77042142a3dbd6bdb6a19bd9149ef5cbe7441"},
]
[package.extras]
test = ["pytest", "pytest-cov", "touch", "validate_version_code"]
[[package]]
name = "pygments"
version = "2.18.0"
@@ -771,13 +1053,13 @@ windows-terminal = ["colorama (>=0.4.6)"]
[[package]]
name = "pyright"
version = "1.1.389"
version = "1.1.390"
description = "Command line wrapper for pyright"
optional = false
python-versions = ">=3.7"
files = [
{file = "pyright-1.1.389-py3-none-any.whl", hash = "sha256:41e9620bba9254406dc1f621a88ceab5a88af4c826feb4f614d95691ed243a60"},
{file = "pyright-1.1.389.tar.gz", hash = "sha256:716bf8cc174ab8b4dcf6828c3298cac05c5ed775dda9910106a5dcfe4c7fe220"},
{file = "pyright-1.1.390-py3-none-any.whl", hash = "sha256:ecebfba5b6b50af7c1a44c2ba144ba2ab542c227eb49bc1f16984ff714e0e110"},
{file = "pyright-1.1.390.tar.gz", hash = "sha256:aad7f160c49e0fbf8209507a15e17b781f63a86a1facb69ca877c71ef2e9538d"},
]
[package.dependencies]
@@ -1026,90 +1308,40 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "ruff"
version = "0.8.1"
version = "0.8.3"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.8.1-py3-none-linux_armv6l.whl", hash = "sha256:fae0805bd514066f20309f6742f6ee7904a773eb9e6c17c45d6b1600ca65c9b5"},
{file = "ruff-0.8.1-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b8a4f7385c2285c30f34b200ca5511fcc865f17578383db154e098150ce0a087"},
{file = "ruff-0.8.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:cd054486da0c53e41e0086e1730eb77d1f698154f910e0cd9e0d64274979a209"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2029b8c22da147c50ae577e621a5bfbc5d1fed75d86af53643d7a7aee1d23871"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2666520828dee7dfc7e47ee4ea0d928f40de72056d929a7c5292d95071d881d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:333c57013ef8c97a53892aa56042831c372e0bb1785ab7026187b7abd0135ad5"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:288326162804f34088ac007139488dcb43de590a5ccfec3166396530b58fb89d"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b12c39b9448632284561cbf4191aa1b005882acbc81900ffa9f9f471c8ff7e26"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:364e6674450cbac8e998f7b30639040c99d81dfb5bbc6dfad69bc7a8f916b3d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b22346f845fec132aa39cd29acb94451d030c10874408dbf776af3aaeb53284c"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:b2f2f7a7e7648a2bfe6ead4e0a16745db956da0e3a231ad443d2a66a105c04fa"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:adf314fc458374c25c5c4a4a9270c3e8a6a807b1bec018cfa2813d6546215540"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_i686.whl", hash = "sha256:a885d68342a231b5ba4d30b8c6e1b1ee3a65cf37e3d29b3c74069cdf1ee1e3c9"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:d2c16e3508c8cc73e96aa5127d0df8913d2290098f776416a4b157657bee44c5"},
{file = "ruff-0.8.1-py3-none-win32.whl", hash = "sha256:93335cd7c0eaedb44882d75a7acb7df4b77cd7cd0d2255c93b28791716e81790"},
{file = "ruff-0.8.1-py3-none-win_amd64.whl", hash = "sha256:2954cdbe8dfd8ab359d4a30cd971b589d335a44d444b6ca2cb3d1da21b75e4b6"},
{file = "ruff-0.8.1-py3-none-win_arm64.whl", hash = "sha256:55873cc1a473e5ac129d15eccb3c008c096b94809d693fc7053f588b67822737"},
{file = "ruff-0.8.1.tar.gz", hash = "sha256:3583db9a6450364ed5ca3f3b4225958b24f78178908d5c4bc0f46251ccca898f"},
{file = "ruff-0.8.3-py3-none-linux_armv6l.whl", hash = "sha256:8d5d273ffffff0acd3db5bf626d4b131aa5a5ada1276126231c4174543ce20d6"},
{file = "ruff-0.8.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:e4d66a21de39f15c9757d00c50c8cdd20ac84f55684ca56def7891a025d7e939"},
{file = "ruff-0.8.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c356e770811858bd20832af696ff6c7e884701115094f427b64b25093d6d932d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c0a60a825e3e177116c84009d5ebaa90cf40dfab56e1358d1df4e29a9a14b13"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:75fb782f4db39501210ac093c79c3de581d306624575eddd7e4e13747e61ba18"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f26bc76a133ecb09a38b7868737eded6941b70a6d34ef53a4027e83913b6502"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:01b14b2f72a37390c1b13477c1c02d53184f728be2f3ffc3ace5b44e9e87b90d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53babd6e63e31f4e96ec95ea0d962298f9f0d9cc5990a1bbb023a6baf2503a82"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ae441ce4cf925b7f363d33cd6570c51435972d697e3e58928973994e56e1452"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c65bc0cadce32255e93c57d57ecc2cca23149edd52714c0c5d6fa11ec328cd"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5be450bb18f23f0edc5a4e5585c17a56ba88920d598f04a06bd9fd76d324cb20"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8faeae3827eaa77f5721f09b9472a18c749139c891dbc17f45e72d8f2ca1f8fc"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:db503486e1cf074b9808403991663e4277f5c664d3fe237ee0d994d1305bb060"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6567be9fb62fbd7a099209257fef4ad2c3153b60579818b31a23c886ed4147ea"},
{file = "ruff-0.8.3-py3-none-win32.whl", hash = "sha256:19048f2f878f3ee4583fc6cb23fb636e48c2635e30fb2022b3a1cd293402f964"},
{file = "ruff-0.8.3-py3-none-win_amd64.whl", hash = "sha256:f7df94f57d7418fa7c3ffb650757e0c2b96cf2501a0b192c18e4fb5571dfada9"},
{file = "ruff-0.8.3-py3-none-win_arm64.whl", hash = "sha256:fe2756edf68ea79707c8d68b78ca9a58ed9af22e430430491ee03e718b5e4936"},
{file = "ruff-0.8.3.tar.gz", hash = "sha256:5e7558304353b84279042fc584a4f4cb8a07ae79b2bf3da1a7551d960b5626d3"},
]
[[package]]
name = "scipy"
version = "1.14.1"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"},
{file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"},
{file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"},
{file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"},
{file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"},
{file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"},
{file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"},
{file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"},
{file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"},
{file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"},
{file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"},
{file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"},
{file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"},
{file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"},
{file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"},
{file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"},
{file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"},
]
[package.dependencies]
numpy = ">=1.23.5,<2.3"
[package.extras]
dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"]
doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"]
test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "six"
version = "1.16.0"
version = "1.17.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
files = [
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
{file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"},
{file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"},
]
[[package]]
@@ -1295,4 +1527,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "c91bc307ff4a5b3e8cd1976ebea211c9749fe09d563dd80861f70ce26826cda9"
content-hash = "5b57bccd8dc65a9acecbe187939bae625ef6a259f4188c6587907245bcfa604f"

View File

@@ -12,10 +12,12 @@ python = "^3.10"
numpy = "^2.1.3"
tqdm = "^4.67.1"
parse = "^1.20.2"
scipy = "^1.14.1"
sympy = "^1.13.3"
networkx = "^3.4.2"
pandas = "^2.2.3"
pillow = "^11.0.0"
imageio = "^2.36.1"
pygifsicle = "^1.1.0"
opencv-python = "^4.10.0.84"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.389"
@@ -25,6 +27,13 @@ ipykernel = "^6.29.5"
networkx-stubs = "^0.0.1"
types-networkx = "^3.4.2.20241115"
[tool.poetry.group.cplex.dependencies]
docplex = "^2.28.240"
cplex = "^22.1.1.2"
[tool.poetry.group.ortools.dependencies]
ortools = "^9.11.4210"
[tool.poetry.scripts]
holt59-aoc = "holt59.aoc.__main__:main"

View File

@@ -52,7 +52,6 @@ class Solver(BaseSolver):
m2 += molecule[i]
i += 1
# print(m2)
molecule = m2
yield count

View File

@@ -173,7 +173,6 @@ class Solver(BaseSolver):
)
)
# 1242 (not working)
yield sum(
c
for _, c in play(

View File

@@ -0,0 +1,107 @@
import inspect
from typing import Any, Callable, Final, Iterator, Mapping
from ..base import BaseSolver
class Instruction:
def __init__(self, fn: Callable[..., None]):
self._fn = fn
args = inspect.getfullargspec(fn)
self._argtypes = [args.annotations[arg] for arg in args.args[1:]]
def __call__(self, args: tuple[str, ...]):
self._fn(
*(argtype(arg) for arg, argtype in zip(args, self._argtypes, strict=True))
)
class Machine:
def __init__(
self, instructions: list[str], registers: dict[str, int] = {"a": 0, "b": 1}
):
self.instructions: Final = [
(part[0], tuple(arg.strip() for arg in " ".join(part[1:]).split(",")))
for instruction in instructions
if (part := instruction.split())
]
self._fns = {
name: Instruction(getattr(self, name))
for name in ("hlf", "tpl", "inc", "jmp", "jie", "jio")
}
self._registers = registers.copy()
self._ip = 0
@property
def registers(self) -> Mapping[str, int]:
return self._registers
@property
def ip(self) -> int:
return self._ip
def reset(self, registers: dict[str, int] = {"a": 0, "b": 0}):
self._registers = registers.copy()
self._ip = 0
def hlf(self, register: str):
self._registers[register] //= 2
self._ip += 1
def tpl(self, register: str):
self._registers[register] *= 3
self._ip += 1
def inc(self, register: str):
self._registers[register] += 1
self._ip += 1
def jmp(self, offset: int):
self._ip += offset
assert 0 <= self._ip < len(self.instructions)
def jie(self, register: str, offset: int):
if self._registers[register] % 2 == 0:
self._ip += offset
else:
self._ip += 1
def jio(self, register: str, offset: int):
if self._registers[register] == 1:
self._ip += offset
else:
self._ip += 1
def _exec(self) -> bool:
# execute next instruction
if self._ip >= len(self.instructions):
return False
ins, args = self.instructions[self._ip]
if ins not in self._fns:
return False
self._fns[ins](args)
return True
def run(self):
while self._exec():
...
return self.registers
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
machine = Machine(input.splitlines())
registers = machine.run()
yield registers["b"]
machine.reset({"a": 1, "b": 0})
registers = machine.run()
yield registers["b"]

View File

@@ -0,0 +1,88 @@
from typing import Any, Iterator, TypeAlias
from ..base import BaseSolver
TupleOfInts: TypeAlias = tuple[int, ...]
def check_n_groups(
target: int, groups: tuple[TupleOfInts, ...], numbers: TupleOfInts
) -> bool:
n_groups = len(groups)
groups_s = tuple(sum(group) for group in groups)
if all(target == group_s for group_s in groups_s):
return not numbers
if not numbers:
return False
head, *tail_l = numbers
tail, tail_s = tuple(tail_l), sum(tail_l)
return any(
groups_s[i] + head <= target
and sum(groups_s[j] for j in range(len(groups)) if i != j) + tail_s
>= (n_groups - 1) * target
and check_n_groups(
target, groups[:i] + ((groups[i] + (head,)),) + groups[i + 1 :], tail
)
for i in range(len(groups))
)
def enumerate_single_subset(
target: int, numbers: TupleOfInts
) -> Iterator[tuple[int, TupleOfInts, TupleOfInts]]:
"""
Enumerate subset of numbers whose sum equals target.
Subset are enumerated in increasing order of length, then product (quantum value).
Args:
target: Target for the sum of the subset.
numbers: Tuple of integers to find the subset from.
Returns:
A generator (quantum, subset, remaining) where subset if the subset of numbers
whose sum equals target, quantum the product of the subset, and remaining the
remaining numbers.
"""
groups: list[tuple[int, TupleOfInts, TupleOfInts]] = [(1, (), numbers)]
for _ in range(len(numbers)):
new_groups: list[tuple[int, TupleOfInts, TupleOfInts]] = []
for g_quantum, group, remaining in groups:
sg = sum(group)
for i in range(len(remaining)):
if group and remaining[i] <= group[-1]:
continue
uv = remaining[:i] + remaining[i + 1 :]
kv = g_quantum * remaining[i], group + (remaining[i],), uv
if sg + remaining[i] == target:
yield kv
elif sg + remaining[i] < target:
new_groups.append(kv)
groups = new_groups
def find_min_quantum(numbers: tuple[int, ...], n_groups: int):
return next(
g_quantum
for g_quantum, group_1v2, group_234v2 in enumerate_single_subset(
sum(numbers) // n_groups, numbers
)
if check_n_groups(sum(group_1v2), ((),) * (n_groups - 1), group_234v2)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
numbers = tuple(map(int, input.split()))
yield find_min_quantum(numbers, 3)
yield find_min_quantum(numbers, 4)

View File

@@ -0,0 +1,16 @@
import re
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools.math import pow_mod
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
m = re.search(r"row\s*([0-9]+)\s*,\s*column\s*([0-9]+)", input)
assert m is not None
row, col = int(m.group(1)), int(m.group(2))
n = (row * (row - 1)) // 2 + col * (col + 1) // 2 + (row - 1) * (col - 1)
yield (20151125 * pow_mod(252533, n - 1, 33554393)) % 33554393

View File

@@ -1,14 +1,17 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
values = [int(line) for line in lines]
# part 1
answer_1 = sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:]))
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
answer_2 = sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))
print(f"answer 2 is {answer_2}")
values = [int(line) for line in lines]
# part 1
yield sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:]))
# part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
yield sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))

View File

@@ -1,11 +1,47 @@
import sys
from functools import reduce
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
BRACKETS = {"{": "}", "[": "]", "<": ">", "(": ")"}
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
CORRUPT_SCORES = {")": 3, "]": 57, "}": 1197, ">": 25137}
COMPLETE_SCORES = {")": 1, "]": 2, "}": 3, ">": 4}
def corrupted_or_incomplete(line: str) -> tuple[bool, str]:
opens: list[str] = []
for c in line:
if c in BRACKETS:
opens.append(c)
elif BRACKETS[opens[-1]] != c:
return True, c
else:
opens.pop()
return (False, "".join(opens))
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
answer_1: int = 0
incomplete_scores: list[int] = []
for line in lines:
c, r = corrupted_or_incomplete(line)
if c:
answer_1 += CORRUPT_SCORES[r]
else:
incomplete_scores.append(
reduce(
lambda s, c: s * 5 + COMPLETE_SCORES[BRACKETS[c]],
reversed(r),
0,
),
)
yield answer_1
yield sorted(incomplete_scores)[len(incomplete_scores) // 2]

View File

@@ -1,11 +1,66 @@
import sys
import itertools as it
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
def do_step(values: list[list[int]]) -> tuple[list[list[int]], set[tuple[int, int]]]:
values = [[c + 1 for c in r] for r in values]
flashed: set[tuple[int, int]] = set()
while True:
found = False
for i_row, row in enumerate(values):
for i_col, col in enumerate(row):
if col <= 9 or (i_row, i_col) in flashed:
continue
found = True
flashed.add((i_row, i_col))
for dr, dc in it.product((-1, 0, 1), repeat=2):
if 0 <= i_row + dr < len(values) and 0 <= i_col + dc < len(
values[0]
):
values[i_row + dr][i_col + dc] += 1
if not found:
break
for i, j in flashed:
values[i][j] = 0
return values, flashed
class Solver(BaseSolver):
def print_grid(self, values: list[list[int]], flashed: set[tuple[int, int]]):
for i_row, row in enumerate(values):
s_row = ""
for i_col, col in enumerate(row):
if (i_row, i_col) in flashed:
s_row += f"\033[0;31m{col}\033[0;00m"
else:
s_row += str(col)
self.logger.info(s_row)
self.logger.info("")
def solve(self, input: str) -> Iterator[Any]:
values_0 = [[int(c) for c in r] for r in input.splitlines()]
values = values_0
total_flashed: int = 0
for _ in range(100):
values, flashed = do_step(values)
total_flashed += len(flashed)
yield total_flashed
n_cells = len(values) * len(values[0])
flashed: set[tuple[int, int]] = set()
values, step = values_0, 0
while len(flashed) != n_cells:
values, flashed = do_step(values)
step += 1
yield step

View File

@@ -1,11 +1,64 @@
import sys
import string
from collections import defaultdict
from functools import cache
from typing import Any, Iterator, Mapping, Sequence
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
@cache
def is_small(node: str):
return all(c in string.ascii_lowercase for c in node)
def enumerate_paths(
neighbors: Mapping[str, Sequence[str]],
duplicate_smalls: int = 0,
start: str = "start",
current: tuple[str, ...] = ("start",),
) -> Iterator[tuple[str, ...]]:
if start == "end":
yield current
for neighbor in neighbors[start]:
if not is_small(neighbor):
yield from enumerate_paths(
neighbors, duplicate_smalls, neighbor, current + (neighbor,)
)
elif neighbor not in current:
yield from enumerate_paths(
neighbors, duplicate_smalls, neighbor, current + (neighbor,)
)
elif duplicate_smalls > 0:
yield from enumerate_paths(
neighbors, duplicate_smalls - 1, neighbor, current + (neighbor,)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
neighbors: dict[str, list[str]] = defaultdict(list)
for row in input.splitlines():
a, b = row.split("-")
if a != "end" and b != "start":
neighbors[a].append(b)
if b != "end" and a != "start":
neighbors[b].append(a)
if self.files:
graph = "graph {\n"
for node, neighbors_of in neighbors.items():
graph += (
" ".join(
f"{node} -- {neighbor};"
for neighbor in neighbors_of
if node <= neighbor or node == "start" or neighbor == "end"
)
+ "\n"
)
graph += "}\n"
self.files.create("graph.dot", graph.encode(), False)
yield len(list(enumerate_paths(neighbors)))
yield len(list(enumerate_paths(neighbors, 1)))

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,41 +1,38 @@
import sys
from math import prod
from typing import Literal, TypeAlias, cast
from typing import Any, Iterator, Literal, TypeAlias, cast
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
Command: TypeAlias = Literal["forward", "up", "down"]
commands: list[tuple[Command, int]] = [
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
def depth_and_position(use_aim: bool):
aim, pos, depth = 0, 0, 0
for command, value in commands:
d_depth = 0
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
commands: list[tuple[Command, int]] = [
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines
]
if use_aim:
aim += d_depth
else:
depth += value
def depth_and_position(use_aim: bool):
aim, pos, depth = 0, 0, 0
for command, value in commands:
d_depth = 0
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
return depth, pos
if use_aim:
aim += d_depth
else:
depth += value
return depth, pos
# part 1
answer_1 = prod(depth_and_position(False))
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = prod(depth_and_position(True))
print(f"answer 2 is {answer_2}")
yield prod(depth_and_position(False))
yield prod(depth_and_position(True))

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,11 +1,7 @@
import sys
from typing import Any, Iterator
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,6 +1,7 @@
import sys
from collections import Counter
from typing import Literal
from typing import Any, Iterator, Literal
from ..base import BaseSolver
def generator_rating(
@@ -20,20 +21,23 @@ def generator_rating(
return values[0]
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1
most_and_least_common = [
tuple(
Counter(line[col] for line in lines).most_common(2)[m][0]
for m in range(2)
)
for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
yield gamma_rate * epsilon_rate
# part 1
most_and_least_common = [
tuple(Counter(line[col] for line in lines).most_common(2)[m][0] for m in range(2))
for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
print(f"answer 1 is {gamma_rate * epsilon_rate}")
# part 2
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2)
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2)
answer_2 = oxygen_generator_rating * co2_scrubber_rating
print(f"answer 2 is {answer_2}")
# part 2
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2)
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2)
yield oxygen_generator_rating * co2_scrubber_rating

View File

@@ -1,45 +1,52 @@
import sys
from typing import Any, Iterator
import numpy as np
lines = sys.stdin.read().splitlines()
from ..base import BaseSolver
numbers = [int(c) for c in lines[0].split(",")]
boards = np.asarray(
[
[[int(c) for c in line.split()] for line in lines[start : start + 5]]
for start in range(2, len(lines), 6)
]
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# (round, score) for each board (-1 when not found)
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))]
marked = np.zeros_like(boards, dtype=bool)
numbers = [int(c) for c in lines[0].split(",")]
for round, number in enumerate(numbers):
# mark boards
marked[boards == number] = True
boards = np.asarray(
[
[[int(c) for c in line.split()] for line in lines[start : start + 5]]
for start in range(2, len(lines), 6)
]
)
# check each board for winning
for index in range(len(boards)):
if winning_rounds[index][0] > 0:
continue
# (round, score) for each board (-1 when not found)
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))]
marked = np.zeros_like(boards, dtype=bool)
if np.any(np.all(marked[index], axis=0) | np.all(marked[index], axis=1)):
winning_rounds[index] = (
round,
number * int(np.sum(boards[index][~marked[index]])),
)
for round, number in enumerate(numbers):
# mark boards
marked[boards == number] = True
# all boards are winning - break
if np.all(marked.all(axis=1) | marked.all(axis=2)):
break
# check each board for winning
for index in range(len(boards)):
if winning_rounds[index][0] > 0:
continue
# part 1
(_, score) = min(winning_rounds, key=lambda w: w[0])
print(f"answer 1 is {score}")
if np.any(
np.all(marked[index], axis=0) | np.all(marked[index], axis=1)
):
winning_rounds[index] = (
round,
number * int(np.sum(boards[index][~marked[index]])),
)
# part 2
(_, score) = max(winning_rounds, key=lambda w: w[0])
print(f"answer 2 is {score}")
# all boards are winning - break
if np.all(marked.all(axis=1) | marked.all(axis=2)):
break
# part 1
(_, score) = min(winning_rounds, key=lambda w: w[0])
yield score
# part 2
(_, score) = max(winning_rounds, key=lambda w: w[0])
yield score

View File

@@ -1,48 +1,48 @@
import sys
from typing import Any, Iterator
import numpy as np
lines: list[str] = sys.stdin.read().splitlines()
from ..base import BaseSolver
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
(
(
int(line.split(" -> ")[0].split(",")[0]),
int(line.split(" -> ")[0].split(",")[1]),
),
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
np_sections = np.array(sections).reshape(-1, 4)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
x_min, x_max, y_min, y_max = (
min(np_sections[:, 0].min(), np_sections[:, 2].min()),
max(np_sections[:, 0].max(), np_sections[:, 2].max()),
min(np_sections[:, 1].min(), np_sections[:, 3].min()),
max(np_sections[:, 1].max(), np_sections[:, 3].max()),
)
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
(
(
int(line.split(" -> ")[0].split(",")[0]),
int(line.split(" -> ")[0].split(",")[1]),
),
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
counts_2 = counts_1.copy()
np_sections = np.array(sections).reshape(-1, 4)
for (x1, y1), (x2, y2) in sections:
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
x_max, y_max = (
max(np_sections[:, 0].max(), np_sections[:, 2].max()),
max(np_sections[:, 1].max(), np_sections[:, 3].max()),
)
if x1 == x2 or y1 == y2:
counts_1[list(y_rng), list(x_rng)] += 1
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
counts_2 = counts_1.copy()
answer_1 = (counts_1 >= 2).sum()
print(f"answer 1 is {answer_1}")
for (x1, y1), (x2, y2) in sections:
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
answer_2 = (counts_2 >= 2).sum()
print(f"answer 2 is {answer_2}")
if x1 == x2 or y1 == y2:
counts_1[list(y_rng), list(x_rng)] += 1
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
yield (counts_1 >= 2).sum()
yield (counts_2 >= 2).sum()

View File

@@ -1,21 +1,21 @@
import sys
from typing import Any, Iterator
values = [int(c) for c in sys.stdin.read().strip().split(",")]
from ..base import BaseSolver
days = 256
lanterns = {day: 0 for day in range(days)}
for value in values:
for day in range(value, days, 7):
lanterns[day] += 1
for day in range(days):
for day2 in range(day + 9, days, 7):
lanterns[day2] += lanterns[day]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
values = [int(c) for c in input.split(",")]
# part 1
answer_1 = sum(v for k, v in lanterns.items() if k < 80) + len(values)
print(f"answer 1 is {answer_1}")
days = 256
lanterns = {day: 0 for day in range(days)}
for value in values:
for day in range(value, days, 7):
lanterns[day] += 1
# part 2
answer_2 = sum(lanterns.values()) + len(values)
print(f"answer 2 is {answer_2}")
for day in range(days):
for day2 in range(day + 9, days, 7):
lanterns[day2] += lanterns[day]
yield sum(v for k, v in lanterns.items() if k < 80) + len(values)
yield sum(lanterns.values()) + len(values)

View File

@@ -1,19 +1,22 @@
import sys
from typing import Any, Iterator
positions = [int(c) for c in sys.stdin.read().strip().split(",")]
from ..base import BaseSolver
min_position, max_position = min(positions), max(positions)
# part 1
answer_1 = min(
sum(abs(p - position) for p in positions)
for position in range(min_position, max_position + 1)
)
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
positions = [int(c) for c in input.split(",")]
# part 2
answer_2 = min(
sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
for position in range(min_position, max_position + 1)
)
print(f"answer 2 is {answer_2}")
min_position, max_position = min(positions), max(positions)
# part 1
yield min(
sum(abs(p - position) for p in positions)
for position in range(min_position, max_position + 1)
)
# part 2
yield min(
sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
for position in range(min_position, max_position + 1)
)

View File

@@ -1,8 +1,7 @@
import itertools
import os
import sys
from typing import Any, Iterator
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
from ..base import BaseSolver
digits = {
"abcefg": 0,
@@ -17,71 +16,74 @@ digits = {
"abcdfg": 9,
}
lines = sys.stdin.read().splitlines()
# part 1
lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)}
answer_1 = sum(
len(p) in lengths for line in lines for p in line.split("|")[1].strip().split()
)
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 2
values: list[int] = []
# part 1
lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)}
yield sum(
len(p) in lengths
for line in lines
for p in line.split("|")[1].strip().split()
)
for line in lines:
parts = line.split("|")
broken_digits = sorted(parts[0].strip().split(), key=len)
# part 2
values: list[int] = []
per_length = {
k: list(v)
for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
for line in lines:
parts = line.split("|")
broken_digits = sorted(parts[0].strip().split(), key=len)
# a can be found immediately
a = next(u for u in per_length[3][0] if u not in per_length[2][0])
per_length = {
k: list(v)
for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
# c and f have only two possible values corresponding to the single entry of
# length 2
cf = list(per_length[2][0])
# a can be found immediately
a = next(u for u in per_length[3][0] if u not in per_length[2][0])
# the only digit of length 4 contains bcdf, so we can deduce bd by removing cf
bd = [u for u in per_length[4][0] if u not in cf]
# c and f have only two possible values corresponding to the single entry of
# length 2
cf = list(per_length[2][0])
# the 3 digits of length 5 have a, d and g in common
adg = [u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])]
# the only digit of length 4 contains bcdf, so we can deduce bd by removing cf
bd = [u for u in per_length[4][0] if u not in cf]
# we can remove a
dg = [u for u in adg if u != a]
# the 3 digits of length 5 have a, d and g in common
adg = [
u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])
]
# we can deduce d and g
d = next(u for u in dg if u in bd)
g = next(u for u in dg if u != d)
# we can remove a
dg = [u for u in adg if u != a]
# then b
b = next(u for u in bd if u != d)
# we can deduce d and g
d = next(u for u in dg if u in bd)
g = next(u for u in dg if u != d)
# f is in the three 6-length digits, while c is only in 2
f = next(u for u in cf if all(u in p for p in per_length[6]))
# then b
b = next(u for u in bd if u != d)
# c is not f
c = next(u for u in cf if u != f)
# f is in the three 6-length digits, while c is only in 2
f = next(u for u in cf if all(u in p for p in per_length[6]))
# e is the last one
e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
# c is not f
c = next(u for u in cf if u != f)
mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg"))
# e is the last one
e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
value = 0
for number in parts[1].strip().split():
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg"))
if VERBOSE:
print(value)
value = 0
for number in parts[1].strip().split():
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
values.append(value)
self.logger.info(f"value for '{line}' is {value}")
values.append(value)
answer_2 = sum(values)
print(f"answer 2 is {answer_2}")
yield sum(values)

View File

@@ -1,18 +1,18 @@
import sys
from math import prod
from typing import Any, Iterator
values = [[int(c) for c in row] for row in sys.stdin.read().splitlines()]
n_rows, n_cols = len(values), len(values[0])
from ..base import BaseSolver
def neighbors(point: tuple[int, int]):
def neighbors(point: tuple[int, int], n_rows: int, n_cols: int):
i, j = point
for di, dj in ((-1, 0), (+1, 0), (0, -1), (0, +1)):
if 0 <= i + di < n_rows and 0 <= j + dj < n_cols:
yield (i + di, j + dj)
def basin(start: tuple[int, int]) -> set[tuple[int, int]]:
def basin(values: list[list[int]], start: tuple[int, int]) -> set[tuple[int, int]]:
n_rows, n_cols = len(values), len(values[0])
visited: set[tuple[int, int]] = set()
queue = [start]
@@ -23,22 +23,25 @@ def basin(start: tuple[int, int]) -> set[tuple[int, int]]:
continue
visited.add((i, j))
queue.extend(neighbors((i, j)))
queue.extend(neighbors((i, j), n_rows, n_cols))
return visited
low_points = [
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if all(values[ti][tj] > values[i][j] for ti, tj in neighbors((i, j)))
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
values = [[int(c) for c in row] for row in input.splitlines()]
n_rows, n_cols = len(values), len(values[0])
# part 1
answer_1 = sum(values[i][j] + 1 for i, j in low_points)
print(f"answer 1 is {answer_1}")
low_points = [
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if all(
values[ti][tj] > values[i][j]
for ti, tj in neighbors((i, j), n_rows, n_cols)
)
]
# part 2
answer_2 = prod(sorted(len(basin(point)) for point in low_points)[-3:])
print(f"answer 2 is {answer_2}")
yield sum(values[i][j] + 1 for i, j in low_points)
yield prod(sorted(len(basin(values, point)) for point in low_points)[-3:])

View File

@@ -97,7 +97,12 @@ def neighbors(
class Solver(BaseSolver):
def print_path(self, path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
def print_path(
self, name: str, path: list[tuple[int, int]], n_rows: int, n_cols: int
) -> None:
if not self.files:
return
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
@@ -118,8 +123,11 @@ class Solver(BaseSolver):
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
for row in graph:
self.logger.info("".join(row))
self.files.create(
f"graph_{name}.txt",
"\n".join("".join(row) for row in graph).encode(),
text=True,
)
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
@@ -157,7 +165,7 @@ class Solver(BaseSolver):
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
self.print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
self.print_path("answer1", path_1, n_rows=len(grid), n_cols=len(grid[0]))
yield lengths_1[end] - 1
lengths_2, _ = dijkstra(

View File

@@ -67,13 +67,16 @@ def flow(
class Solver(BaseSolver):
def print_blocks(self, blocks: dict[tuple[int, int], Cell]):
def print_blocks(self, name: str, blocks: dict[tuple[int, int], Cell]):
"""
Print the given set of blocks on a grid.
Args:
blocks: Set of blocks to print.
"""
if not self.files:
return
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
@@ -81,12 +84,16 @@ class Solver(BaseSolver):
max(y for _, y in blocks),
)
for y in range(y_min, y_max + 1):
self.logger.info(
self.files.create(
f"blocks_{name}.txt",
"\n".join(
"".join(
str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1)
)
)
for y in range(y_min, y_max + 1)
).encode(),
True,
)
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
@@ -115,7 +122,7 @@ class Solver(BaseSolver):
for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
self.print_blocks(blocks)
self.print_blocks("start", blocks)
y_max = max(y for _, y in blocks)
@@ -124,7 +131,7 @@ class Solver(BaseSolver):
blocks_1 = flow(
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
)
self.print_blocks(blocks_1)
self.print_blocks("part1", blocks_1)
yield sum(v == Cell.SAND for v in blocks_1.values())
# === part 2 ===
@@ -135,5 +142,5 @@ class Solver(BaseSolver):
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
)
blocks_2[500, 0] = Cell.SAND
self.print_blocks(blocks_2)
self.print_blocks("part2", blocks_2)
yield sum(v == Cell.SAND for v in blocks_2.values())

View File

@@ -1,3 +1,4 @@
import itertools as it
from typing import Any, Iterator
import numpy as np
@@ -20,9 +21,7 @@ class Solver(BaseSolver):
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1)) # type: ignore
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
no_beacons_row = set(np.concatenate(no_beacons_row_l)).difference(
beacons_at_row
) # type: ignore
no_beacons_row = set(it.chain(*no_beacons_row_l)).difference(beacons_at_row) # type: ignore
return len(no_beacons_row)
@@ -92,5 +91,5 @@ class Solver(BaseSolver):
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max)
x, y, a2 = self.part2_intervals(sensor_to_beacon, xy_max)
self.logger.info("answer 2 is {at} (x={x}, y={y})")
self.logger.info(f"answer 2 is {a2} (x={x}, y={y})")
yield a2

View File

@@ -3,12 +3,9 @@ from __future__ import annotations
import heapq
import itertools
import re
import sys
from collections import defaultdict
from typing import Any, FrozenSet, Iterator, NamedTuple
from tqdm import tqdm
from ..base import BaseSolver
@@ -38,8 +35,8 @@ def breadth_first_search(pipes: dict[str, Pipe], pipe: Pipe) -> dict[Pipe, int]:
Runs a BFS from the given pipe and return the shortest distance (in term of hops)
to all other pipes.
"""
queue = [(0, pipe_1)]
visited = set()
queue = [(0, pipe)]
visited: set[Pipe] = set()
distances: dict[Pipe, int] = {}
while len(distances) < len(pipes):
@@ -63,98 +60,100 @@ def update_with_better(
node_at_times[flowing] = max(node_at_times[flowing], flow)
def part_1(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0))
)
node_at_times[0] = {start_pipe: {frozenset(): 0}}
for time in range(max_time):
for c_pipe, nodes in node_at_times[time].items():
for flowing, flow in nodes.items():
for target in relevant_pipes:
distance = distances[c_pipe, target] + 1
if time + distance >= max_time or target in flowing:
continue
update_with_better(
node_at_times[time + distance][target],
flow + sum(pipe.flow for pipe in flowing) * distance,
flowing | {target},
)
update_with_better(
node_at_times[max_time][c_pipe],
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
flowing,
)
return max(
flow
for nodes_of_pipe in node_at_times[max_time].values()
for flow in nodes_of_pipe.values()
)
def part_2(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
return part_1(start_pipe, max_time, distances, pipes_for_me) + part_1(
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
)
combs = [
frozenset(relevant_pipes_1)
for r in range(2, len(relevant_pipes) // 2 + 1)
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
]
return max(compute(comb) for comb in tqdm(combs))
# === MAIN ===
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def part_1(
self,
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0))
)
node_at_times[0] = {start_pipe: {frozenset(): 0}}
for time in range(max_time):
for c_pipe, nodes in node_at_times[time].items():
for flowing, flow in nodes.items():
for target in relevant_pipes:
distance = distances[c_pipe, target] + 1
if time + distance >= max_time or target in flowing:
continue
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
update_with_better(
node_at_times[time + distance][target],
flow + sum(pipe.flow for pipe in flowing) * distance,
flowing | {target},
)
g = r.groups()
update_with_better(
node_at_times[max_time][c_pipe],
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
flowing,
)
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
return max(
flow
for nodes_of_pipe in node_at_times[max_time].values()
for flow in nodes_of_pipe.values()
)
# compute distances from one valve to any other
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
def part_2(
self,
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
return self.part_1(
start_pipe, max_time, distances, pipes_for_me
) + self.part_1(
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
)
# valves with flow
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
combs = [
frozenset(relevant_pipes_1)
for r in range(2, len(relevant_pipes) // 2 + 1)
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
]
return max(compute(comb) for comb in self.progress.wrap(combs))
# 1651, 1653
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
# 1707, 2223
print(part_2(pipes["AA"], 26, distances, relevant_pipes))
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
g = r.groups()
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
# compute distances from one valve to any other
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
# valves with flow
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
# 1651, 1653
yield self.part_1(pipes["AA"], 30, distances, relevant_pipes)
# 1707, 2223
yield self.part_2(pipes["AA"], 26, distances, relevant_pipes)

View File

@@ -1,25 +1,16 @@
import sys
from typing import Any, Iterator, Sequence, TypeVar
from typing import Any, Iterator, Sequence, TypeAlias, TypeVar
import numpy as np
from numpy.typing import NDArray
from ..base import BaseSolver
T = TypeVar("T")
def print_tower(tower: np.ndarray, out: str = "#"):
print("-" * (tower.shape[1] + 2))
non_empty = False
for row in reversed(range(1, tower.shape[0])):
if not non_empty and not tower[row, :].any():
continue
non_empty = True
print("|" + "".join(out if c else "." for c in tower[row, :]) + "|")
print("+" + "-" * tower.shape[1] + "+")
Tower: TypeAlias = NDArray[np.bool]
def tower_height(tower: np.ndarray) -> int:
def tower_height(tower: Tower) -> int:
return int(tower.shape[0] - tower[::-1, :].argmax(axis=0).min() - 1)
@@ -47,8 +38,8 @@ def build_tower(
n_rocks: int,
jets: str,
early_stop: bool = False,
init: np.ndarray = np.ones(WIDTH, dtype=bool),
) -> tuple[np.ndarray, int, int, dict[int, int]]:
init: Tower = np.ones(WIDTH, dtype=bool),
) -> tuple[Tower, int, int, dict[int, int]]:
tower = EMPTY_BLOCKS.copy()
tower[0, :] = init
@@ -97,26 +88,24 @@ def build_tower(
return tower, rock_count, done_at.get((i_rock, i_jet), -1), heights
line = sys.stdin.read().strip()
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
tower, *_ = build_tower(2022, input)
yield tower_height(tower)
tower, *_ = build_tower(2022, line)
answer_1 = tower_height(tower)
print(f"answer 1 is {answer_1}")
TOTAL_ROCKS = 1_000_000_000_000
_tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, input, True)
assert prev_1 > 0
TOTAL_ROCKS = 1_000_000_000_000
tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, line, True)
assert prev_1 > 0
# 2767 1513
remaining_rocks = TOTAL_ROCKS - n_rocks_1
n_repeat_rocks = n_rocks_1 - prev_1
n_repeat_towers = remaining_rocks // n_repeat_rocks
# 2767 1513
remaining_rocks = TOTAL_ROCKS - n_rocks_1
n_repeat_rocks = n_rocks_1 - prev_1
n_repeat_towers = remaining_rocks // n_repeat_rocks
base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
answer_2 = base_height + (n_repeat_towers + 1) * repeat_height + remaining_height
print(f"answer 2 is {answer_2}")
yield base_height + (n_repeat_towers + 1) * repeat_height + remaining_height

View File

@@ -1,53 +1,58 @@
import sys
from typing import Any, Iterator
import numpy as np
from ..base import BaseSolver
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in sys.stdin.read().splitlines()
]
)
xyz = xyz - xyz.min(axis=0) + 1
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in input.splitlines()
]
)
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
xyz = xyz - xyz.min(axis=0) + 1
n_dims = len(cubes.shape)
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
answer_1 = sum(
1 for x, y, z in xyz for dx, dy, dz in faces if not cubes[x + dx, y + dy, z + dz]
)
print(f"answer 1 is {answer_1}")
yield sum(
1
for x, y, z in xyz
for dx, dy, dz in faces
if not cubes[x + dx, y + dy, z + dz]
)
visited = np.zeros_like(cubes, dtype=bool)
queue = [(0, 0, 0)]
visited = np.zeros_like(cubes, dtype=bool)
queue = [(0, 0, 0)]
n_faces = 0
while queue:
x, y, z = queue.pop(0)
n_faces = 0
while queue:
x, y, z = queue.pop(0)
if visited[x, y, z]:
continue
if visited[x, y, z]:
continue
visited[x, y, z] = True
visited[x, y, z] = True
for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))):
continue
for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(
n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))
):
continue
if visited[nx, ny, nz]:
continue
if visited[nx, ny, nz]:
continue
if cubes[nx, ny, nz]:
n_faces += 1
else:
queue.append((nx, ny, nz))
print(f"answer 2 is {n_faces}")
if cubes[nx, ny, nz]:
n_faces += 1
else:
queue.append((nx, ny, nz))
yield n_faces

View File

@@ -1,4 +1,3 @@
import sys
from typing import Any, Iterator, Literal
import numpy as np
@@ -64,29 +63,6 @@ def dominates(lhs: State, rhs: State):
)
lines = sys.stdin.read().splitlines()
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in lines:
r: list[int] = parse.parse( # type: ignore
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
# since we can only build one robot per time, we do not need more than X robots
# of type K where X is the maximum number of K required among all robots, e.g.,
@@ -175,11 +151,31 @@ def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
return max(state.reagents["geode"] for state in state_after_t[max_time])
answer_1 = sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in input.splitlines():
r: list[int] = parse.parse( # type: ignore
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
answer_2 = run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32)
print(f"answer 2 is {answer_2}")
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
yield sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
yield (run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32))

View File

@@ -1,6 +1,5 @@
from __future__ import annotations
import sys
from typing import Any, Iterator
from ..base import BaseSolver
@@ -68,10 +67,9 @@ def decrypt(numbers: list[Number], key: int, rounds: int) -> int:
)
numbers = [Number(int(x)) for i, x in enumerate(sys.stdin.readlines())]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
numbers = [Number(int(x)) for x in input.splitlines()]
answer_1 = decrypt(numbers, 1, 1)
print(f"answer 1 is {answer_1}")
answer_2 = decrypt(numbers, 811589153, 10)
print(f"answer 2 is {answer_2}")
yield decrypt(numbers, 1, 1)
yield decrypt(numbers, 811589153, 10)

View File

@@ -1,5 +1,4 @@
import operator
import sys
from typing import Any, Callable, Iterator
from ..base import BaseSolver
@@ -79,31 +78,31 @@ def invert(
return monkeys
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
monkeys: dict[str, int | tuple[str, str, str]] = {}
monkeys: dict[str, int | tuple[str, str, str]] = {}
op_monkeys: set[str] = set()
op_monkeys: set[str] = set()
for line in lines:
parts = line.split(":")
name = parts[0].strip()
for line in lines:
parts = line.split(":")
name = parts[0].strip()
try:
value = int(parts[1].strip())
monkeys[name] = value
except ValueError:
op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2)
try:
value = int(parts[1].strip())
monkeys[name] = value
except ValueError:
op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2)
op_monkeys.add(name)
op_monkeys.add(name)
yield compute(monkeys.copy(), "root")
answer_1 = compute(monkeys.copy(), "root")
print(f"answer 1 is {answer_1}")
# assume the second operand of 'root' can be computed, and the first one depends on
# humn, which is the case is my input and the test input
p1, _, p2 = monkeys["root"] # type: ignore
answer_2 = compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")
print(f"answer 2 is {answer_2}")
# assume the second operand of 'root' can be computed, and the first one depends on
# humn, which is the case is my input and the test input
assert isinstance(monkeys["root"], tuple)
p1, _, p2 = monkeys["root"] # type: ignore
yield compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")

View File

@@ -1,5 +1,4 @@
import re
import sys
from typing import Any, Callable, Iterator
import numpy as np
@@ -12,214 +11,233 @@ TILE_FROM_CHAR = {" ": VOID, ".": EMPTY, "#": WALL}
SCORES = {"E": 0, "S": 1, "W": 2, "N": 3}
board_map_s, direction_s = sys.stdin.read().split("\n\n")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
board_map_s, direction_s = input.split("\n\n")
# board
board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines)
board = np.array(
[
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines()
]
)
# board
board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines)
board = np.array(
[
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines()
]
)
directions = [
int(p1) if p2 else p1 for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
]
directions = [
int(p1) if p2 else p1
for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
]
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = (
board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
)
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = (
board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
)
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
faces = np.zeros_like(board)
size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
SIZE = np.gcd(*board.shape)
faces = np.zeros_like(board)
size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
SIZE = np.gcd(*board.shape)
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
else:
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
def run(wrap: Callable[[int, int, str], tuple[int, int, str]]) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(board[y0, x0 + 1 : x0 + direction + 1] == WALL)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = direction - (row_last_non_void[y0] - x0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(board[y0 + 1 : y0 + direction + 1, x0] == WALL)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = direction - (col_last_non_void[x0] - y0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif x0 - direction >= 0 and board[y0, x0 - direction] == EMPTY:
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = direction - (x0 - row_first_non_void[y0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif y0 - direction >= 0 and board[y0 - direction, x0] == EMPTY:
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = direction - (y0 - col_first_non_void[x0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
else:
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
return y0, x0, r0
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
y1, x1, r1 = run(wrap_part_1)
answer_1 = 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
print(f"answer 1 is {answer_1}")
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
y2, x2, r2 = run(wrap_part_2)
answer_2 = 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]
print(f"answer 2 is {answer_2}")
def run(
wrap: Callable[[int, int, str], tuple[int, int, str]],
) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(
board[y0, x0 + 1 : x0 + direction + 1] == WALL
)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = (
direction - (row_last_non_void[y0] - x0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(
board[y0 + 1 : y0 + direction + 1, x0] == WALL
)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = (
direction - (col_last_non_void[x0] - y0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif (
x0 - direction >= 0
and board[y0, x0 - direction] == EMPTY
):
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = (
direction - (x0 - row_first_non_void[y0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif (
y0 - direction >= 0
and board[y0 - direction, x0] == EMPTY
):
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = (
direction - (y0 - col_first_non_void[x0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
else:
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
return y0, x0, r0
y1, x1, r1 = run(wrap_part_1)
yield 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
y2, x2, r2 = run(wrap_part_2)
yield 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]

View File

@@ -1,5 +1,4 @@
import itertools
import sys
from collections import defaultdict
from typing import Any, Iterator
@@ -21,22 +20,10 @@ DIRECTIONS: Directions = [
def min_max_yx(positions: set[tuple[int, int]]) -> tuple[int, int, int, int]:
ys, xs = {y for y, x in positions}, {x for y, x in positions}
ys, xs = {y for y, _x in positions}, {x for _y, x in positions}
return min(ys), min(xs), max(ys), max(xs)
def print_positions(positions: set[tuple[int, int]]):
min_y, min_x, max_y, max_x = min_max_yx(positions)
print(
"\n".join(
"".join(
"#" if (y, x) in positions else "." for x in range(min_x - 1, max_x + 2)
)
for y in range(min_y - 1, max_y + 2)
)
)
def round(
positions: set[tuple[int, int]],
directions: Directions,
@@ -72,35 +59,38 @@ def round(
directions.append(directions.pop(0))
POSITIONS = {
(i, j)
for i, row in enumerate(sys.stdin.read().splitlines())
for j, col in enumerate(row)
if col == "#"
}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
POSITIONS = {
(i, j)
for i, row in enumerate(input.splitlines())
for j, col in enumerate(row)
if col == "#"
}
# === part 1 ===
# === part 1 ===
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for r in range(10):
round(p1, d1)
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for _ in range(10):
round(p1, d1)
min_y, min_x, max_y, max_x = min_max_yx(p1)
answer_1 = sum(
(y, x) not in p1 for y in range(min_y, max_y + 1) for x in range(min_x, max_x + 1)
)
print(f"answer 1 is {answer_1}")
min_y, min_x, max_y, max_x = min_max_yx(p1)
yield sum(
(y, x) not in p1
for y in range(min_y, max_y + 1)
for x in range(min_x, max_x + 1)
)
# === part 2 ===
# === part 2 ===
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0
while True:
answer_2 += 1
backup = p2.copy()
round(p2, d2)
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0
while True:
answer_2 += 1
backup = p2.copy()
round(p2, d2)
if backup == p2:
break
if backup == p2:
break
print(f"answer 2 is {answer_2}")
yield answer_2

View File

@@ -1,101 +1,117 @@
import heapq
import math
import sys
from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
east_winds = [{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)]
west_winds = [{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
east_winds = [
{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)
]
west_winds = [
{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)
]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
# (distance + heuristic, distance, (start_pos, cycle))
queue = [(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
# (distance + heuristic, distance, (start_pos, cycle))
queue = [
(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))
]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
while queue:
_, distance, ((y, x), cycle) = heapq.heappop(queue)
while queue:
_, distance, ((y, x), cycle) = heapq.heappop(queue)
if ((y, x), cycle) in visited:
continue
distances[y, x][cycle] = distance
visited.add(((y, x), cycle))
if (y, x) == (end[0], end[1]):
break
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
n_cycle = (cycle + 1) % CYCLE
if (ty, tx) == end:
heapq.heappush(queue, (distance + 1, distance + 1, ((ty, tx), n_cycle)))
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
if ((y, x), cycle) in visited:
continue
heapq.heappush(
queue,
((heuristic(ty, tx) + distance + 1, distance + 1, ((ty, tx), n_cycle))),
)
distances[y, x][cycle] = distance
return distances, next(iter(distances[end].values()))
visited.add(((y, x), cycle))
if (y, x) == (end[0], end[1]):
break
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
distances_1, forward_1 = run(start, 0, end)
print(f"answer 1 is {forward_1}")
n_cycle = (cycle + 1) % CYCLE
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
print(f"answer 2 is {forward_1 + return_1 + forward_2}")
if (ty, tx) == end:
heapq.heappush(
queue, (distance + 1, distance + 1, ((ty, tx), n_cycle))
)
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (
ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols
):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue
heapq.heappush(
queue,
(
(
heuristic(ty, tx) + distance + 1,
distance + 1,
((ty, tx), n_cycle),
)
),
)
return distances, next(iter(distances[end].values()))
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
distances_1, forward_1 = run(start, 0, end)
yield forward_1
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
_distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
yield forward_1 + return_1 + forward_2

View File

@@ -1,30 +1,28 @@
import sys
from typing import Any, Iterator
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
def snafu2number(number: str) -> int:
value = 0
for c in number:
value *= 5
value += coeffs[c]
return value
def snafu2number(number: str) -> int:
value = 0
for c in number:
value *= 5
value += coeffs[c]
return value
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
answer_1 = number2snafu(sum(map(snafu2number, lines)))
print(f"answer 1 is {answer_1}")
yield number2snafu(sum(map(snafu2number, lines)))

View File

@@ -83,18 +83,17 @@ class Solver(BaseSolver):
if (i, j) in loop_s and lines[i][j] in "|LJ":
cnt += 1
if self.verbose:
for i in range(len(lines)):
s = ""
for j in range(len(lines[0])):
if (i, j) == (si, sj):
s += "\033[91mS\033[0m"
elif (i, j) in loop:
s += lines[i][j]
elif (i, j) in inside:
s += "\033[92mI\033[0m"
else:
s += "."
self.logger.info(s)
if self.files:
rows = [["." for _j in range(len(lines[0]))] for _i in range(len(lines))]
rows[si][sj] = "\033[91mS\033[0m"
for i, j in loop:
rows[i][j] = lines[i][j]
for i, j in inside:
rows[i][j] = "\033[92mI\033[0m"
self.files.create(
"output.txt", "\n".join("".join(row) for row in rows).encode(), True
)
yield len(inside)

View File

@@ -84,9 +84,14 @@ class Solver(BaseSolver):
beams = propagate(layout, (0, 0), "R")
if self.verbose:
for row in beams:
self.logger.info("".join("#" if col else "." for col in row))
if self.files:
self.files.create(
"beams.txt",
"\n".join(
"".join("#" if col else "." for col in row) for row in beams
).encode(),
True,
)
# part 1
yield sum(sum(map(bool, row)) for row in beams)

View File

@@ -33,10 +33,14 @@ MAPPINGS: dict[Direction, tuple[int, int, Direction]] = {
class Solver(BaseSolver):
def print_shortest_path(
self,
name: str,
grid: list[list[int]],
target: tuple[int, int],
per_cell: dict[tuple[int, int], list[tuple[Label, int]]],
):
if not self.files:
return
assert len(per_cell[target]) == 1
label = per_cell[target][0][0]
@@ -74,8 +78,9 @@ class Solver(BaseSolver):
p_grid[0][0] = f"\033[92m{grid[0][0]}\033[0m"
for row in p_grid:
self.logger.info("".join(row))
self.files.create(
name, "\n".join("".join(row) for row in p_grid).encode(), True
)
def shortest_many_paths(self, grid: list[list[int]]) -> dict[tuple[int, int], int]:
n_rows, n_cols = len(grid), len(grid[0])
@@ -129,6 +134,7 @@ class Solver(BaseSolver):
def shortest_path(
self,
name: str,
grid: list[list[int]],
min_straight: int,
max_straight: int,
@@ -217,8 +223,7 @@ class Solver(BaseSolver):
),
)
if self.verbose:
self.print_shortest_path(grid, target, per_cell)
self.print_shortest_path(f"shortest-path_{name}.txt", grid, target, per_cell)
return per_cell[target][0][1]
@@ -227,7 +232,7 @@ class Solver(BaseSolver):
estimates = self.shortest_many_paths(data)
# part 1
yield self.shortest_path(data, 1, 3, lower_bounds=estimates)
yield self.shortest_path("answer_1", data, 1, 3, lower_bounds=estimates)
# part 2
yield self.shortest_path(data, 4, 10, lower_bounds=estimates)
yield self.shortest_path("answer_2", data, 4, 10, lower_bounds=estimates)

View File

@@ -1,4 +1,3 @@
import sys
from collections import defaultdict
from math import lcm
from typing import Any, Iterator, Literal, TypeAlias
@@ -67,7 +66,7 @@ class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
self._modules = {}
lines = sys.stdin.read().splitlines()
lines = input.splitlines()
for line in lines:
name, outputs_s = line.split(" -> ")
@@ -80,22 +79,23 @@ class Solver(BaseSolver):
outputs,
)
if self.outputs:
with open("./day20.dot", "w") as fp:
fp.write("digraph G {\n")
fp.write("rx [shape=circle, color=red, style=filled];\n")
for name, (type, outputs) in self._modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
fp.write(f"{name} [shape={shape}];\n")
for name, (type, outputs) in self._modules.items():
for output in outputs:
fp.write(f"{name} -> {output};\n")
fp.write("}\n")
if self.files:
contents = "digraph G {\n"
contents += "rx [shape=circle, color=red, style=filled];\n"
for name, (type, outputs) in self._modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
contents += f"{name} [shape={shape}];\n"
for name, (type, outputs) in self._modules.items():
for output in outputs:
contents += f"{name} -> {output};\n"
contents += "}\n"
self.files.create("day20.dot", contents.encode(), False)
# part 1
flip_flop_states: dict[str, Literal["on", "off"]] = {

View File

@@ -50,7 +50,7 @@ class Solver(BaseSolver):
values.append(len(tiles := reachable(map, tiles, cycle)))
values.append(len(tiles := reachable(map, tiles, cycle)))
if self.verbose:
if self.files:
n_rows, n_cols = len(map), len(map[0])
rows = [
@@ -66,8 +66,9 @@ class Solver(BaseSolver):
if (i // cycle) % 2 == (j // cycle) % 2:
rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
for row in rows:
self.logger.info("".join(row))
self.files.create(
"cycle.txt", "\n".join("".join(row) for row in rows).encode(), True
)
self.logger.info(f"values to fit: {values}")
@@ -101,32 +102,31 @@ class Solver(BaseSolver):
# depending on the number of cycles, either A or B will be in the center
#
counts = [
[
sum(
(i, j) in tiles
for i in range(ci * cycle, (ci + 1) * cycle)
for j in range(cj * cycle, (cj + 1) * cycle)
)
for cj in range(-2, 3)
]
for ci in range(-2, 3)
]
# counts = [
# [
# sum(
# (i, j) in tiles
# for i in range(ci * cycle, (ci + 1) * cycle)
# for j in range(cj * cycle, (cj + 1) * cycle)
# )
# for cj in range(-2, 3)
# ]
# for ci in range(-2, 3)
# ]
radius = (26501365 - rhombus) // cycle - 1
A = counts[2][2] if radius % 2 == 0 else counts[2][1]
B = counts[2][2] if radius % 2 == 1 else counts[2][1]
answer_2 = (
(radius + 1) * A
+ radius * B
+ 2 * radius * (radius + 1) // 2 * A
+ 2 * radius * (radius - 1) // 2 * B
+ sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
+ sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
* (radius + 1)
+ sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
)
print(f"answer 2 (v1) is {answer_2}")
# radius = (26501365 - rhombus) // cycle - 1
# A = counts[2][2] if radius % 2 == 0 else counts[2][1]
# B = counts[2][2] if radius % 2 == 1 else counts[2][1]
# answer_2 = (
# (radius + 1) * A
# + radius * B
# + 2 * radius * (radius + 1) // 2 * A
# + 2 * radius * (radius - 1) // 2 * B
# + sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
# + sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
# * (radius + 1)
# + sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
# )
# version 2: fitting a polynomial
#

View File

@@ -1,7 +1,35 @@
import itertools as it
from typing import Any, Iterator
from ..base import BaseSolver
def process(
grid: list[list[int]], current: tuple[int, int]
) -> set[tuple[tuple[int, int], ...]]:
row, col = current
value = grid[row][col] + 1
if grid[row][col] == 9:
return {((row, col),)}
return {
((row, col),) + path
for i, j in ((row - 1, col), (row, col + 1), (row + 1, col), (row, col - 1))
if 0 <= i < len(grid) and 0 <= j < len(grid[i]) and grid[i][j] == value
for path in process(grid, (i, j))
}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
grid = [[int(col) for col in row] for row in input.splitlines()]
paths = {
(i, j): process(grid, (i, j))
for i, j in it.product(range(len(grid)), range(len(grid[0])))
if grid[i][j] == 0
}
yield sum(len({path[-1] for path in paths[head]}) for head in paths)
yield sum(len(paths_of) for paths_of in paths.values())

View File

@@ -1,7 +1,36 @@
from functools import cache
from typing import Any, Iterator
from ..base import BaseSolver
def n_digits(n: int) -> int:
c = int(n == 0)
while n > 0:
c, n = c + 1, n // 10
return c
@cache
def blink_one_stone(stone: int, round: int) -> int:
if round == 0:
return 1
if stone == 0:
return blink_one_stone(1, round - 1)
if (n := n_digits(stone)) % 2 == 0:
p = 10 ** (n // 2)
return blink_one_stone(stone // p, round - 1) + blink_one_stone(
stone % p, round - 1
)
return blink_one_stone(stone * 2024, round - 1)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
stones = list(map(int, input.split()))
yield sum(blink_one_stone(stone, 25) for stone in stones)
yield sum(blink_one_stone(stone, 75) for stone in stones)

View File

@@ -1,7 +1,101 @@
from typing import Any, Iterator
import itertools as it
from dataclasses import dataclass
from typing import Any, Iterator, TypeAlias
from ..base import BaseSolver
Node: TypeAlias = tuple[int, int]
Edge: TypeAlias = tuple[Node, Node]
@dataclass(frozen=True)
class Region:
value: str
cells: set[tuple[int, int]]
edges: set[Edge]
sides: list[tuple[Edge, ...]]
def extract_region(grid: list[str], cell: tuple[int, int]):
n_rows, n_cols = len(grid), len(grid[0])
row, col = cell
value = grid[row][col]
cells: set[tuple[int, int]] = set()
edges: set[Edge] = set()
sides: list[tuple[Edge, ...]] = []
queue: list[tuple[int, int]] = [(row, col)]
while queue:
row, col = queue.pop(0)
if (row, col) in cells:
continue
cells.add((row, col))
for ur, uc in (
(row - 1, col),
(row, col + 1),
(row + 1, col),
(row, col - 1),
):
if 0 <= ur < n_rows and 0 <= uc < n_cols and grid[ur][uc] == value:
queue.append((ur, uc))
continue
if ((row, col), (ur, uc)) in edges:
continue
if col == uc:
mid, max = col, n_cols
def get(v: int):
return (row, v, ur, v)
else:
mid, max = row, n_rows
def get(v: int):
return (v, col, v, uc)
side: tuple[Edge, ...] = ((((row, col), (ur, uc))),)
for rng in (range(mid - 1, -1, -1), range(mid, max)):
for r2, c2, ur2, uc2 in map(get, rng):
if grid[r2][c2] != value or (
0 <= ur2 < n_rows
and 0 <= uc2 < n_cols
and grid[r2][c2] == grid[ur2][uc2]
):
break
side += ((((r2, c2), (ur2, uc2))),)
sides.append(side)
edges = edges.union(side)
return Region(value=value, cells=cells, edges=edges, sides=sides)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
grid = input.splitlines()
regions: list[Region] = []
to_visit: set[tuple[int, int]] = set(
it.product(range(len(grid)), range(len(grid[0])))
)
while to_visit:
region = extract_region(grid, next(iter(to_visit)))
self.logger.info(
f"region with {region.value}: "
f"{len(region.cells)} * {len(region.edges)} = {len(region.cells) * len(region.edges)}, "
f"{len(region.cells)} * {len(region.sides)} = {len(region.cells) * len(region.sides)}"
)
to_visit.difference_update(region.cells)
regions.append(region)
yield sum(len(region.cells) * len(region.edges) for region in regions)
yield sum(len(region.cells) * len(region.sides) for region in regions)

View File

@@ -1,7 +1,79 @@
import math
from dataclasses import dataclass
from typing import Any, Iterator
import parse # pyright: ignore[reportMissingTypeStubs]
from ..base import BaseSolver
@dataclass(frozen=True)
class Machine:
prize: tuple[int, int]
button_a: tuple[int, int]
button_b: tuple[int, int]
def read_machine(block: str) -> Machine:
ba = parse.parse( # type: ignore
"""Button A: X{bax:d}, Y{bay:d}
Button B: X{bbx:d}, Y{bby:d}
Prize: X={px:d}, Y={py:d}""",
block,
)
return Machine(
prize=(ba["px"], ba["py"]), # type: ignore
button_a=(ba["bax"], ba["bay"]), # type: ignore
button_b=(ba["bbx"], ba["bby"]), # type: ignore
)
def diophantine(a: int, b: int, c: int) -> tuple[int, int]:
q, r = divmod(a, b)
if r == 0:
return (0, c // b)
else:
u, v = diophantine(b, r, c)
return (v, u - q * v)
def solve(machine: Machine) -> int:
(ax, ay), (bx, by), (px, py) = machine.button_a, machine.button_b, machine.prize
dx, dy = math.gcd(ax, bx), math.gcd(ay, by)
if px % dx != 0 or py % dy != 0:
return 0
xa, xb = diophantine(ax, bx, px)
ya, yb = diophantine(ay, by, py)
# expr (x): xa - kx * bx / dx, xb + kx * ax / dx
# expr (y): ya - ky * by / dy, yb + ky * ay / dy
num = ay * (ya - xa) + by * (yb - xb)
den = (ax * by - ay * bx) // dx
if num % den != 0:
return 0
kx = num // den
pa, pb = xa - kx * bx // dx, xb + kx * ax // dx
return 3 * pa + pb
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
machines = [read_machine(block) for block in input.split("\n\n")]
yield sum(map(solve, machines))
shift = 10000000000000
machines = [
Machine(
prize=(shift + m.prize[0], shift + m.prize[1]),
button_a=m.button_a,
button_b=m.button_b,
)
for m in machines
]
yield sum(map(solve, machines))

View File

@@ -1,7 +1,74 @@
import itertools as it
import operator as op
from math import prod
from typing import Any, Iterator
import numpy as np
import parse # pyright: ignore[reportMissingTypeStubs]
from ..base import BaseSolver
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
positions: list[tuple[int, int]] = []
velocities: list[tuple[int, int]] = []
for line in input.splitlines():
r = parse.parse("p={x:d},{y:d} v={vx:d},{vy:d}", line) # type: ignore
positions.append((r["y"], r["x"])) # type: ignore
velocities.append((r["vy"], r["vx"])) # type: ignore
n_rows, n_cols = 103, 101
if len(positions) < 20:
n_rows, n_cols = 7, 11
n_rounds = 100
new_positions = [
((row + v_row * n_rounds) % n_rows, (col + v_col * n_rounds) % n_cols)
for (row, col), (v_row, v_col) in zip(positions, velocities, strict=True)
]
midrow = n_rows // 2
midcol = n_cols // 2
yield prod(
(
sum(opr(row, midrow) and opc(col, midcol) for row, col in new_positions)
for opr, opc in it.product((op.gt, op.lt), repeat=2)
)
)
new_positions = positions.copy()
for rnd in self.progress.wrap(range(10000)):
new_positions = [
((row + v_row) % n_rows, (col + v_col) % n_cols)
for (row, col), (v_row, v_col) in zip(
new_positions, velocities, strict=True
)
]
m = [[False for _ in range(n_cols)] for _ in range(n_rows)]
for row, col in new_positions:
m[row][col] = True
found = False
for row in m:
if sum(row) <= 10:
continue
if any(all(row[i : i + 10]) for i in range(n_cols - 10)):
if self.files:
self.files.create(
f"result_{rnd+1}.txt",
"\n".join(
"".join("#" if m[i][j] else "." for j in range(n_cols))
for i in range(n_rows)
).encode(),
True,
)
self.files.image(f"result_{rnd+1}.png", np.array(m))
yield rnd + 1
# found = True
break
if found:
break

View File

@@ -1,7 +1,282 @@
from typing import Any, Iterator
from typing import Any, Callable, Final, Iterator, TypeAlias
import numpy as np
from numpy.typing import NDArray
from ..base import BaseSolver
ImageGrid: TypeAlias = NDArray[np.uint8]
class Grid:
FREE: Final = 0
BLOCK: Final = 1
ROBOT: Final = 2
robot: tuple[int, int]
def __init__(self, grid_s: list[str], large: bool):
grid: list[list[int]] = []
robot: tuple[int, int] | None = None
box_counter = 4 if not large else 5
for i_row, row in enumerate(grid_s):
row_u: list[int] = []
for i_col, col in enumerate(row):
if col in ".@":
row_u.extend((Grid.FREE, Grid.FREE) if large else (Grid.FREE,))
if col == "@":
robot = (i_row, i_col * 2 if large else i_col)
elif col == "#":
row_u.extend((Grid.BLOCK, Grid.BLOCK) if large else (Grid.BLOCK,))
else:
row_u.extend(
(box_counter, -box_counter) if large else (box_counter,)
)
box_counter += 2
grid.append(row_u)
self.grid = np.array(grid)
assert robot is not None
self.robot = robot
@property
def n_rows(self):
return len(self.grid)
@property
def n_columns(self):
return len(self.grid[0])
def __len__(self):
return self.n_rows
def __iter__(self):
return iter(self.grid)
def __getitem__(self, index: tuple[int, int]):
return self.grid[*index]
def __setitem__(self, index: tuple[int, int], value: int):
self.grid[*index] = value
def is_free(self, row: int, col: int):
return self[row, col] == Grid.FREE
def is_block(self, row: int, col: int):
return self[row, col] == Grid.BLOCK
def is_box(self, row: int, col: int):
return (c := self[row, col]) >= 4 and c % 2 == 0
def is_open_or_close_box(self, row: int, col: int):
return abs(c := self[row, col]) >= 4 and c % 2 == 1
def is_open_box(self, row: int, col: int):
return (c := self[row, col]) >= 4 and c % 2 == 1
def is_close_box(self, row: int, col: int):
return self[row, col] < 0
def _to_char(self, row: int, col: int):
if self.is_free(row, col):
return "."
elif self.is_block(row, col):
return "#"
elif self.is_box(row, col):
return "O"
elif self.is_open_box(row, col):
return "["
else:
return "]"
def as_numpy(self):
arr = self.grid.copy()
arr[*self.robot] = Grid.ROBOT
return arr
def as_printable(self):
grid_s = [
[self._to_char(row, col) for col in range(self.n_columns)]
for row in range(self.n_rows)
]
grid_s[self.robot[0]][self.robot[1]] = "\033[31;1m@\033[00m"
return "\n".join("".join(row) for row in grid_s)
def __str__(self):
return self.as_printable()
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def save_grid(self, name: str, grid: Grid):
if self.files:
self.files.create(name, grid.as_printable().encode(), True)
def step_part1(self, grid: Grid, move: str):
match move:
case "^":
d_row, d_col = -1, 0
case ">":
d_row, d_col = 0, 1
case "v":
d_row, d_col = 1, 0
case "<":
d_row, d_col = 0, -1
case _:
assert False
row, col = grid.robot
if grid.is_free(row + d_row, col + d_col):
grid.robot = (row + d_row, col + d_col)
elif not grid.is_block(row + d_row, col + d_col):
n = 1
while grid.is_box(row + n * d_row, col + n * d_col):
n += 1
if grid.is_free(row + n * d_row, col + n * d_col):
grid.robot = (row + d_row, col + d_col)
for k in range(2, n + 1):
grid[row + k * d_row, col + k * d_col] = grid[
row + (k - 1) * d_row, col + (k - 1) * d_col
]
grid[row + d_row, col + d_col] = Grid.FREE
return grid
def step_part2(self, grid: Grid, move: str):
match move:
case "^":
d_row, d_col = -1, 0
case ">":
d_row, d_col = 0, 1
case "v":
d_row, d_col = 1, 0
case "<":
d_row, d_col = 0, -1
case _:
assert False
row, col = grid.robot
if grid.is_free(row + d_row, col + d_col):
grid.robot = (row + d_row, col + d_col)
elif grid.is_block(row + d_row, col + d_col):
...
elif move in "<>":
n = 1
while grid.is_open_or_close_box(row, col + n * d_col):
n += 1
if grid.is_free(row, col + n * d_col):
grid.robot = (row, col + d_col)
for k in range(n, 1, -1):
grid[row, col + k * d_col] = grid[row, col + (k - 1) * d_col]
grid[row + d_row, col + d_col] = Grid.FREE
elif move in "^v":
n = 1
boxes: list[set[int]] = [{col}]
while True:
to_move = boxes[-1]
if any(grid.is_block(row + n * d_row, c) for c in to_move):
break
if all(grid.is_free(row + n * d_row, c) for c in to_move):
break
as_move: set[int] = set()
for c in to_move:
if grid.is_close_box(row + n * d_row, c):
as_move.update({c - 1, c})
elif grid.is_open_box(row + n * d_row, c):
as_move.update({c, c + 1})
boxes.append(as_move)
n += 1
if all(grid.is_free(row + n * d_row, c) for c in boxes[-1]):
for k, to_move in zip(range(n, 1, -1), boxes[-1:0:-1], strict=True):
for c in to_move:
grid[row + k * d_row, c] = grid[row + (k - 1) * d_row, c]
grid[row + (k - 1) * d_row, c] = Grid.FREE
grid.robot = (row + d_row, col + d_col)
return grid
def run(
self,
name: str,
grid: Grid,
moves: str,
fn: Callable[[Grid, str], Grid],
generate: bool,
) -> tuple[Grid, list[ImageGrid]]:
# initialize
images: list[ImageGrid] = []
if generate:
images.append(grid.as_numpy())
self.save_grid(f"initial_grid_{name}.txt", grid)
for move in self.progress.wrap(moves):
self.logger.debug(f"Move '{move}'...")
grid = fn(grid, move)
if generate:
images.append(grid.as_numpy())
self.save_grid(f"final_grid_{name}.txt", grid)
return grid, images
def solve(self, input: str) -> Iterator[Any]:
grid_s, moves = input.split("\n\n")
moves = "".join(moves.split())
n_boxes = grid_s.count("O")
colors = np.concatenate(
[
np.array(
[[255, 255, 255], [64, 64, 64], [255, 0, 0]],
dtype=np.uint8,
),
np.random.randint(0, 256, size=(n_boxes, 3), dtype=np.uint8),
],
dtype=np.uint8,
)
grid, images = self.run(
"part1",
Grid(grid_s.splitlines(), False),
moves,
self.step_part1,
self.files is not None,
)
if self.files:
images = np.stack(images, axis=0)
images[images >= 2] = 1 + images[images >= 2] // 2
self.files.video("anim_part1.webm", colors[images])
yield sum(
100 * row + col
for row in range(grid.n_rows)
for col in range(grid.n_columns)
if grid.is_box(row, col)
)
grid, images = self.run(
"part2",
Grid(grid_s.splitlines(), True),
moves,
self.step_part2,
self.files is not None,
)
if self.files:
images = np.abs(np.stack(images, axis=0))
images[images >= 2] = 1 + images[images >= 2] // 2
self.files.video("anim_part2.webm", colors[images])
yield sum(
100 * row + col
for row in range(grid.n_rows)
for col in range(grid.n_columns)
if grid.is_open_box(row, col)
)

View File

@@ -1,7 +1,62 @@
from typing import Any, Iterator
import heapq
from collections import defaultdict
from typing import Any, Iterator, TypeAlias
from ..base import BaseSolver
Position: TypeAlias = tuple[int, int]
Direction: TypeAlias = tuple[int, int]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
grid = [list(r) for r in input.splitlines()]
n_rows, n_cols = len(grid), len(grid[0])
rein = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "S"
)
target = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "E"
)
queue: list[tuple[int, Position, Direction, tuple[Position, ...]]] = [
(0, rein, (0, 1), (rein,))
]
max_score = n_rows * n_cols * 1000
target_score: int = max_score
scores: dict[tuple[Position, Direction], int] = defaultdict(lambda: max_score)
visited: set[Position] = set()
while queue:
score, pos, dir, path = heapq.heappop(queue)
if target_score < score:
break
if pos == target:
target_score = score
visited |= set(path)
continue
scores[pos, dir] = score
row, col = pos
d_row, d_col = dir
for cost, n_pos, n_dir in (
(1, (row + d_row, col + d_col), dir),
(1000, pos, (1, 0) if d_row == 0 else (0, 1)),
(1000, pos, (-1, 0) if d_row == 0 else (0, -1)),
):
n_row, n_col = n_pos
score_n = score + cost
if grid[n_row][n_col] != "#" and score_n < scores[n_pos, n_dir]:
heapq.heappush(
queue,
(score_n, n_pos, n_dir, path + (n_pos,)),
)
assert target_score is not None
yield target_score
yield len(visited)

View File

@@ -3,5 +3,128 @@ from typing import Any, Iterator
from ..base import BaseSolver
def combo(registers: dict[str, int], operand: int):
if operand < 4:
return operand
assert operand < 7
return registers["ABC"[operand - 4]]
def adv(registers: dict[str, int], operand: int) -> int | None:
registers["A"] = registers["A"] >> combo(registers, operand)
def bxl(registers: dict[str, int], operand: int) -> int | None:
registers["B"] ^= operand
def bst(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = combo(registers, operand) % 8
def jnz(registers: dict[str, int], operand: int) -> int | None:
if registers["A"] != 0:
return operand
def bxc(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = registers["B"] ^ registers["C"]
def bdv(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = registers["A"] >> combo(registers, operand)
def cdv(registers: dict[str, int], operand: int) -> int | None:
registers["C"] = registers["A"] >> combo(registers, operand)
def run(registers: dict[str, int], program: list[int]):
outputs: list[int] = []
def out(registers: dict[str, int], operand: int) -> int | None:
outputs.append(combo(registers, operand) % 8)
instructions = [adv, bxl, bst, jnz, bxc, out, bdv, cdv]
index = 0
while index < len(program):
instruction, operand = instructions[program[index]], program[index + 1]
ret = instruction(registers, operand)
if ret is None:
index += 2
else:
index = ret
return outputs
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
register_s, program_s = input.split("\n\n")
registers = {
p[0][-1]: int(p[1].strip())
for line in register_s.splitlines()
if (p := line.split(":"))
}
program = [int(c) for c in program_s.split(":")[1].strip().split(",")]
self.logger.info(f"program ({len(program)}): " + ",".join(map(str, program)))
instruction_s = [
"A = A >> {}",
"B = B ^ {}",
"B = {} % 8",
"JMP {}",
"B = B ^ C",
"OUT {} % 8",
"B = A >> {}",
"C = A >> {}",
]
self.logger.info("PROGRAM:")
for index in range(0, len(program), 2):
self.logger.info(
instruction_s[program[index]].format(
""
if program[index] == 4
else (
program[index + 1]
if program[index] in (1, 3) or program[index + 1] < 4
else "ABC"[program[index + 1] - 4]
)
),
)
yield ",".join(map(str, run(registers.copy(), program)))
# last instruction is JNZ 0 (jump at the beginning), and it is the only jump
# in the program
jnz_indices = [i for i in range(0, len(program), 2) if program[i] == 3]
assert jnz_indices == [len(program) - 2] and program[-1] == 0
# previous instruction is dividing A by 8, or A = A >> 3
assert program[-4:-2] == [0, 3]
# previous instruction is a OUT B % 8, and it is the only OUT in the program
out_indices = [i for i in range(0, len(program), 2) if program[i] == 5]
assert out_indices == [len(program) - 6] and program[len(program) - 5] == 5
valid: list[int] = [0]
for p in reversed(program):
new_valid: list[int] = []
for v in valid:
a_high = v << 3
for a_low in range(0, 2**3):
registers["A"] = a_high | a_low
run(registers, program[:-6])
if registers["B"] % 8 == p:
new_valid.append(a_high | a_low)
valid = new_valid
assert run(registers | {"A": min(valid)}, program) == program
yield min(valid)

View File

@@ -1,7 +1,58 @@
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools import graphs
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def print_grid(self, grid: list[tuple[int, int]], n_rows: int, n_cols: int):
values = set(grid)
if self.files:
self.files.create(
"graph.txt",
"\n".join(
"".join(
"#" if (row, col) in values else "." for col in range(n_cols)
)
for row in range(n_rows)
).encode(),
text=True,
)
else:
for row in range(n_rows):
self.logger.info(
"".join(
"#" if (row, col) in values else "." for col in range(n_cols)
)
)
def dijkstra(self, corrupted: list[tuple[int, int]], n_rows: int, n_cols: int):
return graphs.dijkstra(
(0, 0),
(n_rows - 1, n_cols - 1),
graphs.make_neighbors_grid_fn(n_rows, n_cols, set(corrupted)),
)
def solve(self, input: str) -> Iterator[Any]:
values = [
(int(p[0]), int(p[1])) for r in input.splitlines() if (p := r.split(","))
]
_is_test = len(values) < 100
n_rows, n_cols, n_bytes_p1 = (7, 7, 12) if _is_test else (71, 71, 1024)
bytes_p1 = values[:n_bytes_p1]
self.print_grid(bytes_p1, n_rows, n_cols)
path_p1, cost_p1 = self.dijkstra(bytes_p1, n_rows, n_cols) or ((), -1)
yield cost_p1
path = path_p1
for b in range(n_bytes_p1, len(values)):
if values[b] not in path:
continue
path, _ = self.dijkstra(values[: b + 1], n_rows, n_cols) or (None, -1)
if path is None:
yield ",".join(map(str, values[b]))
break

View File

@@ -1,7 +1,42 @@
from functools import cache
from typing import Any, Iterator
from ..base import BaseSolver
@cache
def is_valid(design: str, towels: tuple[str, ...]) -> bool:
if not design:
return True
return any(
design.startswith(towel) and is_valid(design[len(towel) :], towels)
for towel in towels
)
@cache
def count_valid(design: str, towels: tuple[str, ...]) -> int:
if not design:
return 1
return sum(
design.startswith(towel) and count_valid(design[len(towel) :], towels)
for towel in towels
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
towels_s, designs_s = input.split("\n\n")
towels = tuple(s.strip() for s in towels_s.split(","))
designs = [
design
for design in self.progress.wrap(designs_s.splitlines())
if is_valid(design, towels)
]
yield len(designs)
yield sum(count_valid(design, towels) for design in self.progress.wrap(designs))

View File

@@ -1,7 +1,95 @@
from typing import Any, Iterator
import itertools
from collections import Counter
from typing import Any, Callable, Iterable, Iterator, Sequence, TypeAlias
from ..base import BaseSolver
from ..tools.graphs import dijkstra, make_neighbors_grid_fn
Node: TypeAlias = tuple[int, int]
def make_neighbors_fn(grid: list[str], cheat_length: int):
n_rows, n_cols = len(grid), len(grid[0])
def _fn(node: Node):
row, col = node
return (
((row_n, col_n), abs(row_n - row) + abs(col_n - col))
for row_d in range(-cheat_length, cheat_length + 1)
for col_d in range(
-cheat_length + abs(row_d), cheat_length - abs(row_d) + 1
)
if 0 <= (row_n := row + row_d) < n_rows
and 0 <= (col_n := col + col_d) < n_cols
and grid[row_n][col_n] != "#"
)
return _fn
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def find_cheats(
self,
path: Sequence[Node],
cost: float,
costs_to_target: dict[Node, float],
neighbors_fn: Callable[[Node], Iterable[tuple[Node, float]]],
):
cheats: dict[tuple[tuple[int, int], tuple[int, int]], float] = {}
for i_node, node in enumerate(self.progress.wrap(path)):
for reach_node, reach_cost in neighbors_fn(node):
n_cost = (
i_node + reach_cost + costs_to_target.get(reach_node, float("inf"))
)
if n_cost < cost:
cheats[node, reach_node] = cost - n_cost
return cheats
def solve(self, input: str) -> Iterator[Any]:
grid = input.splitlines()
n_rows, n_cols = len(grid), len(grid[0])
start = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "S"
)
target = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "E"
)
reachable = dijkstra(
target,
None,
make_neighbors_grid_fn(
n_rows,
n_cols,
excluded=(
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if grid[i][j] == "#"
),
),
)
# note: path is inverted here
path, cost = reachable[start]
costs_to_target = {k: c for k, (_, c) in reachable.items()}
self.logger.info(f"found past from start to target with cost {cost}")
for cheat_length in (2, 20):
cheats = self.find_cheats(
list(reversed(path)),
cost,
costs_to_target,
make_neighbors_fn(grid, cheat_length),
)
for saving, count in sorted(Counter(cheats.values()).items()):
self.logger.debug(
f"There are {count} cheats that save {saving} picoseconds."
)
target_saving = 100 if len(grid) > 20 else 50
yield sum(saving >= target_saving for saving in cheats.values())

View File

@@ -1,7 +1,85 @@
from typing import Any, Iterator
import itertools
from functools import cache
from typing import Any, Iterator, Literal
from ..base import BaseSolver
NUM_PAD_P = {
v: (i, j)
for i, r in enumerate(("789", "456", "123", " 0A"))
for j, v in enumerate(r)
if v.strip()
}
MOV_PAD_P = {
v: (i, j)
for i, r in enumerate((" ^A", "<v>"))
for j, v in enumerate(r)
if v.strip()
}
def path(start: tuple[int, int], end: tuple[int, int], pad: Literal["num", "mov"]):
# a move in the grid is composed of at most two straight line: up/down and
# left/right, since doing some kind of diagonal moves would create long path for
# the robot above (since this involves going back-and-forth to the letter 'A')
#
row_s, col_s = start
row_e, col_e = end
le, de, ue, re = (
"<" * max(0, col_s - col_e),
"v" * max(0, row_e - row_s),
"^" * max(0, row_s - row_e),
">" * max(0, col_e - col_s),
)
# when the robot starts or ends on the row/column with the empty cell, there is
# only one way to move
#
if pad == "num" and (row_s, col_e) == (3, 0):
return ue + le
elif pad == "num" and (col_s, row_e) == (0, 3):
return re + de
elif pad == "mov" and col_s == 0:
return re + ue
elif pad == "mov" and col_e == 0:
return de + le
# otherwise, we need to decide if we want to go up/down first, or left/right, and
# apparently this is the best way to do it...
return le + de + ue + re
@cache
def v_clicks(clicks: str, depth: int) -> int:
if depth == 0:
return len(clicks)
n_clicks = 0
at = "A"
for _, group in itertools.groupby(clicks):
group = list(group)
n_clicks += v_clicks(
path(MOV_PAD_P[at], MOV_PAD_P[group[0]], "mov") + "A" * len(group),
depth - 1,
)
at = group[0]
return n_clicks
def path_length(code: str, depth: int):
return sum(
v_clicks(path(NUM_PAD_P[start], NUM_PAD_P[end], "num") + "A", depth)
for start, end in zip("A" + code[:-1], code, strict=True)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
yield sum(
path_length(code, 2) * int(code[:-1], 10) for code in input.splitlines()
)
yield sum(
path_length(code, 25) * int(code[:-1], 10) for code in input.splitlines()
)

View File

@@ -3,5 +3,57 @@ from typing import Any, Iterator
from ..base import BaseSolver
def mix(secret: int, value: int) -> int:
return secret ^ value
def prune(secret: int) -> int:
return secret % 16777216
def next_number(secret: int) -> int:
# Calculate the result of multiplying the secret number by 64. Then, mix this
# result into the secret number. Finally, prune the secret number.
secret = prune(mix(secret, secret * 64))
# Calculate the result of dividing the secret number by 32. Round the result down
# to the nearest integer. Then, mix this result into the secret number. Finally,
# prune the secret number.
secret = prune(mix(secret, secret // 32))
# Calculate the result of multiplying the secret number by 2048. Then, mix this
# result into the secret number. Finally, prune the secret number.
secret = prune(mix(secret, secret * 2048))
return secret
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
starts = [int(r) for r in input.splitlines()]
ends: list[int] = []
prices: list[int] = [0 for _ in range(2**16)]
for secret in self.progress.wrap(starts):
checked: list[bool] = [False] * len(prices)
hashed: int = 0
for i in range(2000):
last = secret % 10
secret = next_number(secret)
next = secret % 10
hashed = ((hashed << 4) & 0xFFFF) | ((last - next) & 0xF)
if i >= 3 and not checked[hashed]:
checked[hashed] = True
prices[hashed] += next
ends.append(secret)
for start, end in zip(starts, ends, strict=True):
self.logger.info(f"{start}: {end}")
yield sum(ends)
yield max(prices)

View File

@@ -1,7 +1,36 @@
from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools.graphs import iter_max_cliques
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
connections: dict[str, set[str]] = defaultdict(set)
for row in input.splitlines():
src, dst = row.split("-")
connections[src].add(dst)
connections[dst].add(src)
if self.files:
content = "graph G {\n"
for row in input.splitlines():
src, dst = row.split("-")
content += f"{src} -- {dst}\n"
content += "}"
self.files.create("graph.dot", content.encode(), False)
cliques: set[frozenset[str]] = set()
for node1, neighbors in connections.items():
for node2 in neighbors:
for node3 in connections[node2].intersection(neighbors):
cliques.add(frozenset({node1, node2, node3}))
self.logger.info(f"found {len(cliques)} cliques of size 3")
yield sum(any(node.startswith("t") for node in clique) for clique in cliques)
# clique = max(nx.algorithms.clique.find_cliques(G), key=len)
clique = max(iter_max_cliques(connections), key=len)
yield ",".join(sorted(clique))

View File

@@ -1,7 +1,170 @@
from typing import Any, Iterator
from dataclasses import dataclass
from typing import Any, Iterator, Literal, TypeAlias, cast
from ..base import BaseSolver
GateType: TypeAlias = Literal["and", "or", "xor"]
@dataclass(frozen=True, eq=True)
class Gate:
type: GateType
lhs: str
rhs: str
def __call__(self, lhs: int, rhs: int) -> Any:
match self.type:
case "or":
return int(lhs or rhs)
case "and":
return int(lhs and rhs)
case "xor":
return int(lhs != rhs)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
inputs_s, gates_s = input.split("\n\n")
wires: dict[str, int | None] = {}
for row in inputs_s.splitlines():
parts = row.split(": ")
wires[parts[0]] = int(parts[1])
gates: dict[str, Gate] = {}
for row in gates_s.splitlines():
parts = row.split()
assert parts[4] not in gates
assert parts[4] not in wires
lhs, rhs = sorted([parts[0], parts[2]])
gates[parts[4]] = Gate(cast(GateType, parts[1].lower()), lhs, rhs)
wires[parts[4]] = None
if self.files:
content = "digraph G {\n"
for wire in wires:
content += f'{wire} [label="{wire}"]\n'
for wire, gate in gates.items():
gate_n = f"G_{wire}"
content += f'{gate_n} [label="{gate.type.upper()}"]\n'
content += f"{gate.lhs} -> {gate_n}\n"
content += f"{gate.rhs} -> {gate_n}\n"
content += f"{gate_n} -> {wire}\n"
content += "}\n"
self.files.create("gates.dot", content.encode(), text=False)
wires_to_find = set(gates)
while wires_to_find:
wires_found: list[str] = []
for wire in wires_to_find:
gate = gates[wire]
lhs, rhs = wires[gate.lhs], wires[gate.rhs]
if lhs is None or rhs is None:
continue
assert wires[wire] is None
wires[wire] = gate(lhs, rhs)
wires_found.append(wire)
wires_to_find.difference_update(wires_found)
z_wires = sorted((wire for wire in wires if wire.startswith("z")))
self.logger.info(
"binary value is '{}'".format(
"".join(str(wires[w]) for w in reversed(z_wires))
)
)
yield int("".join(str(wires[w]) for w in reversed(z_wires)), base=2)
# e00 = x00 ^ y00
# z00 = e00
# r00 = x00 & y00
# e01 = x01 ^ y01
# z01 = r00 ^ e01
# a01 = x01 & y01
# b01 = r00 & e01
# r01 = a01 | (r00 & e01)
assert gates["z00"] == Gate("xor", "x00", "y00")
# normalized names -> gate name
m_gates: dict[str, str] = {}
def find_gate(type: GateType, lhs: str, rhs: str):
try:
return next(
wire
for wire, gate in gates.items()
if gate.type == type
and {gate.lhs, gate.rhs}
== {m_gates.get(lhs, lhs), m_gates.get(rhs, rhs)}
)
except StopIteration as ex:
self.logger.info(
f"gate {lhs} [{m_gates.get(lhs, lhs)}] {type} {rhs} [{m_gates.get(rhs, rhs)}] not found"
)
raise ex
# find the r00 gate (= x00 & y00)
m_gates["r00"] = find_gate("and", "x00", "y00")
swapped: list[str] = []
for i_wire, z_wire in enumerate(z_wires[1:-1], start=1):
i2d = f"{i_wire:02d}"
r0n = f"r{i_wire - 1:02d}"
m_gates[f"e{i2d}"] = find_gate("xor", f"x{i2d}", f"y{i2d}")
try:
z_gate = find_gate("xor", r0n, f"e{i2d}")
except StopIteration:
# gate xor not found -> one of the input gate has been swapped
#
# assume there is a XOR gate with the remainder, so it is the other
# input that has been swapped
assert gates[z_wire].type == "xor"
assert m_gates.get(r0n, r0n) in (gates[z_wire].lhs, gates[z_wire].rhs)
wrong_wire_1 = (
gates[z_wire].lhs
if gates[z_wire].rhs == m_gates.get(r0n, r0n)
else gates[z_wire].rhs
)
wrong_wire_2 = m_gates[f"e{i2d}"]
# we are going to fix all the gates (there is probably only 2 but
# eh...) whose wires needs to be swapped
self.logger.info(f"swapping {wrong_wire_1} <> {wrong_wire_2}")
switch = {wrong_wire_1: wrong_wire_2, wrong_wire_2: wrong_wire_1}
for wire, gate in list(gates.items()):
lhs, rhs = (
switch.get(gate.lhs, gate.lhs),
switch.get(gate.rhs, gate.rhs),
)
if lhs != gate.lhs or rhs != gate.rhs:
gates[wire] = Gate(gate.type, lhs, rhs)
swapped.extend((wrong_wire_1, wrong_wire_2))
z_gate = find_gate("xor", r0n, f"e{i2d}")
if z_gate != z_wire:
self.logger.info(f"swapping {z_gate} <> {z_wire}")
gates[z_gate], gates[z_wire] = gates[z_wire], gates[z_gate]
swapped.extend((z_gate, z_wire))
m_gates[f"a{i2d}"] = find_gate("and", f"x{i2d}", f"y{i2d}")
m_gates[f"b{i2d}"] = find_gate("and", r0n, f"e{i2d}")
m_gates[f"r{i2d}"] = find_gate("or", f"a{i2d}", f"b{i2d}")
assert len(swapped) == 8
yield ",".join(sorted(swapped))

View File

@@ -1,7 +1,40 @@
import itertools as it
from typing import Any, Iterator
from ..base import BaseSolver
def read_locks_and_keys(input: str):
locks: list[tuple[int, ...]] = []
keys: list[tuple[int, ...]] = []
for block in map(str.splitlines, input.split("\n\n")):
n_rows, n_cols = len(block), len(block[0])
if block[0] == "#" * n_cols:
locks.append(
tuple(
next(i for i in range(n_rows) if block[i][j] == ".") - 1
for j in range(n_cols)
)
)
else:
keys.append(
tuple(
n_rows - next(i for i in range(n_rows) if block[i][j] == "#") - 1
for j in range(n_cols)
)
)
return locks, keys
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
locks, keys = read_locks_and_keys(input)
assert len(set(locks)) == len(locks)
assert len(set(keys)) == len(keys)
yield sum(
all(c1 + c2 <= 5 for c1, c2 in zip(lock, key, strict=True))
for lock, key in it.product(locks, keys)
)

View File

@@ -4,4 +4,64 @@ from ..base import BaseSolver
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
def solve(self, input: str) -> Iterator[Any]:
blocks: list[tuple[int, int]] = []
frees: list[tuple[int, int]] = []
contents_0: list[int | None] = [None for _ in range(sum(map(int, input)))]
acc = 0
for i, c in enumerate(input):
if i % 2 == 0:
for j in range(acc, acc + int(c)):
contents_0[j] = i // 2
blocks.append((acc, int(c)))
else:
frees.append((acc, int(c)))
acc += int(c)
assert contents_0[-1] is not None
contents = contents_0.copy()
free_0 = next(i for i, c in enumerate(contents) if c is None)
next_b = len(contents) - 1
while free_0 < next_b:
contents[free_0], contents[next_b] = contents[next_b], contents[free_0]
free_0 += 1
while free_0 < len(contents) and contents[free_0] is not None:
free_0 += 1
next_b -= 1
while next_b >= 0 and contents[next_b] is None:
next_b -= 1
yield sum(i * c for i, c in enumerate(contents) if c is not None)
contents = contents_0.copy()
for block_start, block_length in self.progress.wrap(blocks[::-1]):
try:
i_free = next(
i_free
for i_free, (free_start, free_length) in enumerate(frees)
if free_start < block_start and free_length >= block_length
)
except StopIteration:
continue
free_start, free_length = frees[i_free]
contents[free_start : free_start + block_length] = contents[
block_start : block_start + block_length
]
contents[block_start : block_start + block_length] = [None] * block_length
if free_length == block_length:
del frees[i_free]
else:
frees[i_free] = (free_start + block_length, free_length - block_length)
yield sum(i * c for i, c in enumerate(contents) if c is not None)

View File

@@ -1,114 +1,48 @@
import argparse
import importlib
import json
import logging
import logging.handlers
import sys
from datetime import datetime, timedelta
from datetime import datetime
from pathlib import Path
from typing import Any, Iterable, Iterator, Literal, Sequence, TextIO, TypeVar
from tqdm import tqdm
from .base import BaseSolver
_T = TypeVar("_T")
from .utils.api import FileHandlerAPI, LoggerAPIHandler, ProgressAPI, dump_answer
from .utils.files import SimpleFileHandler
from .utils.progress import ProgressNone, ProgressTQDM
def dump_api_message(
type: Literal["log", "answer", "progress-start", "progress-step", "progress-end"],
content: Any,
file: TextIO = sys.stdout,
):
print(
json.dumps(
{"type": type, "time": datetime.now().isoformat(), "content": content}
),
flush=True,
file=file,
)
def find_input_file(folder: Path, day: int, target: Path | None):
if (path := folder.joinpath(f"day{day}.txt")).exists():
return path
class LoggerAPIHandler(logging.Handler):
def __init__(self, output: TextIO = sys.stdout):
super().__init__()
self.output = output
def emit(self, record: logging.LogRecord):
dump_api_message(
"log", {"level": record.levelname, "message": record.getMessage()}
)
class ProgressAPI:
def __init__(
self,
min_step: int = 1,
min_time: timedelta = timedelta(milliseconds=100),
output: TextIO = sys.stdout,
if (
target is not None
and (path := folder.joinpath(f"day{day}_v{target}.txt")).exists()
):
super().__init__()
return path
self.counter = 0
self.output = output
self.min_step = min_step
self.min_time = min_time
try:
return next(path for path in sorted(folder.glob(f"day{day}*.txt")))
except StopIteration:
...
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
total = total or len(values) # type: ignore
current = self.counter
self.counter += 1
dump_api_message("progress-start", {"counter": current, "total": total})
try:
percent = 0
time = datetime.now()
for i_value, value in enumerate(values):
yield value
if datetime.now() - time < self.min_time:
continue
time = datetime.now()
c_percent = round(i_value / total * 100)
if c_percent >= percent + self.min_step:
dump_api_message(
"progress-step", {"counter": current, "percent": c_percent}
)
percent = c_percent
finally:
dump_api_message(
"progress-end",
{"counter": current},
)
class ProgressTQDM:
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
return iter(tqdm(values, total=total))
class ProgressNone:
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
return iter(values)
return folder.joinpath(f"day{day}.txt")
def main():
parser = argparse.ArgumentParser("Holt59 Advent-Of-Code Runner")
parser.add_argument("-v", "--verbose", action="store_true", help="verbose mode")
parser.add_argument("-t", "--test", action="store_true", help="test mode")
parser.add_argument("-a", "--api", action="store_true", help="API mode")
parser.add_argument(
"-o",
"--output",
type=Path,
default=Path("files"),
help="output folder for created files",
)
parser.add_argument(
"-u", "--user", type=str, default="holt59", help="user input to use"
)
@@ -135,20 +69,24 @@ def main():
test: bool = args.test
stdin: bool = args.stdin
user: str = args.user
files_output: Path = args.output
input_path: Path | None = args.input
year: int = args.year
day: int = args.day
# TODO: change this
logging.basicConfig(
level=logging.INFO if verbose or api else logging.WARNING,
level=logging.INFO if verbose else logging.WARNING,
handlers=[LoggerAPIHandler()] if api else None,
)
if input_path is None:
input_path = Path(__file__).parent.joinpath(
"inputs", "tests" if test else user, str(year), f"day{day}.txt"
if input_path is None or not input_path.exists():
input_path = find_input_file(
Path(__file__).parent.joinpath(
"inputs", "tests" if test else user, str(year)
),
day,
input_path,
)
assert input_path.exists(), f"{input_path} missing"
@@ -166,7 +104,11 @@ def main():
else ProgressTQDM()
if verbose
else ProgressNone(), # type: ignore
outputs=not api,
files=FileHandlerAPI(files_output)
if api and verbose
else SimpleFileHandler(logging.getLogger("AOC"), files_output)
if verbose
else None,
)
data: str
@@ -179,7 +121,7 @@ def main():
start = datetime.now()
last = start
it = solver.solve(data.strip())
it = solver.solve(data.rstrip())
if it is None:
solver.logger.error(f"no implementation for {year} day {day}")
@@ -189,14 +131,11 @@ def main():
current = datetime.now()
if api:
dump_api_message(
"answer",
{
"answer": i_answer + 1,
"value": answer,
"answerTime_s": (current - last).total_seconds(),
"totalTime_s": (current - start).total_seconds(),
},
dump_answer(
part=i_answer + 1,
answer=answer,
answer_time=current - last,
total_time=current - start,
)
else:
print(

View File

@@ -1,18 +1,78 @@
from abc import abstractmethod
from logging import Logger
from typing import Any, Final, Iterable, Iterator, Protocol, Sequence, TypeVar, overload
from pathlib import Path
from typing import (
Any,
Final,
Iterable,
Iterator,
Protocol,
Sequence,
TypeVar,
overload,
)
from numpy.typing import NDArray
_T = TypeVar("_T")
class ProgressHandler(Protocol):
@overload
def wrap(self, values: Sequence[_T]) -> Iterator[_T]:
...
def wrap(self, values: Sequence[_T]) -> Iterator[_T]: ...
@overload
def wrap(self, values: Iterable[_T], total: int) -> Iterator[_T]:
...
def wrap(self, values: Iterable[_T], total: int) -> Iterator[_T]: ...
class FileHandler:
@abstractmethod
def make_path(self, filename: str) -> Path: ...
@abstractmethod
def notify_created(self, path: Path): ...
@abstractmethod
def _create(
self, path: Path, content: bytes, text: bool = False
) -> Path | None: ...
def create(self, filename: str, content: bytes, text: bool = False):
path = self._create(self.make_path(filename), content, text)
if path is not None:
self.notify_created(path)
def image(self, filename: str, image: NDArray[Any]):
import imageio.v3 as iio
from pygifsicle import optimize # type: ignore
path = self.make_path(filename)
iio.imwrite(path, image) # type: ignore
optimize(path, options=["--no-warnings"])
self.notify_created(path)
def video(self, filename: str, video: NDArray[Any]):
import cv2
path = self.make_path(filename)
fps = 5
out = cv2.VideoWriter(
path.as_posix(),
cv2.VideoWriter_fourcc(*"vp80"), # type: ignore
fps,
(video.shape[2], video.shape[1]),
True,
)
for picture in video:
out.write(picture)
out.release()
self.notify_created(path)
class BaseSolver:
@@ -23,15 +83,14 @@ class BaseSolver:
year: int,
day: int,
progress: ProgressHandler,
outputs: bool = False,
files: FileHandler | None = None,
):
self.logger: Final = logger
self.verbose: Final = verbose
self.year: Final = year
self.day: Final = day
self.progress: Final = progress
self.outputs = outputs
self.files: Final = files
@abstractmethod
def solve(self, input: str) -> Iterator[Any] | None:
...
def solve(self, input: str) -> Iterator[Any] | None: ...

View File

@@ -0,0 +1,49 @@
jio a, +19
inc a
tpl a
inc a
tpl a
inc a
tpl a
tpl a
inc a
inc a
tpl a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
jmp +23
tpl a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
inc a
tpl a
inc a
tpl a
inc a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
tpl a
inc a
jio a, +8
inc b
jie a, +4
tpl a
inc a
jmp +2
hlf a
jmp -7

View File

@@ -0,0 +1,28 @@
1
3
5
11
13
17
19
23
29
31
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113

View File

@@ -0,0 +1 @@
To continue, please consult the code grid in the manual. Enter the code at row 3010, column 3019.

View File

@@ -0,0 +1,94 @@
<[<<({{<{<[[([()][()()])<{[]<>}{<>}>><<<[]{}>>{<<><>>({}{})}>][<<<{}<>>([])>{<{}><()>}>]><(<{(()[]){[](
<{([({{[(<[({({}{})[()<>]}{{<>{}}[(){}]})]>({(<<<><>>{{}()}>)<<<[]><{}<>>><[{}[]]<<>[]>>>}))[{(<{([]
([<([({(<([<({()()}(<>[]))[<[]()>{<>{}}]>]<{{{{}{}}{()()})({[]}[<>{}])}>)>)}){<<{{(<<<()<>><<><>>>
[{{[<<[{([[{{[<>{}]<()<>>}[(()<>)[{}<>]]}<<[{}[]]([]<>)>{{[]{}}{()()}}>]][[{<({}{})<[]{}>>
<<{{<([(((([{<[]<>>{()<>}}(<<>[]>{(){}})]([{{}<>}<[]>](<[][]><{}()>)))))[({{{<[]{}>[()]}<<<><>>
<(<[{(<[{{{<{[[]<>]{<>()}}><[[{}()][(){}]]>}}<[<[<()()>({}<>)]><[{[]()}([][])](<(){}>[<><>])>]{
{[[<{{<<[[<<(({}<>){<><>})[[<>()][[]{})]>[[[{}[]]<<>>]{(<>[])}]>{{<<()[]>{<>{}}>[{[]<>}<[]{}>]
({[((((([{[({[{}[]]<[]()>}[({}{})<<>[]>])<[(()[])<{}()>]{[[]<>]{[]()})>](([({}<>)(()[])][<[]{}>])
{[[{[({(<<{<([{}<>])<({}<>)({}<>}>>[<[{}()]([]<>)>((<>())<[]{}>)]}<([(<>())[(){}]]{[{}<>]<[][]>}){<{<><
(<{<<[<<([[([<<><>>]<<{}()><[]<>>>)]][{(({<>{}}(()())))(<[()()]<[]()>>)}[[<<<>()><<>{}>>([{}<>][{}[]])]{<{(
<<[({{{{{[<([((){})([]())]<((){})({}[])>)[{[{}()]{[]<>}}]>([<{{}<>}><({}<>)({}[])>]<[{<>{}}
(([[{{({{{[<<{[]()}({})>{{{}()}[[]<>]}>{<([])>[[[]{}]]}](([<[]{}>]<<[]<>><{}[]>>))}}}(([[[{[<><>
<<[(<[{{<((<[<()>[<><>]][[<><>]([]())]>[({<>})<<()<>><{}[]>>])[[(<[]<>>([]())){{<>[]}(()())}]]){(<(<[]<>>
({[<<[[{<[[{{[()()]{()[]}}}]<{([{}{}]{[]()})[[()[]]<<>>]}>]>}[({((<{<><>)>{{[]()}{{}[]}}){([{}[]]<{}{}>)<
([{{<{[(<[<<[({}())({}())]>>[{[<<>[]>[<>()]]<(<>[]){()[]}>}(<<<>[]>[<>[]]>{<<>[]>{{}()}})]]{
<[{{<[((<([[{<<><>>{()}}{<{}[]><[]()]}]])<{({<()>{()[]}}(<(){}><[]<>>)){[({}[]){<>[]}]}}<<([()()]<()(
<{<{[(({(({({<[]>([])}<<()<>>{<>()}>){[[()[]]<{}()>]{({}[])[()<>]}}}<[<<{}()><[]{}>>({[][]}[()<>])}{<<[]
<[{{[<({(<[<[[()<>]({}[])]([{}[]]([]))>]{[{{<>[]}[[]{}]}(({}<>)<()[]>)]<<[()[]]>({(){}}<{}()>)>}>)}<<[[[[<<>(
{{<(<[((({(<[<[]{}>[(){}]](<{}<>>((){}))>){(({[]{}}<{}[]>){{<><>}[[]{}]}))}<([<(<>)>[<<>{}>[{}
<([({[<[(({[(({}))(<{}()><<>{}>)]<[{{}[]}{{}<>}]{[{}()]{{}()}}>})([[<(<>())({}{})>[<[]<>>[
{((<<<{<(<[[[<{}<>}]<(<><>)>]]<(([(){}]{[]()}))<({{}<>}<()<>>){<()<>>{(){}}}>>>{({({()[]}[<>
([<[[((<(<[<([{}[]])>{<(()<>)((){})>{<<>>(()<>)}}][{[(<>[])(<>[])]}[[{{}[]}[()()]]<<[]<>>{(){}}>]]><({(
[{<([[[{([{<<([]<>){<><>}>[<(){}>]><{[<>[]](()<>)}[{()()}]>}<({{{}{}}}{[{}{}]<<>()>})<(<[]<
(<({[{{[[(<[<(<>[])[[][]]>]{((<>[])({}<>))({[]<>})}>({<[()[]]]<{()[]}>})){(<(<<>[]>[<>{}])>{[({}<
(<{<(({[(({[[<<>{}>({}<>)]{({}{}){(){}}}]{(<(){}>[[][]])<{()<>}>}}[[[{[]{}}[()]]](([[]()][(){}]))])
([({<{[{<[{<({{}()}{{}()})>}]>}<<[[{{((){})<<>{}>}(({}[]){<>[]})}]]><[{{<({}<>)(()())>[{<>()}{{}()}]}{<{
<[{[({[<<[[<<{{}{}}<{}{}>>([<>][(){}])><<<{}{}>>>]]{([{[[]()][[][]]}<{[]<>}>]<<[<>[]][[]()]><<()[
[{({{{<<{[{([[()]({}[])]{[()()]})(((<>{})[[][]])<{{}{}}>)}]}>>}[((({{<([[]()][[]])}}{{<({}[])[{}
{[({<{<<{[(([<<>[]>({}{})>))]{(<{{{}<>}<<>{}>}>)}}><(<(({([]())(<>[])}{{[]()}{[][]}})<{(()[])[<>{}]}>){({
[<((<[<<(<<{<(<>)<[]{}>>[<[]{}><[]()>]}<((()[])((){}))[({}[]){[]{}}]>>([<[{}()][[]{}]>{{()[]}}][{[{}<>]<[]<
[<[({({[([{<(([]<>)({}[]))<{{}[]}[<>[]]>><[<{}[]>({}<>)]<(())>>]]([[[{[]<>}({}[])](<[]{}>{<>()
{[<<{(<[{(<[({[]{}}{[]{}}}]({<()[]><<>[]>}{<[]()>[{}{}]})>)}{[{(((<><>))(<[]<>>(()[])))[[<[]()>[{}()]](((
({[<<([[{(<<<{<>()}<{}<>>>[[[]{}){()}]><[[(){}]<[]<>>]({(){}}[[]{}])>>{[{[()<>][{}()]}][[[{}{}]<<>()
([(<((<{[[[[[{{}()}{()[]}]]<([[]<>])<[()<>][[][]]>>]][{([{()[]}(()[])]({<>{}}{[]()}))}({([[]
(({{[<<{(([{<{()()}[[]()]>{<()<>>[[]{}]}}{[<()()>[[]{}]]{([]())({}[])}}][(<{<>[]}[()()]><<()>(()())>)
[<(<{{{<{(<{(<<>[]><<>()>){<{}()><()<>>}}(<[<>{}]{<>{}}><[{}{}][<>()]>)>)}{{{(<(<><>)(<>())><{[]}([][
<<<{([[<[[[(([[]{}])<({}())(<>())>)({[<>{}]{[]()}}<<(){}>{(){}}>)]{([(()()>({}[])]((<><>)<
{{({<<<[[<(<{{{}<>}({}[])}{<{}<>><<>()>}>{({{}<>}({}()}){[[]<>]([]{})}}){{[[[][]](()())]}([<<>{}
<<[[<{{({<{[{<<>()><()()>}<[()<>]<()()>>]{(([]<>)[{}[]]){{{}<>}{[]<>})}}>{{<[<{}<>>({}())]
({[<[[{<<{{[{(<>{})}]{<[{}{}][[]()]>[[[]{}][()()]]}}[(<<{}[]>{<>[]}>{{{}<>}[(){}]}){{[<>{}]<{}{}>}{
(([<{<[[([[(((()<>))({{}[]}<()<>>))[[({}[])(())]<{(){})>]][{((()){[]()}){{()<>}{<><>}}}[{{()}{()[]}}]]]){{(({
{<[{(<[{[{{[<([]<>)<{}<>>>]}}]}]><{{<[[([{<>()}[[]{}]]({{}()}{<>{}}))]{([<[]{}>(()<>)]<[[]<>]([])
{[<<[<(<[{<<[{{}()}{<>{}}](<{}<>>({}<>))>><{<({}[])<()<>>>[[<>[]][<><>]]}[<(<><>){{}<>}>[<[]()>{[]}]]>}]{[<{<
(<({{[{<(<<<{[{}<>]({}[])}{[[]{}]<()[]>}>(<[[]()][()()]><[()[]][<>()]>)>>[(<<<{}()>{<><>}>>){<<{<><>}(
(<{[[{{<(<(<({{}<>}{{}()}){[()<>]<{}[]>}>[(<{}{}><[]()>)<({}<>){()()}>]){[[([]{}){{}[]}]<[{}{}]<[][]>>][{<()
[(<([({[[[<[[[[][]][{}{}]]([{}()]{<>{}})]{<{()()}<()<>>><{{}<>}<(){}>>}>]{{[([[][]]<()()>)
(<(<<({{(<[{{[()<>][<>{}]}[<[]<>>]}<<{[]{}}>[[{}()]{()()}]>]{[([()()]<<>>)({()<>}[<>[]])][{{[][]}(<>())}
[[((({(({{{[{{<>[]}[<>{}]}[[{}<>]([]())]][{(<><>)}]}][(<{{[][]}(<><>)}<[[]()]>>([[{}()]<[]<>>][<[][]>[()()]])
<{({(([((<[<{(()[])<[][]>}{<<><>><[]<>>}><<([]<>)([]<>)>>]{[<([]{}]{<>{}}>]}>[{[(([]{})[{}{}])[<<>{}
{(([<{(({<({{{{}{}}}[[[]]{[]()}]}{<[[]]<<>()>>(<()>[()<>])})>{{[(([]<>){{}()}){[{}]{{}<>}}]}([[([]{})]<[[](
<{[({<{[[[{{{[{}{}]}}([<[][]>[<>[]}][<<>()>{()}])}((<({}[])[<><>]>(((){})[{}()]))[[<{}[]>[(
{<[([(<((<<<<[{}[]]({}{})>((()())[(){}])><([[]{}][()<>])<<<>[]>([]<>)>>><[[((){}){[][]}}{[[]]
[{(<{<{<<({({(()<>){{}[]}}([[]()]{()<>}))(([[]<>](())))}<{({()[]}{[][]})}])>>}>(({[{[{{([]())(<><>)
<[[<([<<({[[(<[]()><<><>>)({<>})]{{<<><>>[()[]]}([()<>](()[]))}]((<{<>{}}<(){}>>))}<<[(<(){}><<>{}>)[[()[
<[{<<<{[{<{(<[<>{}][{}()]>((<>[])[<><>]))<[({}<>)<<>[]>]<(<><>)(<>{})>>}({<<[][]>([]<>)>([<>{}><<>[]>
[<<(<{((<([<({{}{}](<>[]))[[()<>]([][])]>((([])<(){}>))]){<{{<()[]>(()<>)}(<[]<>>([][]))}><[([(
{[[[{{<[[{<[<<<>[]>{<><>}>{<<>{}><[]<>>}]((<{}()>(<>[])))><<{<<>{}>{(){}}}([{}{}]<<>()>)><[{<>{}}]>>}]
((((([[(([{<({()[]}<()<>>)><<<<>()>({}{})>{{(){}}(<>[])}>}<<<{<><>}>><(((){})<[]()>){{()()}({}<>)}>
<<[<[{<[<[<{[[()[]]({}[])]{<{}<>>[{}{}]}}[([[][]])[([]())[[]<>]]]>[(<<{}()>(()<>)>{{[]{}}<{}{}>})({([
[{<(<{(<[<[[[{()<>}[[][]]][(()<>){{}[]}]](<{<>{}}[()[]]>(<[]>[{}()]))]([([<>{}]<()[]>){{<>{}}{()
<[<({<({[{({{(<>{}){[]()}}<{[]<>}[(){}]>}({[<>[]]{[]<>}}))<{([{}[]])(({}[]){(){}})}[{[[]<>]}[({}())[(){}]]]
[[[{<[((<[<{([[]<>]{<><>})<<{}[]>[[][]]>}{[[<>{}]]<<{}>([]<>)>}>{<{{<>[]}}[(<><>)[[]<>]])<{[(){}]<()()>}>}]{{
([(<({[[{<([{{<>{}}([]<>)}[[{}[]]{<>{}}]](<[{}<>]{[]()}><((){})[[][])>)){({{{}{}}{{}{}}}[<{}{}>({}<
<[{(((({[[{{({{}[]]<<>>)<{[]()}<()<>>>}((<(){}>([]{})))}{({[()()]([]<>)}<([]<>)[()()]>)<[{{}[
<[({[<<<<{[({{(){}}[{}<>}}(<<>[]>[[]()])){(<()[]><<>()>)}]}><({<[{()()}]({[]{}}<{}>)>[({[]
<<([[<{{([{<{([]{})[(){}]}{([]{})<{}[]>}><<(<>{})[<>()]>({{}<>})>}<[(<<>()><{}()>)<{()<>}<<>>
<[[[({[({<[{((<>[]]<{}<>>){<<>()>{[]()}}}<{<{}{}>[<>{}]}{{{}[]}{{}()}}>]{<{{()()}<[]<>>}((
[[({(([[(([<[([]<>){{}()}]>(<{{}{}}(()<>)>[{<><>}{{}<>}])]{{<[[]<>]>[[{}()]]}([<{}()>][([]{})<{}
<(([<{([[<[((([]<>)<<><>>){[[]()]({}{})})({{(){}}((){}]}({{}()}))]([<{<>()}<[]{}>><{[]{}}<(){}>>])>
<<[[{<<{[(<<{{[][]}[[]<>]}<<[][]><<>[]>]>([{<>}[<>[]]]{{[]()}<{}()>})>{({({}<>){[]<>}}[{<>{}}[<>[]]
((<<<<[[(({[[<()<>>[(){}]]{(<>()){<>{}}}]}{(([<>[]><<>()>)<<(){}><()()>>)[(<{}{}>((){}))[{[][]}(()<>)]]})){
[({(<{{<<<{<[{[]()}<<><>>][[()[]][<>[]]]>}>([([<[]<>>]{<<>()><()<>>})({<{}[]><()()>}[[[]()]])]<{<(()
([(<({[([{{{((()())[<>[]]){{[]<>}[{}{}]}}([{()<>}<{}()>])}}<{[({(){}}(<><>)}<(<>())>][<[(){}]{(){}}
{[[{((((([[{{[[]{}]({}{})}{[[]<>](()[])}}[{[()()]}((<>{})<(){}>)]]{(<{<>()}<(){}>>){(<{}()>{{}<>})({<>(
([[{<[<[[<<{<{()<>}[<>()]>[[[]{}]{{}{}}]}<[{{}[]}]>>{<{{<>{}}([]())}>[(<<>()>)(<{}()>[<>()])]}>{({<[()<>]
{(([{[{{(({(<[()[]][<>[]]>)<[(()<>){{}{}}]>}[(<<{}{}><{}<>>>){<[()()]<()()>>({[][]}<<><>>)}
<[{<(<<[{[({[({}<>)<<>[]>](<<>()>(<><>))})[([{<><>}<()()>])]]}]><<[<({{{<>}}<([]][<>{}]>}[<(())<<><>>>])
(<(({<[[{{[<[{<>[]}[()<>])((()()){{}[]})>]}}]]((<<<((({}{})<{}>){{{}<>}{<>}})[({{}()}{<>()}){{{}()}}]
{[<[{(([<[{{[([]{})<[][]>]{([][])[()<>]}}<<(()<>)>>}[[(({}{}){{}<>})]]]{{[(<{}{}>[{}()])({()()}
[{{((<<[[((<<{[]<>}<{}>>(<{}<>>{[]()})>({<()>([][])><[{}{}]{{}()}>))(({([]<>)([]())}<{[][]}<()>>)
({([{({[({[<({{}{}}([]()))(((){}){{}{}}>>({(()()){{}()}})]<[[{{}{}}<{}[]>]{<[][]><<>[]>}]({<<>[]>
{[({[{{[<[{([<{}{}>[(){}]](<{}<>>{{}()}))([([]()){()[]}]([{}<>]{<>{}}))}]>[{{[[{[][]}]]<((()[])([]{}))<[()
[[(({{{(([[[{[()()]([]())}((<>){{}{}])]]({<[<>]({}{})>([<>{}]{{}{}})})]))}[(<[[(([[][]]{<>{}}){{(){}}})
<(<({<{<[<(<{<()><<><>>}<<{}[]>([]<>)>>)<{<{[]{}}[{}()]>}([(()[]){[]<>}]{{<>()}{{}<>}})>}{[[{(()[]){(
[(<(<([{<[{<(<()>([]<>))[{()()}<{}<>>]><{([]())<<>()>}(<{}{}>[()[]])>}]<{<({[][]}<[]()>){{{}[
[<({<{(<<[[[<{()[]}{{}[]}>{[<><>]}]{[<()<>>({}<>)]}]][[{<[<>[]>([]())><{()()}{[]{}}>}([({}{})[[](
<<[[{{<<([[{[(()())[()]][[{}[]]{{}}]}[[({}<>){[]{}}]{{<><>}[()[]]}]]{<[(<>())]>{({{}()}(()<>))}}])
{<[{({[({{<({[{}()]([][])}([{}<>]{[]()}))[<(<><>)([]{})><{()()}(<>[])>]>{{(<[]<>>[{}])}[<{(){}}(<>
<{{(({([[<[{<(<>)([]{})>{<<>{}>{(){}}}}]{[<([]{})<{}{}>>[[<>{}]{()<>}]][{{<><>}([]())}({()<>}<()>)]}>]
{<{[{[({[(({<[{}()]({}[]}>[<()>]}{(<<>>)}))]})]{<{<{[[{(<>())[()[]]}[[{}{}][[]]]][([[]()]<{}<>>)[<[]{}>([]<>
((<{{<[[<{{([([]{})<<>()>]<(<>{})(()<>)))([{()()}(<><>)]<(<>)(<>{})>)}([<{(){}}<<>{}>>]<[([]<
[<<<{(((<<{([<()[]>({})]({<>()}(()())))({([])<<>>}((()[])[()[]]))}{<[<{}()>]<[{}{}]({}<>)>>{<<
[[[<<<<[{(<<[{{}[]}]<(<><>)(<>[])>><<<<><>][[][]]>(([]{}))>>([<[[]<>]<[]<>>><{()<>}([][])>]))}<(
<<{[[[{{{{[[(([]{}))([<>[]]<()>)][{(<>()){[]()}})]{(({<><>}{<>[]})[<<>[]>[()()]])}}}<{(<((<><>)(<>{}))<{

View File

@@ -0,0 +1,10 @@
4738615556
6744423741
2812868827
8844365624
4546674266
4518674278
7457237431
4524873247
3153341314
3721414667

View File

@@ -0,0 +1,26 @@
xq-XZ
zo-yr
CT-zo
yr-xq
yr-LD
xq-ra
np-zo
end-LD
np-LD
xq-kq
start-ra
np-kq
LO-end
start-xq
zo-ra
LO-np
XZ-start
zo-kq
LO-yr
kq-XZ
zo-LD
kq-ra
XZ-yr
LD-ws
np-end
kq-yr

View File

@@ -0,0 +1,50 @@
14567892107654348943218769016567650154541210421036
03456783298993267654309458122168743243450344323145
12567654456780154327812367433059804012769455410234
03498012349876065016901056544965418765898766708943
12345101212145076545411034545878329658981055899854
09876876705034187632110123656789421047432765988765
67878965896123298901001656743078431236598894012034
50965014387654567650012349856127340012367653213125
41234321298347656543243492347833458903458743404987
30087430178298343650156781016942167812769252985676
21196567069121243761056432679851043212890101679854
33203498451080252852347841589765654301285234521763
14512432347890161943210950432106567610106501430012
01693501036543270856102167645656788943217432567897
32789672321015389987343078938765497654998549879898
45679987410234578101256560129812321067801456734787
03478756500187665432107452121901054328982340125676
12568767891098987013898943030810167017654321010210
21079458910127698123965436945107878988901267124378
30980349821034787654876327876716901210985458095469
45671210136765693454761016329825432345671329186954
12789800345876548763876125419434501654510413277843
03543211238989439012985630308765898746701204567832
14623400141232323101234521678906567239874343236901
25710519850541014143219834567611452108965650145690
76897678769650001054301712106320143210345789036781
87678989678742112363212601235431234321276988325432
90549876349233678478004592347842389123489676710876
21632305256104569589123487656965476016512369856945
52301014107012345670149874565456365017603450747832
65490123458912396501234563432147454328214921632401
86985432167905487654341012563038901039309834521321
97876789001856778761232127678127612398712701100410
89810678012760869890103238999210543125625632234509
76701549013451987217876434785695610034534548765678
05432432174012987301987325654780123435210159854789
12980120985123673458986510783279234987346543123898
43878921976034562567603412892168765679857012010187
34565437852178901070412103601001410012768001921236
45430566543065012181543014580432321003459122876545
50121098767654327892678877698569457654219433468904
23292145678954218983019988087658768894308596567812
14587239010563007654128679112565489765107687656521
05674678323472167659436543203474321087230156785430
96983565401089898748540987654589321098543243896543
87874328992396701037621296562105465407698012565432
78765017687478632128760345673456978312789801478521
29653078596569543019656921087567889213456700329650
12532169430430156010567892193610367804765410418789
03445678321321060123456543012323458912894321001678

View File

@@ -0,0 +1 @@
2 77706 5847 9258441 0 741 883933 12

View File

@@ -0,0 +1,140 @@
QQQQQQCCCCCCCCCCCCXXXXXXXXXXXXXXUUUUUUJEEJJJJJQQQQIIISSVVVVVVVVVMMMMMMMMMMMMMMMMMMVVVVVWWWWFFFFFFFFFFFFAFZZZZZZZZZZZMMMMMMMMMMMMMMMMMMVMMQQQ
QQQQQCCCCCCCCCCCCCCCCXXXXXXXXXXUUUUUUUJJJJJJJJIIIQIIIIVVVVVVVVVVMMMMMMFMMMMMMMMMMMMVVVWWWWWFFFFFFFFFFFFFFZZZZZZZZLLZMMMMMMMMMMMMMMMMMMMMQQQQ
QQQQQQCCCCCCCCCCCCCCCCCCCXXXXXXUUUUUUJJJJJJJJJIIIIIIIIIVVVVVVVVMMMFFFFFMMMMMMMMMMMWWWWWWWWFFFFFFFFFFFFFFFZZZZZZZZLLZMMMMMMMMMMMMMMMHMQQMQQQQ
QQQQQCCCCCCCCCCCCCCCCCCCXXXXXXXUUUUUUUJJJJJJJJIIIIIIIIIIVVVVVVVVMMMMFFFMMMMMMMMMMMWWFFWWWWFFFFFFFFFFFFFFFZZZZZZZZMMMMMMMMMMMMMMMHHMHQQQQQQQQ
QQQQQQCCCCCCCCCCCCCCCCCXXZXXXXXXUUUUUUJJJJJJJYIIIIIIIIIIVVVVVVVVVVVFFFBBBMMMMMMMMFFWFFWWWWFFFFFFFFFFFFZZZZZZZZZZZLLMMMMMMMMMHMMHHHHHQQQQQQQQ
QQQQQQCCCCCCCCCCCCCCCZZZZZXXXXXXXUUUUUJJJOJJJYIIIIIIIIIVVVVVVVVVVVBFFFBBBBMMMMMMFFFFFFWZWWWWFFFFFFFFFFZZZZZZZZZZLLMMMMMMMMHHHHHRHHHHHHQQQQQQ
QQQQQQCCCCCCCCCCCCCCCZZZZTTXXXUUUUUUUUUUUOJJJJIIIIIIIIIIVVVVVVVVVVBBFBBBBBMMMMMMFFFFZDZZZWWWFFFFFFFFFFZZZZZZZZZZLLMMMMMMMMMHHHHHHHHHHHQQQQQQ
QQQQQQCCCCCCCCCCCCCCZZZZPTTTXXXXXUXXUUUUUOOJUUUUUIIIIIIIVVVVVVVVVBBBBBBBBBBBMMMFFFFFZZZZWWWAAAFFFFFFFFZZZZZZZZZZZLMMMMMMMMMMMHHHHHHHHHQQQQQQ
QIIIIIICCIWCCCCCCCCZZTTTTTTTTXXXXXXXXUUUUOXJUXUUUIIIQQQQQQQVVVVVVBBBBBBBBBBBMFFFFFFFZZZZAAAAAFFFFFFFDZZZZZZZZLLLZLLLMMMMMMMMMHHHHHHJJQQQQQQQ
IIIIIIICCIIMMQCCCCZZTTTTTTTTXXXXRRXXXUUUGXXXXXUUUIIIQQQQQQQVVVVVVBBBBBBBABMBMFFEFFFFFZZZZAAAAFFFFFFFDAZZZAAAALLLLLLMMMMMMMMMHHHHHHHJJQQQQQQQ
IIIIIIIIIIIMMMCCCCTTTTTTTTTXXXXXRTRXXXRRRXXXKKUUUUIOQQQQQQQVVVVVBBBBBBBBBBMMMFFFFFFFZZZZZAAAAFFFFAAFFAZZAAAAALLLLLLLLLLMMMMMHRHHHHHHJJJQQQQE
IMIIIIIIIIINNNNNNNNTTTTTTTTTTXRRRRRRRRRRRXXXXKKUUKOOQQQQQQQTVVVVBBBBBBBBBMMMFFFFFFFFZZZZZZZAAAAAAAABAAAAAAAAALLLLLLLLLMMMMMRRRRHHHPIJJJJBBBE
GIIIIIIIIIINNNNNNNNTTTTTTTTTTXRRRRRRRRRRXXKXXKKUUKOOQQQQQQQTVVVBBBBBUUUUMMMMFFFFFFFFFZZZZFAAAAAAAAAAAAAAAAAAIILLLLLLLLFMMMMRRRRHHIIIJJJJBBBB
GIIIIIIIIIINNNNNNNNTTTTTTTTTXXRRRRRRRRRXXXKKKKKUUKOOQQQQQQQQQBBBBBBBUUUUMMMMFFFFFFFFFZZZFFFAAAAAAAAAAAAAAAAAAATLLLLLLLFMMMMRRRRIIIIIJJBJBBBB
GIIIIIIIIIINNNNNNNNTTTTTTTTYXYRRRRRRRRRRRRPKKKKKKKOOQQQQQQQQQBBBBUUBUUUVUMMMFFFFFFFFFZZHFAAAAAAAAAAAAAAAAAAAGTTTLLLLJLLJMRRRRRIIIIIIIBBBBBBB
GGGIIIIIIIINNNNNNNNNNNNNTTCYYYRRRRRRRRRRRRPKKKKKKKKKQQQQQQQQQBBUUUUUUUUUUMMMMFFSFFFFFFFFFAAAAAAAAAAAAAAAAAAAATTTLLLLJJLJRRRRRRIIIIIIIBBBBBBB
GGGIIBIIIIINNNNNNNNNNNNNTTCYYYYYRRRRRRRRRRKKKKKKKKKVQQQQQQQTUBBUVUUUUUUUUUUMMMFFFFFFFFFFFAAAAAAAAAAAAAAAAAAATTTTTTTJJJJJRRRRRRRPIIIIIBBBBBBB
GGGGGGIIIKINNNNNNNNNNNNNTTCYYYYYRRRRRRRRRKKKKKKKKKKKQQQQQQQFFFFFFFFFFUUUUJUFFFFFFXXFFFFFFAAAAAAAAAAAAAVAEACATTTTTTTTTJJRRRRRRRRPIIZZIBBBBBBB
GGGGGGIIKKKNNNNNNNNNNNNNTTTYYYYYRRRRRRRRHKKKKKKKKKKKQQQQQQQFFFFFFFFFFUQUUUGGPGFFFFXFFFAFAAAAAAAAAAAAAAAAERCTTTTTTTTTVVVNNNRRRRRPIIZLLPBWBBBB
GGGGGGGKKKKKPPNNNNNNNNNNPPPPPPYYRRRRRRRHHHKKKKKKKKKKTTTTTTTFFFFFFFFFFUUUUHGGGGFXFXXFFFAAAAAAAAAAAAAAAAAARRRTTTSVTTTVVVVNNNNNRRRRNILLLLWWBBBB
GGGGGGKKKKPPPPNNNNNNNNNNPFPPPPPPRRRRRRRRRRKKKKKKKKIIITTTTTTFFFFFFFFFFOUUHHGGGGFXXXXXFFFAAAAAAAAAAAAAAAARRRRTTAVVVVVVVBVVVNNNNVVLLLLLLLWBBBBB
GGGGGIIIKKKKPPNNNNNNNNNNPPPPPPPPPJJJIRRIIIKKKKKKKIIIITTTTTTFFFFFFFFFFODUHHGGGGGXXXXXXRFAAAAAAAAAAAAAAARRRRROTTVVVVVVVVVHVNNVVVVVVLVVLBBBBBBB
GGGGGGIIIKIKPPNNNNNNNNNNPPPPPPPPPJJIIIIIIIIIGIIIKIIIIITTTTFFFFFFFFFFFYDYHGGGGGXXXXXXXXCAAAAAAAAAAAAAAARRRRRRRRRRVVVVVVVHVVVVVVVVVLVVRRBBBBBB
GGGGIIIIIIIKPPNNNNNNNNNNPPPPPPPPPPJIIIIIIIIIIJIIIIIIIIPTTTFFFFFFFFFFFYYYHGGGGGGGXGXXXXCAAAAAAAAAAAAAARRRRRRRRRRVVVVVVVVHYVVVVVVVVVVVRRBBBBBB
GGGHIIIIIIIIPPNNNNNNNNNNPPPPPPPPPPIIIPPPPPPIIJIIIIIIIIIIGTFFFFFFFFFFFYYBBBBGGGGGGGGGCCCCCACAAAAAAAAAARRRRRRRRRRVRRVVVVVHYYVVVVVVVVVVVRRBBBGB
GGGGFFIIIIIIZZNNNNNNNNZPPPPPPPPPPIIPIPPPPPPIIIIIIIIIIIIIITFFFFFFFFFFFYYBBBBGGBGGGGCCCCCCCCCAAAAAAAARRXRRRRRRRRRRRRVVVVVVWYVVVVVVVVVVRRRBBGGG
TGGGIIIIIIIIZYNNNNNNNNZPPPPPPPPPPIIPPPPPPPPIIIIIIIIIIIIIDDFFFFFFFFFFFHHBBBBJGBGGGGCCCCCCCCAAACCCADDRRRRRRRRRRRRRRRRVLYYYYYYYVVVVVVVVRRGGHGGG
GGGIIIIIIIIIIINNNNNNNNPPPPPPPPPPPIIPPPPPPPPIIIIIIIIIIIICCDFFFFFFDDHHHHHBBBBBBBGGGGGGCCCCCCCCCCICDDDRRRRRRRRRRRRRRRXVLLYYYYYYVVVVVVVVVGGGHGGG
GGGIIIDIDIIIIYNNNNNNNNPPPPPPPPPPPPIIIIPPPPPIIIIIIIIIICCCCCFFFFFFDDHHHHBBBBBBBBBGGGGGCCCCCCCJJCCDDDDRRRRRRRRRRRUUUUYYYYYYYYYYYMMVVVVVZZGGGGGG
DGGGDDDDDIIIYYYYYYPPPPPPPPPIPPPPPPPIIIPPXXPPPXIIIIIIIICCCCFFFFFFDDDHHBBBBBBBBBBGGGGGCCCCCJJJJCDDHHHJHNNRRQRRRSSUUUUSYYYYYYYYYYYAVVVVVZGGGGGG
DDDDDDDDDDDYYYYYYYYYPPPPPPPIIPPPIIIIIIXXXXXPXXIIIIICCCCCCVFFFFFFDDDDHBBBBBBBBBBBAAGGCAADDDDDDDDDHHHJHNHHRRRMMSSUUUSSYYYYYYYYYYYQVVXXGGGEGGGG
DDDDDDDDDDYYYYYYYYYPPPIPPIIIIIIIIIIIIIIIXXXPXXXBBXCCCCCCFTFFFFFFDDDDHDBBBBBBBBBAAAAAXAAAAAADDDHHHHHHHHHHHMMMSSSUSSSSYYYYYYYYYYYQQVQQQGGGGGGG
DDDDDDDDYYYYYYYYYYYPPPIIIIIIIIIIIIIIIXXXXXXPXXXXXXCJCCCFFFFFFFDDDDDDDDDBBBBBBBBAAAAAAAAAAAADDDDHHHHHHHHHHMMHDSSSSSSSYYYYYYYYYUYYQQQGGGGGGGGG
DDDDDEDDYYYSYYYYYYYYTYIIIIIIIIIIIIIIIXXXXXXXXXXXXCCJCCCCFFFFFFDDDDDDBBBBBBBBBBBAAAAAAAAAAAAAAHHHHHHHHHHHHHMHHSSSSSSSYYYYYYYYYYYLQQQGGGGGGGGG
DDDDEEDDYYYYYYYYYYYYTYIYIYIIIIIIIIIIIIXXXXXXXXXXYJCJCCFFFFFFFFFDDDDDZZBBBBBBBBBAAAAAAAAAAAAAAHHHHHHHHHHHHHHHJJIBSSSSSYYYCYYQQQFQQQQNGGGGGGGG
DDDEEEEEEEYWYYYYYYYYYYIYYYIIIIIIIIIIXXXXXXXXXXXXJJJJJJFFFFFFFFFDDDDDZZBBBBBBBBAAAAAAAAAAAAANHHHHHHHHHHIIHHHJJIIBSSQYYYYYYQYQXXQQQQAKKGKGGGGG
EEEEEEEEEEEWWYYYYYYYYYYYYYYYIIIIXIXXXXXXXXXXXXXXXJJJJFFFFFFFFFFDDDDDDZZBBBBBBBAAAAAAAAAAAAAATHHHHHHHHHIIIIIIIIIIIQQQQYYYYQQQXXXQQQKAKKKKKKGK
EEEEEEEEEEEWWYWYYYYYYYYYYYYYYYIIXXXXXXXXXXXXXXXXJJJJFFFFFFFFFFFDDDDZZZZZBBBBBBBBAAAAAAAAAAAAAAHHHHHHHIIIIIIIIIIIIIQQQQQYYQQQQXQQQQKKKKKKKKKK
EEEEEEEEEEWWWWWYYDYYYYYYYYYYYYYIIXXXXXXXXXXXKKKJJJJJFFFFFFFFFFFFDDDDDZZZZZZZBBBBAAAAAAAAAAAAAEMHHHHHHIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQKKKKKKKK
EEEEEEEWWWWWWWWWWYYYYYYYYYYYYYYYIXNNNNXXXXXXXXJJJJJJJFFFFFFFFFFFFDDTZZZZZZBBBBBBAAJAAAAAAAAMMLLLLLLLLIIIXIIIIIIIIIQQQQQQQQQQQQQQQQQQKKKKKKKK
EEEEEEKKWWWWWWWWWYYYYYYYYYYYYYYVAZXXXXXXXXXXXXJJJJJJJFFFFFFFFFFFWDDDZZZZZZBBBBBBAPJJAAAAAAAAMLLLLLLLLIIIIIIIIIIIIIIQQQQQQQQQQQQQQQKKKKKKKKKK
EEEEKKKKKKKKWWWWTJYTYYYYYYYAYYAAAAFFVVVXXXXXXXXXJJJJJJFFFFFJFFBFGGGGDDZZZBBBBBBNPPPAARRRRMAMLLLLLLLLLIIIIIIIIIIIIIQQQQQQQQQQQQQQQQMMMKMBKKKB
EEEKKKKKKKKKWWWTTTTTTTYYYAYAAAAAAAAAVVVXXXXXXXJJJJJJJJJFFFFJJFBBGGGGGGGGGGZBBBBPPPPPARRRRMMMLLLLLLLLIIIIIKKKKKKKKKKKKQQQQQPQQQMQMQIMMKMBBBBB
GKKKKKKKKKKWWTTTTTTTTTYAYAAABAAAAAAAVVVVVXXVVBBJJJCCCJJJFFJJJMBBGGGGGGGGGGZBBBBPPPPPPRRRRMMMLLLLLLLLIIWIVKKKKKKKKKKKKQQQQPPQQQMQMMMMMMMBBBBB
GKKKKKKKKKKWWTTTTTTRTTYAAAAAAAAAAAAAVVVVVVVVVVJJJCCCCCJJJJJJJMMMGGGGGGGGGGBBBBBPPPPPJRRRRLRRRRRRRRLLMMIIIKKKKKKKKKKKKQQPQPNNNQMMMMMMMMMCBBBB
KKKKKKKKKKKKKETTTTTTTTAAAAAAAAAAAAAAAVVVVVVVVNCLJCCCCCJJJJJJJMMMGGGGGGGGGGBBBPBPPPPPJRRRRMRRRRRRRRLLVMMMVKKKKKKKKKKICCCPPPNNNQMMMMMMWWMMMMBB
KKKKKKKKKKKKKEETTTXXTAAAAAAAAAAAAAAAAVVVVVVVVLCCCCCCCJJJJJJJJJMGGGGGGGGGGGBBBPPPPPPPPRRRRRRRRRRRRRLLVVVVVKKKKKKKKKKCCCPPPPPNNNMMMMMMMMMMMMBB
KKKKKKKKKKKKKEEEEMXXXAAAAAAAAAAAAAAMAVVVVVVVLLLLLCCCCJJJJJJJJJMGGGGGGGGGGBBBBPPPPPPPPRRRRRRRRRRRRRLLVVVVVKKKKKKKKKKCCCPPPPPPNUMMMMMMMMMBBBBB
KKKKKKKKKKKKEEEEMMMMXXAAAAAAAAAAAAAAVVVVVVVVLLLCCCCCCJJJJJJJJJJGGGGGGGGGGBBBBPPPPPPPPRRRRRRRRRRRRRLVVVVVVKKKKKKKKKKCCPPPPPPPCMMMMMMMMMMMBBBB
KKKKKKKKYKKKKKKKKMMMMXAAQAAAAAAAAAAAVVVVVVVVLLGGCCCCCJJJJJJJJJJGGGGGGGGGGBBBBBPPPPPPPRRRRJRRRRRRRRLVVVVVVKKKKKKKKKKCCPPPPPMMMMMMMMMMMMMMBBBB
KKKKKKKKKKKKKKKKMMMMKMMQQQAAAAAAAAAAAVVVVVVVVVCCCCCCCJJJJJJJJJJGGGGGGGGGGUBBBPPPPPPPPRRRRJJJMLLLLLLVVVVVVKKKKKKKKKKPPPPPPPPPMMMMMMMMMMMMBBBB
ZKKKTTKKMMKKMMMMMMMMMMMMQQQAQAAAAAAAVVVVVVVVVVCCCCCJJJJJJJJJJJJGGGGGGGGGGUBBBBPPPPPAPPJJJJJJJJVVVZVVVVVVVKKKKKKKKKKKKKKKPPPPPMMMMMMMMMMMMBBB
ZZZTTTKKMMMMMMMMMMMMMMMMMQQQQAAAAAAVVVVVVVVVVCCCCCCJJJJJJJJJJJYGGGGGGGGGGUUBPPPPPPPPEJJJJJJJJJVZZZVVVVVVVVWWKKKKKKKKKKKKPPPPPAAMMMMMMMBMMBBB
ZZZTTTTMMMMMMMMTTTTMMMMQQQQQQAAAAOAAVVVVVVVVVXCKCCCCJJJJJJJJJJYGGGGGGGGGGBBBPPPPPJJJJJJJJJJJJZZZZZZVVVVVVVWWKKKKKKKKKKKKPPPQPAAMMMCMMMBMBBBB
ZZZTZTTMMMMMMMMTTTTMQQMQQRRQQQQAOOOOVVVVVVVVVXVVCCCCCJJJJJJJJJUUUUUUUUUUUBBBBBBBBBBJJJJJJJJJJZZZZZZVVZZZZWWWKKKKKKCCCCPMPPPAPPAAMMCMBMBBBBBB
ZZZZZZTMMMMMMMMTTTTTQQQQQRRQQQQOOOOOOOVOVVVVVVVVGGCCJJJJJJJJJJUUUUUUUUUUUBBBBBBBBBJJJJJJJJJJZZZZZZZZVZZZZZWWKKKKKKBCCCCPPPLAAAAAAABBBBBBBBBB
ZZZZZZZCCMMMMMMTTTTTQQQQQRRQROOOOOOOOOVOVVIIIVRVGGJJJJJJJJJUUVUUUUUUUUUUUUUBBBBBBBBBJDDJJJJJJZZZZZZZZZZZZZZWKKKKKKBBBCPPPPAAAAAAABBBBBBBBBBB
ZZZZZZCCCMMMMMTTTTTTQQQQQRQQRRROOOOOOOOOVVIIIVIGGJJJJJJJJJUUUUUUUUUUUUUUUBBBBBBBBBBJJJJJJJKKJJZZZZZZZZZZZZZWKKKKKKBBBKPKNKAAAAAAABBBBBBBBBBB
ZZZAZZCCCCMMMDTTTTTQQQQQQQRRRRROOOOOOOOOOIIIIIIGGGJJJJJJJJJUUUUUUUUUUUUUVVVVVVVVVBRJJJJJJJKIIIIIIIIIZZZZZWWWKKKKKKBBFKKKKKAAAAAAAABBAABBBBBB
ZZZAZZCCCCCMMDDKTTTQQQQQRRRRRROOOOOOOOOOOOIIIIIGAAJJJJJJJJJUUUUUUUUUVVYVVVVVVVVVVBRRJJJJJUUIIIIIIIIIZZZZZZWWKKKKKKBBBKKKIIIAAAAAAAAAAAAABBBB
ZAAAZZCCCMMMMDTTTTTQQQQQRRRRRRSOOOOOOOOOGOIIIIIAAAAJJJJJJJJMMMUUJUUXVVVVVVVVVVVVVBRRJJJZIIIIIIIIIIIIZZZZZZWWKKKKKKBBKKIIIIHHHZAAAAAAAAAABBBB
AAAROZOMMMMDDDGGTTTTQQRRRRRKRMOOOOOOOOOOOOIIAAAPAAAAAAAJJJJMVVVVVUUUVVVVVVVVVVVVVVRRRPJZIIIIIIIIIIIIZZZZZZWWWWWWWBBBKKKIHHHHHZAAAAAAAAAAAABB
AAOOOOOOMMDDDDDTTTTTQQRTRYRKROOOOOOOOOOOOOIIIAAAAAAAAAJJJJJVVVVVCCCCCVVVVVVVVVVVVVRRPPJZIIIIIIIIIIIIZZZZZWWWWWTWWWWBAAAHHHHHHHHHHAAAAAAAAABB
AAOOOOOODDDDDDQQTTTQQQRYYYRRYYOOOOOOOOOOOIIIIIAAAAAAAAAJJJVVVVVCCCCCCVVVVVVVVVVVVVVVVVWUIIIIIIIIIIIIZZZZZWWWWWTTWWWBBAAHHHHHHHHHMARAAAAOAAOC
AAAOOOOODDDDDDDQQTTQQQQYYYYYYYYOOOOOOOZOOIIIIAAAAAAAAAJJJJJVVVVCVCCCCVVVVVVVVVVVVVVVPUWUIIIIIIIIIIIIZZZZZWWWWZZZZZZZZHAHHHHHHHHHHAAOOOOOOOOC
AAAAAOJJDJDDDDDQQQQQQQQQYYOYYYYYYOOOOZZOZIIIIAAAAAAAAAJJJJJVVVVVVCCCCVVVVVVVVVVVVVVVNUUUIIIIIIIIIUGGZZZZWWWWWZZZZZZZZHHHHHHHHHHHMCOOOOOOOOOO
AAAAAAAJJJJDDDQQQQQQQQQQQYOYYYYYYYDOOZZOZIIIIAAAAAAAAAJJJJJJJVVVVVCCCCVVVVVVVVVVVVVVNNFUIIIIIIIIIUZZZZZZZTTWWZZZZZZZZHHHHHHHHHHHHCOOOOOOOOOO
AAAAAAAAJJDDDDDQQQQQQQQQQOOOWOOOODDOZZZZZZIIAAAAAAAAAAJJJJJJJVJVVDDDCCCVVVVVVVVVVVVNNNNUIIIIIIIIIUUUZZZZZPTTWTTTTWWHHHHHHHHHHHHHCCCCOOOOOOOO
AAAAAAAAAJJJDDQQQQQQQQQQOOOOOOODDDDZZZZZZZIIAAAAAAAAAAAJJJJJJJJJVDDDCCCCDKVVVVVVVVNNNNUUUUIIIIIIIUUUUZZZZTTTTITTTTWHHHHHHHHHHHHHCCCCCCCOOOOO
AAAAAAAAAAJBBQQBBBQQQQQOOOOOOOODZDDDZZZZZZIIAAAAAAAAAAAAJJJJJJJJDDDDDDDDDDDDVVVVVNNNNNNUUUIIIIIIIUUUUUZZZTTTTTTTTTHHHHHHHHHHHHHHCCCCCCCCOOOO
AAAAAAAAAAJBBBBBEBBBQQQOOOOOOOODZZZZZZZZZZZAAAAAAAAAAAAJJJJJJJJDDDDDDDDDDDDVVVVVNNNNNNNUUUIIIIIIIUUUUUUZTTTTTTTTTTTTHHRRHHHHHHHCCCCCCCOOOOOO
AAAAAAAAAAJBBBBBBBBBBOOOOOOOOOOOOOZZZZOZAAAAAAAAAAAAAAAAAJJJJJDDDDDDDDDDDDDVVVVVNNNNNNNNNNIIIIIIIUUUPPPKKKKTTTTTTTTTTHRRRHCCCHCCCCCCCCOOOOOO
AAAAAAAAAABBBBBBBBBBBOOOOOOOOOOOOOZZZZOZAOOAAAAAAAAGGGJJAJJJJJDDDDDDDDDDDDVVVVVVVVNNNNNNNNIIIIIIIUUPPPPKKKKTTTTTTTTTTTTRTTCCCFCCCCCCCCCOOOOO
AAAAPAAAAABBBBBBBBBBBYYOOOOOOOOOPOOOZOOOOOOOAAAAAAGGGGJJJJJJJDDDDDDDDDDDDDVVVVVVVVNNNNNXXNNNNNNNPPPPPPPKKKKTTTTTTTTTTTTTTCCCCCCCCCCCCCCCOOOO
AAAAPAAAAABBBABBBBBBBBYOOOOOOOOOOOOOOOOOOOAAAALALAGGGGGJJJJJDDDDDDDDDDDDDDDVVVVOOVVVXXXXXNNNNNNNPZZZZZZZZZZKTKTTKSTTNLLTTNCCCCCCCCCCCCCCCOOO
AAAAPPPAABBBBABBBBBBBBBBOOOOOOLLOOGGGOOOAAAAAALLLLLGGJJJJJJJDDDDDDDDDDDDDDDDVVOOOVVVWXXXXNNNNNNNPZZZZZZZZZZKKKKYYYYYYYYYYNNCCCCCCCCCCCCCCOOO
AAAAPPAAABBBBABBBBBBBBBBOOOOOOLOOOGGGOOOOAAAAAAALLLLJJJJJJJJJLLLDDDDDDDDDDDDDVOOOOVOWXXXXNNNNNPPPZZZZZZZZZZZZKKYYYYYYYYYYNNCCCCCCCCCBBCCOOOO
AAAPPPAPAAAABABBBBBBBBBPOXOOOOLOOOGGGOOOOOOAAAAALLLLLLJJJJJJJLLLLDDDDDDDDDOOOOOOOOOOWXXXXNNNNNNNPZZZZZZZZZZZZKAYYYYYYYYYYYYCCCCCCCXCBBCYOOOO
APPPPPPPPAAAAABBBBBBBBFZZXZZKKOOOOGGGOOOOOOAAAAALLLLZLJJJLJJJJLLLDDDDDDDDUUOOOOOOOOOOORRRRONOOPPPZZZZZZZZZZZZKAYYYYYYYYYYYYNCCUCCCCVBBCCPOHO
PPPPPPPPPAAAAAABBBBBBBBZZZZMOOOOOGGGGGOOOOOAAALLLLLLLLJJLLLLLLLLLLDDDDDDOOOOOOOOOOSOOOORDDOOOOPPMMMPPPPZZZZZZAAYYYYYYYYYYYYJMCCCCVVVBVPPPVVV
PPPPPPPPPAAAAAABBBBBBZBZZZZMMGGGGGGGGGGGGOOAZALLLLLLLLLLLLLLLLLLLLDDDDDOOOOOOOOOOOOOOOORDOOOOOPPMMMPPPPZZZZZZAAYYYYYYYYYYYYJMMMCCCVVVVVVVVVV
PPPPPPPPPAAAAAABBBBBBZZZZZZMMGGGGGGGGGGGGAAAZALLLZLLLLLLLLLLLLLLLLLDDDOOOOOOOOOOOOOOOOOOOOOOOOOPMMMPPPPPZZZZZAAYYYYYYYYYYYYJMJMMVVVVVVVVVVVV
XPPPPPPPAAAAAABBBTBBYZZZZZZZZYGGGGGGGGGGGGAAZZZLZZZLLLLBBBBLLLLLLLDDDDDOOOOOOOOOOOOOOOOOOOOOMMMMMMMPPPPPZZZZZAOYYYYYYYYYYYJJJJVVVVVVVVVVVVVV
XPPPPPPPAAJJAABAACBBYYZZZZYZYYGGGGGGGGGGGGAAZZZZZZLLBBBBBBBLLLLLBBBBBOOOOOOOOOOOOOOOOOOOOOOMMMMMMMMJJJPLZZZZZAZYYYYYYYYYYYJJJJJJBJVVVVVVVVVV
XPPPPPPPJJJJAAAACCYBYYZYYYYYYYYGGGGGGGGGGGAAZZZZZZZZBBBBBBBLLLLLBBBBBBBBOOOOOOOOOOOOOOOOOOOMMMMMMMMMJJZZZZZZZZZYYYYYYYYYYYJJJJJJJJBVVVVVVVVV
XPPXPPPPJJJJAAACCCYYYYZYHYHYYYHGGGGGGGGGGGAAAZZZZZZZBBBBBBBBBLLBBBBBBBBBOOOOOOOXOOOOOOOOOOOMMMMMMMMMJJZZZZZZZZZZOOOOJJJYYYJJJJJJVJBVVVVVVVVV
XXXPPPPJJJJJJAACCYYHYYYHHHHHHHHGGGGGGGGGGGEAEZZZZZZZBBUBBBBBBBBBIIIBBBBOOOOOOOOOOOOOOOOOOOOOMMMMMMMMJJZZZZZZZZZOOOOOOJJYYYJJJJJJJJVVVVVVVVVV
XXXPPPPPPJJJJPACCCHHHYHHHHHHHHHGGGGGGGGGGEEEEZZZZZZZZUUUUBBBUUBBBIIIBIBBBOOOOOOOOOOOOOOOOOOOMMMMMZZZZZZZZKKZZZZZOOOOCCYYYYYYJJJJJJVVVVVVVVVV
XXXXPPPPPJJJPPAAAAHHHHHHHHHHHHYYYGGGGGEEEEEEZZZZZZZZZZUUUUUUUBBBIIIIIIIBBBOOOOMMMOOOOOOOOOYOMMMMMZZZZZZZZKKZZZZZZZOCCCYYYYYYJJJJJJVVQQVQQVVV
XXXPPPPJJQJJPPPAAHHOHHHHHHHHHHYYYYEEWEEEEEEEEZZZZZZZZUUUUUUUUUUIIIIIIIIIBOOOOOMMMMOMOOSOOOOOOMMMMZZZZZZZZKKZZZZZZZCCCCYYYYYYJJJJJJJJOQQQVVVV
XXXXXPPJJJJPPPPRROOOHHHHHHHHYYYYYYYEEEEEEEEEEEEZZZZUUUUUUUUUUUIIIIIIIIIIMMOOOMMMMMOMNNNOOOONNNNJEZZZZZZZZKKZZZZZZZCCCCYYYYYYJJJJJJJXQQQQQQQQ
XXJXXJJJJJJPPPRRRROOHHHHHHHHYYYYEEEEEEEEEEEEEEEZZZZZUUUUUUIIIIIIIIIIIIBBMMOOMMMMMMMMNNNCNNNNNNJJFZZZZZZZZKKKZZZCCCCCCCYYYYYYJJJJJJJQQQQUQQQQ
XXJJJJJJJJJPPYPVRJJHHPHHHHHHYYYYEEEEEEEEEEEEEEZZZZZZUUUUUTTIIIIIIINIIBBIMMMMMMMMMMMMNNNNNNNNNNFFFKKKKKKKKKKKZZZCCCCCCCYYYYYYJJJJJJCQQQQQQQQQ
XXJJJJJJJJPPJPPPPPJJJPPPHHHHHYYYEEEEEEEEEEEEXPZZZZZZZZUUUTTINNNNINNKIBIIMMMMMMMMMMMMMNNNNNNNNFFFFFKKKKKKKKKKZZZCCCCCCCYYYYYYJJJJJQQQQQQQQQQQ
XJJJJJJJPPPPPPPPPPJJJHHHHHHDHDYYYYYEEEEEEEEXXXZGGZZZZZUUUNNNNNNNNNNIIIIIMMMMMMMMMMMMNNNNNNNNNFFFFKKKKKKKKKKKKKKCCCCCCCYYYYYYYYYZZQQQQQQQQQQQ
JJJJJJJPPPPPPPPPPJJJJJJJJHHDDDDYYYYYEEEEEEEXXGGGGEEZZZUUDNANNNNNNNAIIIIIMMMMMQMMMMMMNNNNNNNNFFFFFKKKKKKKKKKKKKKCCCCCCCYYYYYYYYYZQQQQQQQQQQQQ
JJJJJJJJPPPPPPPPPJJJJJJJJJDDDDDYYYYEEEEEEXXXXXGGGGEEEZEUDNNNNNNNNAAAIIIIMMMMQQQQMMNNNNNNNNNNFFFFFCKKKKKKKKKKKKKKWCCCCIYYYYYYYYYZZZXQXQQQQQQQ
JJJJJJPPPPPPPPPPPJJJJJJJJJDDDDDDDYYEEEEEEXXXXGGSEEEEEEEENNNNNNNNNVVAAIIMMMMQQQQQMMNNNNNNNNNNOFFFFFKKKKKKKKKKKUUKKUCCCCCCCZYYYYYZZZXXXXQQQQQQ
HJJJJJPPPPPPPPPPPPPJJJJJJJJDDDDDDYYYEEEEEXXXSSSSEEEEEEEENNNNNNNNNNVAAAVVMQQQQQQQMMNNNNNNNHNNNFFFFFKKKKKKKKKKKUUUUUCCUUUUCCYYYYYXXXXXXXQQQQQQ
HJJJJNPPPPPPPPPPFPPJJJJJJJJDDDDYYYYXXNNEXXXSSSSSEEEEEEENNNNNNNNNNVVVVAVVQQQQQQQQMNNNHHNNNHNNNFFFFFKKKKKKKKKKKUUUUUUUUUUUUUUUHZZZXXXXXQQQQQQQ
HHJVJRPPPPPPPPPPPPPPLJJJJJJDDDLLLLXXXXXEXXXXXXXSUUUUNNNNNNNNNNNNNVVVVVVVQQQQQQQQMMMNHHHNNHHHHHHHHFHHHKKKKKKKKUUUUUUUUUUUUUHHHHHXXXXXXXQQQQQQ
HRRRRRRPRPUPPPPPPPPLLLLJJJDDDLLLLUUUXXXXXXXXXXXXXXUUUUNNNNNNNNNNNVVVVVVVQQQQQQQQMMMMHHHHHHHHHHHHHHHHHKHHHKKKKUUUUUUUUUUUUHHHHHHHHXXXXXXXQQQQ
HHHHRRRRRRRRRRPPPPWLLLLLLLLLDLLLLUUUVVVXXXCCCXXXXXXXKNNNNNNNNNNNNVVFVVVTTQQQQQQTMMMHHHHHHHHHHHHHHHHHHHHHHHKKUUUUUUUUUUUUUUHHHHHXXXXXHQHXQQQQ
HRRRRRRRRRRRRRRPPBGLLLLLJLLLLLLLLULUVVVXXCCCCCXXXXXXKKNNNNNNNNNNVVVVTTTTTTTTQQQTTTMLLHHHHHHHHHHHHHQQQHHHHUKUUUUUUUUUUUUQUUHHHXXXXXXXHHHHQHAH
RRRRRRRRRRRRRRRRPPGLLLJJJLJLLLLLLLLUVVVXCCCCCCXXXXXKKKNNNNNNNNNNVVVVTTTTTTTTTTTTTMMLLHLHHHHHHHHHHHQQQQHHHUUUUUUUUUUUUUUQUQHSXXXXXXXXXXHHHHHH
RRRRRRRRRRRRRRRRRGGGLJJJJJJLLLLLLLVVVVVECCCCMMMMMMKKKKKKNNNNNNNNNVVTTTTTTTTTTTTTULLLLLLHHHHHHHHHQQQQQHHHUUUUUUUUUUUUUQQQQQQSXXXXXXXXXXXHHHHH
RRRRRRRRRRRRRRRRRGGGGJJJJJJLLLLLLJVVVVVVGCCCMMMMMMKKKKKNNSSNNNNNNVTTTTTTTTTTTTTULLLLLLHHHHGGGGGHHQQQHHHHHUUUUUUUUUUUUQQQQQQSSXXXXXXXXXHHHHHH
VRRRRRRRRRRRRRRRRGGGJJJJJJJLLLLLLJVVVVVVGCCCMMMMMMKKKKNNGSGNNNNNYYTTTTTTTTTTTTLLLLLLLLLHHHGGGGQQQQQQHQHHHUUUUUUUUUUUUQQQQQQQSXXXAXXXXXHHHHHH
VVVRTRRRRRRRRRRRJGGGGQJJJJJJJLLLGVVVVVVGGCCCMMMMMMKKGKGGGGGGGGYYYYDTDTTTTTTTTTLLLLLLLLLHHHGGGGQQQQQQQQHHOOOOUUOOUUUUUQQQQQQQQXUAAXXMHHHHHHHH
VRRRTTTTRFFRRJRRGGGGQQJUJJJJJJGLLGGGGVGGGGGCMMMMMMKKGGGGGGGFFFYYDDDDDDDDTTTTTTTLLLLLLLLLHHGGGGQQQQQQQQQOOOOOUUOOUOUZUQQQQPQQUUUTTTTTHHHHHHHH
VVRAAATTYTFRYDDFGDGGQQJJJJJJGGGGGGGGGGGGGTTTTTTTMMKZGGGGFGGFFFYYDDDDDDDCTTTTTTTLLLLLLLLHHGGGGGGQQQQQQQOOOOOOOUOOOOOUGUUQQQQQUUUTTWTTKKNNHHNN
VVUUATTTTTDDDDDDMDGGQQJJJJJJGDGGGGGGGGGGGTTTTTTTKKZZGIIIFFFFFFYDDDDDDDDDDDTTTTTLLLLLLLLGGGGGGGGQQQQQQQOOOOOOOOOOOOWUUUUUUUUUUUUUUUKKKKKNHNNN
UUUUTTTTTQDDDDDDMDDDQQQQJJJJGDGGGGGGGGGGGTTTTTTTKKZZZIIIIFFFFDDDDDDDDDDHHHHTTTHLLLLLLLLIIGGGGGGQQQQQQOOOOOOOOOOOOOWKWWUUUUUUUUUUUUNNNNNNNNNN
UUUUTTTTTTDDDDDDDDDDDQQJJJCCDDGGGGGGGGTTTTTTTTTTCZZZIIIIIIFFFFDDDDDDDEDHHHHTHHHHLLLLLLLLLGGGGGGQQQQOQOOOOOOOOWOOOWWWWUUUUUUUUUUUUGNNNNNNNNNN
UUUUUTBTTTDDDDDDDDDDDDQJJJCCDDDGGDGGDGTTTTTTTTTTZZTZZIFFIFFFFFFDDDDDDDHHHHHHHHHLLLLLLLLLLGGGGGGQQQQOOOOOOOOOOWWWWWWWWUUUUUUUUUUUUNNNNNNNNNNN
UUUUUUUTTTTDDDDDDDDDDQQQQDDDDDDGDDDDDDTTTTTTTTTTNZZZZIIFFFFFFFFFDDDDDDDHHHHHHHHHHHLLLLLGGGGGGGGGGGOOOOOOOOOOOWWWWWWWWUUUUUUUUUUUUUNNNNNNNNNN
UUUUUUUTUUUDDDDDDDDDQQQQQQDDDDDDDDDDDDTTTTTTTTTTZZZZZFFFFFFFFFFFDFDDDZZZHHHHHHHHHHHHGGGGGGGGGGGGGOOOOOOOOOOOOOWWWWWWWWWWUUUUUUUUUNMNNNNNNNNN
UUUUUUUUUUDQDDDDDDDDQQQQQQDDDDDDDDDDDDTTTTTTTTTTZZZZZZZFFFFFFFFFFFDDDDZZHHHHHHHHHHGGGGGGGGGGGGGGGOOOOOOOOOOOOWWWWWWWWWWUUUUUUUUUUNNNNNNNNNNN
UUUUUUUUUDDDDDDDDDQQQQQQQDDDDDDDDDDDAZTTTTTTTTTTNZZZZFFFFFFFFFFFDDDDJJZZZHHHHFFFFFGGGGGGGGGGGGGGGOOOOOOOOOOOOOWWWWWWWWWUUUUUUUUUUUNNNNNNNNNN
UUUUUUUDDDDDDDDDDDQQQQQQQDDDDDDDDDDDDETTTTTTTTTTNPZZZFFFFFFFFFFFFIIZZZZZZZZFFFFFFFXGGGGGGGGLGGGGGGGOOOAAOOOOOOWWWWWWWWWUUUUUUUUUDUDNNNNNNNNN
UUUUUUUDDDDDDDDDDQQQQQQQQQDDDDDDDDDDDEEEVVVVVVVNNPZZZFFFFFFFFFFFDIDZZZZZZZZIIIIIIFXXXXGGGGGLLGGGGGOOOOOAOOOOOOOWWWWWWWUUUUUUUUDDDDDNNNNNNNNN
UUUUUUUDDDDDDDDQQQQQQQQQQVVVDDDDDDDDEEEEVVVVHHPNPPPZZZZFFFFFFFWWDDDZZZZZZZZZIIIIIIJXXJJGJJLLLLGGLGGOWWFAOAOOAOWWWWWWWWWWUUUUUUDDDDDDNNNNNNNN
UUUUUUUUDIDDDDDQQQQQQQQQQQVDDDDDDDDDDDEEEEVVVHPPPPPZZZZFZZZZZZWWDDDDDZZZZZZZIIIIIIJJJJJJJJLLLLLGLGGOWWFFFAAAAAWWWWWWWWWWUUZZUUUDDDDDDNNCNNNH
UUUUUUUUPDDDDDJJQQQQQQQVVVVDDDDDDDDDDEEEEEEVGPPPPPPZPZZFZZZZZWNWWWDDDDZZZZZZIIIIIIIJJIIILLLLLLLLLGLOWFFFFAAAAAWWWWWWWWWWWUZZUDDDDDDDDDNNNNNN
UUUUUUUUUDDDDDJJJQQQQQQQQQQQDTDDDDDDDDEEEEEPPPPPPPPPPPZZZZZZZWWWWWDDDDDZZZZZZNIIIIIIIIICCLLLLLLLLLLBFFFFFFFAAEWWWWWWWWWZZZZZZDDDDDDDDDDNNNNN
UUUUGGUUEEDDDDJJJJJJJQQQQQQQQDDDQDDDDEEEEEEEKPPPPPPPPPPZZZZWWWWPWDDDDDDZZZZZZNNIIIIIIILLLLLLLLLLLLLLFFFFFFFFFEWWWWWWWWWZZZZZDDDDDDDDDDDNNNNN
UUGUGGGEEEDJJJJJJJJJJJQQQQQQQDDDQQDDEEEEEEEEPPPPPPPPPPPZZWWWWWWWWDWDDDDZZZZZNNNNNIIIIILLLLLLLLLLLLLLLGFFFFFFEEEEEEWWWWZZQZZZDDDDDDDNNDNNNNNN
UGGGGGGGEEEJJJJJJJJJJJQQQQQQQQDQQQEEEEEEEEEEPPPPPPPPPPZZZWWWWWWWWWWWDDDZZZZINNNIIIIIIILLLLLLLLLLLLMGGGFEEEEEEEEEEWWWWWWZZZZZZDDDDNNNNNNNNNNN
UGGGGGGGGEJJJJJJJJQJQQQQQQQQQQQQQEEEEEEEEPPPPPPPPPPPPZZZZWWWWWWWWWWWDDZZNNNINNIIIIIIIILLGHLLLLLLLLLGGEEEEEEEEEEEEWWWWWZZZZZZZDDDDNNNNNNNNNNN
UGGGGGGGGGQJJJJJJJQQQQQQQQQQQQQQQQEEYEEYYYOPPPPPPPPPZZZWWWWWWWWWWWWWDDDNNNNNNNNIIINIIIIAGLLLLLLLLLLLGEEEEEEEEEEECPPPZZZZZZZZZDDNNNNNNNNNNNNN
SGGGGGGGGGJJJJJJJJQGQQQQQQQQQQQQQQQYYYYYYYYPYPPPBPZZZZZZWWWWWWWWWWWWNNNNNNNNNNNNNINIIIIGGLGGLLLLLLGGGGEEEEEEEEEECCPPPPPPZZZOZDNNNNNNNNNNNNNN
GGGGGGGGGGAJJJJJJJJQQQQQQQQQQQQQQQQYYYYYYYYYYPPPPZZZZZZZZZWWWWWWWWWRRRNNNNNNNNNNNNNIGIIIGGGLLLLGGGGGGEEEEEEEEEMMPCPPPPPPPPZZPPPPNNNNNNNNNNNN
GGGGGGGGGGGGJLJJJJJJDQQQTTTQQQQQQQQYYYYYYYYYYPYPYZZZZZZZZZZZWWWWWWWRRRNNNNNNNNNVVGGGGGGGGGGGLLGGGGGGGRNEEEEEEEMMPPPQPPPPPPPPPPPUNNNNNNNNNNNN
GGGGGGGGGGGGLLJJJJJTTDTQTTTQQQQQQEEEEEYYYYYYYYYYYYZZZZJZZWWWWWWWWWWRRRNNNNNNNNNNNRLLGGGGGGGGGGGGGGRRRRRREKKEEEMMPPPPPPPPPPPPPPPPZZZZZNNNNNNN
GGGGGGGGGGGGLYPPJJTTTTTTTQQQQQQQQEEEEEYYYYYYYYYYYYZZJJJJJJMWWWWWWWWWRRRRRNNNNRRRRRLLLGLGGGGGGGGGGGGRRRREEKKKKKKKUUPBPPPPPPPPZZZZZZZZNNNNNNNN
GGGGGGGGGGGGYYPPJJTTTTTTTTTTQQQQQEEEEEYPYYYYYYYYYZZZJJJJJJMMMWWWWWWWRRRRRRRRRRRRRLLLLLLGGGGGGGGGGGGRRRRRERKKKKKKKUPBBPPPPPPPZZZZZZZZZNNNNNNN
GGGGGGGGGGGYYYYYJJTTTTTTTTTQQQQQEOEEEEEYYYYYYYYYYZZZQJJJJJJJMWWWWWWWRRRRRRRRRRRRRLPLLLLLGGGGGGGGGGGRRERRRRRKKKKKKPPPPPPPPPPPZZZZZPZPPPPPNNNN
GGGGGGGGGGGYYYYYYJPTTTTTTTTTQQQQEEEEEEEYYYYYYYYYYYZJJJJJJJJJWWWWWRRWRRRRRRRRRRRRRLLLLLLLLGGGGGGGGGGGGRRRRRRRTKKKKPPPPPPPPPPPZZZZPPPPPPPPNNPP
GGGGGGGGGGYYYYYYYTTTTTTTTTTQQQQQEQEEEEEYYYYYYYYYYYZJJJJJJJJJJJWWRRRRRRRRRRRRRRRRRRRRLLLLLGGGGGGGGGGRRRRRRRRTTTTKTTPRPPPPPPPPZZFZPPPPPPPPNPPP
GGGGGGGGGGKKKKKKKKTTTTTTTTQQQQQQQQEYEEHHHHHHYYYYYYJJJJJJJJJJJJJRRRRRRRRRRRRRRRRRRRRRLLLLGGGGGGGGGGGGGRRRRRRRTTTTTTTPPPPPPPPRZZFZPPPPPPPPPPPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,500 @@
p=99,12 v=19,18
p=90,98 v=47,-52
p=86,3 v=82,-13
p=13,8 v=-67,-47
p=36,45 v=28,65
p=71,35 v=-8,-62
p=75,8 v=-30,-21
p=3,46 v=-38,-96
p=1,89 v=78,18
p=47,59 v=-63,99
p=92,78 v=68,48
p=42,31 v=78,94
p=75,29 v=9,83
p=46,12 v=-29,48
p=80,16 v=-70,33
p=18,66 v=57,-97
p=60,12 v=89,-90
p=21,36 v=-41,-78
p=75,53 v=52,-62
p=18,79 v=45,51
p=20,29 v=63,-97
p=22,68 v=23,1
p=6,67 v=-24,-44
p=44,35 v=-54,29
p=33,80 v=28,-56
p=48,78 v=55,-22
p=88,79 v=99,69
p=12,96 v=-50,-59
p=6,57 v=80,61
p=98,31 v=-77,14
p=91,65 v=-13,20
p=52,53 v=-85,41
p=94,94 v=-15,5
p=69,75 v=-41,-11
p=98,77 v=71,-54
p=23,47 v=-61,-27
p=32,74 v=-11,96
p=22,87 v=-5,-75
p=65,22 v=26,71
p=1,67 v=13,69
p=32,96 v=-90,-94
p=17,17 v=-5,71
p=57,85 v=-92,28
p=52,32 v=-41,69
p=13,85 v=-43,-83
p=51,39 v=-38,32
p=64,17 v=91,82
p=97,86 v=-69,-70
p=98,94 v=46,-21
p=43,31 v=61,-24
p=42,58 v=-51,-42
p=5,46 v=-4,91
p=65,52 v=10,50
p=23,6 v=-42,29
p=54,25 v=4,44
p=5,19 v=-77,-74
p=44,77 v=-23,-26
p=10,70 v=6,-72
p=38,101 v=-50,-36
p=9,49 v=35,72
p=64,14 v=77,-78
p=21,2 v=-67,-6
p=34,97 v=-73,-37
p=77,13 v=-30,60
p=50,40 v=83,-58
p=99,85 v=-59,-87
p=65,0 v=-76,-48
p=44,94 v=-45,34
p=5,59 v=92,35
p=73,100 v=93,-71
p=50,20 v=-74,-97
p=9,33 v=-10,-89
p=54,49 v=-46,99
p=99,100 v=92,51
p=84,94 v=-53,-45
p=92,13 v=-61,69
p=19,52 v=56,-12
p=20,52 v=-38,-90
p=98,12 v=99,-22
p=46,23 v=95,-32
p=84,100 v=-70,70
p=19,69 v=58,-52
p=77,67 v=-51,31
p=11,6 v=18,-67
p=11,22 v=-50,-82
p=73,43 v=25,79
p=60,16 v=-58,-36
p=86,18 v=-88,71
p=21,50 v=-50,-88
p=17,20 v=-65,-54
p=38,26 v=67,71
p=22,60 v=-46,15
p=81,46 v=-39,16
p=25,98 v=22,-41
p=9,72 v=-94,8
p=82,59 v=-46,-34
p=71,41 v=-23,45
p=74,1 v=-70,32
p=96,17 v=-37,95
p=39,45 v=-6,-23
p=46,4 v=61,55
p=41,100 v=-35,-10
p=65,75 v=-1,-26
p=8,21 v=7,-32
p=43,71 v=-12,73
p=85,67 v=58,-41
p=73,7 v=31,-89
p=85,71 v=-93,-72
p=54,83 v=-46,-75
p=13,66 v=-24,-98
p=67,13 v=21,-21
p=1,33 v=24,-66
p=71,27 v=54,-78
p=69,86 v=42,35
p=17,28 v=-83,94
p=92,19 v=25,-68
p=92,84 v=-31,16
p=32,26 v=-6,54
p=20,97 v=-16,36
p=1,102 v=13,9
p=59,26 v=-68,91
p=92,44 v=-20,30
p=16,45 v=-83,34
p=30,69 v=-75,-46
p=51,64 v=-73,68
p=53,29 v=-57,-61
p=14,100 v=-15,86
p=80,41 v=-20,-81
p=5,92 v=-60,1
p=91,10 v=-49,98
p=0,62 v=-79,9
p=40,1 v=3,-70
p=81,32 v=-53,41
p=53,18 v=-46,94
p=69,96 v=-95,-82
p=32,92 v=-69,-30
p=73,83 v=-59,-65
p=74,67 v=-8,-99
p=71,45 v=-58,60
p=35,29 v=-51,-92
p=68,15 v=-92,-55
p=74,3 v=26,30
p=67,25 v=-58,22
p=31,46 v=-73,-92
p=29,69 v=45,23
p=48,78 v=-23,-29
p=41,13 v=-45,-78
p=57,8 v=-3,26
p=45,53 v=45,4
p=37,23 v=-62,41
p=41,90 v=-35,55
p=88,96 v=53,-71
p=38,15 v=-90,71
p=62,20 v=4,-88
p=64,19 v=15,-85
p=96,61 v=10,81
p=19,81 v=57,-45
p=53,11 v=67,44
p=51,83 v=66,85
p=29,76 v=-84,-26
p=63,23 v=-13,14
p=23,51 v=-18,-52
p=23,41 v=73,-55
p=99,75 v=-32,-14
p=68,20 v=79,45
p=27,74 v=45,42
p=55,96 v=47,-73
p=87,29 v=-93,22
p=20,76 v=-49,88
p=11,78 v=-67,-41
p=31,78 v=-12,-99
p=21,49 v=64,9
p=56,45 v=10,-4
p=67,97 v=-59,92
p=96,58 v=-49,96
p=36,51 v=-68,8
p=18,10 v=-79,-60
p=25,7 v=47,-55
p=12,101 v=40,-52
p=83,57 v=-42,-38
p=62,89 v=77,20
p=8,49 v=51,-54
p=12,98 v=-20,53
p=47,89 v=35,68
p=46,16 v=89,6
p=72,34 v=37,45
p=61,31 v=49,76
p=42,98 v=64,17
p=27,41 v=71,27
p=50,8 v=-1,-63
p=97,5 v=-56,9
p=41,58 v=5,-38
p=66,101 v=-64,13
p=67,95 v=-40,18
p=94,41 v=-37,73
p=89,102 v=-4,2
p=44,51 v=-84,65
p=9,89 v=29,89
p=28,29 v=5,29
p=76,4 v=-89,8
p=75,93 v=-75,89
p=38,6 v=-73,-2
p=19,1 v=-95,-6
p=61,76 v=-69,23
p=6,27 v=64,-24
p=97,76 v=47,28
p=62,86 v=50,-61
p=85,50 v=-93,-92
p=10,76 v=-83,31
p=58,42 v=52,-81
p=47,42 v=16,38
p=3,17 v=-66,52
p=58,84 v=-59,-36
p=91,76 v=20,-68
p=9,62 v=-10,-23
p=45,99 v=-85,-2
p=0,8 v=-77,17
p=53,70 v=-41,-23
p=32,96 v=6,89
p=67,33 v=26,37
p=94,86 v=47,47
p=26,74 v=-39,12
p=19,15 v=-55,16
p=60,76 v=93,-98
p=44,71 v=-49,-38
p=35,77 v=-1,-7
p=68,98 v=32,89
p=10,54 v=-23,-24
p=63,10 v=-77,50
p=75,61 v=71,80
p=35,78 v=-5,-55
p=74,23 v=15,-45
p=10,68 v=52,-34
p=45,43 v=8,-67
p=12,76 v=24,-75
p=62,73 v=-86,77
p=9,82 v=-38,-64
p=1,95 v=25,-64
p=67,30 v=-69,-20
p=92,25 v=-79,75
p=42,19 v=-46,-78
p=3,98 v=35,-83
p=89,102 v=53,90
p=25,10 v=-5,37
p=46,0 v=-74,29
p=12,40 v=-79,92
p=13,21 v=-56,-44
p=63,49 v=77,-27
p=3,12 v=83,-67
p=48,42 v=72,-62
p=37,74 v=-46,16
p=25,75 v=51,-26
p=84,35 v=81,-43
p=38,40 v=-63,19
p=77,13 v=-64,-48
p=95,13 v=-82,-44
p=81,41 v=-19,-81
p=33,81 v=-64,41
p=69,75 v=65,35
p=30,76 v=45,39
p=48,72 v=-29,39
p=74,10 v=78,-61
p=70,17 v=9,52
p=11,67 v=46,-87
p=35,72 v=-11,-46
p=86,37 v=-82,60
p=99,24 v=-91,56
p=92,46 v=-54,-23
p=93,12 v=76,-9
p=92,43 v=-97,-75
p=3,72 v=10,-79
p=13,83 v=13,8
p=78,80 v=3,-60
p=81,41 v=84,-73
p=93,9 v=-25,36
p=78,96 v=20,-37
p=40,50 v=-78,59
p=66,21 v=85,78
p=37,67 v=56,53
p=49,62 v=-91,-63
p=59,54 v=60,-69
p=57,81 v=77,39
p=51,79 v=-19,-11
p=65,27 v=74,95
p=33,56 v=44,-27
p=7,43 v=80,38
p=11,19 v=36,-88
p=27,15 v=-95,44
p=2,76 v=-15,-53
p=90,40 v=-14,56
p=93,52 v=30,-92
p=31,42 v=56,-16
p=86,64 v=-25,-51
p=97,81 v=-76,-76
p=11,36 v=35,-77
p=9,94 v=-10,-48
p=35,3 v=68,-6
p=10,84 v=69,58
p=12,17 v=18,71
p=61,62 v=77,-4
p=6,93 v=29,-82
p=91,71 v=-49,62
p=84,5 v=26,-17
p=100,1 v=-22,-38
p=90,27 v=-34,-39
p=84,21 v=-68,-62
p=72,10 v=-70,63
p=83,20 v=42,-74
p=51,99 v=-57,51
p=13,56 v=-78,76
p=21,88 v=80,81
p=40,97 v=76,85
p=61,92 v=-97,-15
p=29,58 v=56,-88
p=90,0 v=-34,-2
p=35,46 v=-23,-35
p=88,49 v=82,-67
p=83,23 v=98,-1
p=19,80 v=-5,-98
p=21,45 v=-90,45
p=79,3 v=-14,-86
p=49,37 v=27,-54
p=95,0 v=-93,36
p=55,46 v=-63,26
p=38,78 v=-61,-97
p=91,61 v=-60,-92
p=44,15 v=-51,75
p=82,86 v=20,-72
p=93,69 v=8,-95
p=93,59 v=-37,50
p=73,50 v=-84,22
p=8,7 v=-50,25
p=97,46 v=-14,22
p=43,2 v=-96,44
p=29,32 v=-33,34
p=30,64 v=-56,-95
p=12,65 v=-38,54
p=64,54 v=-12,-54
p=32,29 v=66,-4
p=80,84 v=-24,34
p=2,93 v=53,-87
p=77,14 v=59,-82
p=12,25 v=-77,78
p=65,74 v=76,-61
p=93,89 v=-26,59
p=1,35 v=25,-12
p=100,26 v=1,48
p=28,79 v=-96,16
p=18,1 v=-16,2
p=42,38 v=-39,-31
p=35,76 v=-76,-93
p=28,6 v=78,24
p=36,33 v=-34,-5
p=26,73 v=-95,-95
p=96,22 v=-83,-25
p=82,74 v=-30,-76
p=9,98 v=46,-52
p=80,3 v=13,-65
p=65,11 v=68,-58
p=68,57 v=-13,57
p=91,2 v=27,-94
p=2,96 v=-16,-29
p=65,67 v=-6,-55
p=79,63 v=88,-19
p=17,12 v=-27,52
p=10,6 v=52,-86
p=3,74 v=-37,-61
p=90,47 v=14,68
p=77,87 v=-59,20
p=80,63 v=-98,8
p=20,27 v=-64,10
p=93,60 v=-54,-38
p=93,14 v=52,95
p=53,79 v=-63,-87
p=12,21 v=-10,-70
p=71,62 v=76,-19
p=77,13 v=-3,-48
p=51,99 v=-46,-36
p=58,50 v=77,-31
p=59,62 v=54,43
p=66,66 v=-86,12
p=34,87 v=-93,-88
p=93,64 v=-47,71
p=11,5 v=1,-67
p=54,11 v=-80,-13
p=74,31 v=-30,-85
p=25,60 v=6,-34
p=94,77 v=81,73
p=62,70 v=-41,54
p=44,70 v=-68,80
p=25,78 v=42,71
p=46,0 v=-29,82
p=6,4 v=9,76
p=34,40 v=-52,3
p=62,23 v=2,50
p=85,72 v=31,27
p=85,67 v=1,1
p=3,37 v=-15,-96
p=99,29 v=-65,15
p=65,67 v=-22,-99
p=72,65 v=55,6
p=38,97 v=56,-52
p=16,13 v=35,82
p=0,7 v=-8,-86
p=47,4 v=33,-14
p=50,34 v=-26,59
p=27,61 v=60,81
p=100,11 v=13,-93
p=94,33 v=-26,-35
p=9,43 v=52,68
p=23,73 v=-1,-50
p=76,88 v=62,-78
p=62,28 v=43,3
p=95,22 v=-80,79
p=43,81 v=-84,40
p=19,10 v=85,2
p=40,31 v=-45,-81
p=33,59 v=11,-80
p=53,66 v=27,12
p=52,94 v=5,24
p=3,96 v=-71,-33
p=18,48 v=28,-27
p=76,18 v=34,-7
p=75,73 v=93,-53
p=48,9 v=-12,48
p=65,51 v=-69,-66
p=78,10 v=-14,-40
p=44,32 v=-52,7
p=36,20 v=-68,48
p=4,58 v=63,61
p=12,62 v=-39,-53
p=31,36 v=56,-85
p=14,58 v=-51,-61
p=86,11 v=-76,-17
p=45,38 v=-79,-1
p=60,41 v=29,18
p=28,8 v=-22,-59
p=66,47 v=-13,72
p=91,15 v=-31,-55
p=69,73 v=15,-87
p=52,49 v=71,-76
p=73,69 v=-47,-49
p=87,7 v=-20,-94
p=1,0 v=-76,40
p=96,48 v=-14,88
p=52,36 v=-46,26
p=94,48 v=3,-39
p=36,38 v=-71,-93
p=64,8 v=55,-47
p=75,63 v=59,-38
p=64,97 v=15,-94
p=63,102 v=4,-40
p=41,78 v=16,-87
p=63,82 v=58,50
p=32,24 v=48,42
p=57,69 v=-35,31
p=73,26 v=-2,-28
p=31,89 v=28,32
p=82,93 v=-14,62
p=61,87 v=-12,-26
p=58,36 v=-72,-13
p=80,49 v=-59,15
p=34,10 v=72,40
p=4,82 v=41,16
p=46,12 v=5,82
p=81,17 v=75,-36
p=69,12 v=99,90
p=98,16 v=-55,-24
p=49,39 v=38,-89
p=91,1 v=92,-32
p=91,99 v=-48,-33
p=16,44 v=-60,53
p=26,60 v=-56,-31
p=31,32 v=28,-16
p=36,40 v=33,-47
p=60,18 v=-97,-51
p=5,2 v=36,-21
p=83,8 v=20,-47
p=32,40 v=-16,-39
p=65,11 v=-84,11
p=58,31 v=-80,-5
p=96,38 v=-42,-65
p=40,23 v=14,87
p=36,81 v=67,77
p=13,74 v=35,96
p=6,58 v=-36,-64
p=73,23 v=-53,-5
p=22,18 v=45,-58
p=67,29 v=-81,-52
p=14,18 v=-33,-17
p=51,28 v=43,-55
p=98,11 v=-72,95
p=80,17 v=-53,10
p=76,54 v=65,-77
p=76,98 v=-74,66
p=12,50 v=97,64
p=53,27 v=67,26
p=22,89 v=57,-60
p=23,34 v=40,-43
p=35,85 v=17,-6

View File

@@ -0,0 +1,71 @@
##################################################
##.OO.O.O#........#..O.......O......O..O..O.O...O#
#O.O#.O......#.#O......O....O.O.....#.#.......#..#
#.##O.O..#OO...O..O.O..O#.#.O.............O..OO..#
#.OO#......OOO.OO.OO.O...O.O.................O.O.#
#.#....#O.......O.#OO.#..O#.O...O.O...O....O.O#O.#
#O..O...#O.O..#OO#O....O...#....OOO...O.###.#.OO.#
#.....O.....OO..O......O......O..........OOO..OO##
#.O#..O...O.......O.....OO...O#...O..OO...O......#
#O....O...#O......O..O.OO....O..O.OO....#......O##
##.O..O..#.OO#....#..O.#......O....#.....O..O#..##
#..#....OO.##.......O..O..#.#..O.O...OO#..O#....O#
##O.O....O.O.O....OO...O.......O#..........O..O..#
#.##.O.OO..................#.##O.O...#OO.......OO#
#O....#O.....OOOO.O.#.OOO#O.....OO...OO..O....#..#
#.#O.O.......OO..OO.O..O..#.O.O......O.O..#O.O...#
##..OO.O...#.....O#O.O..O.OO#.O.OOO...O....#O.#.O#
#....O.....O#O..O.O..O...............OO.O.O.O.OO.#
#.OO.O...O..O..OO#O..#....OO...O...O.O#.O.#......#
#..OO.....O...O..#O........O..O.O.O..#...O...#...#
#O......OO.O.........O#OOO.O..O...OO..........#O.#
#.O.....#.......#O......O........#.O.O...OO.O..OO#
#.#OO...#.#.O...OO.O.....#OO.O...O.....O.O#.O.O..#
#.O........#.O..O.O..#.#O#.OOO.....O..#.....#....#
#..O.O..#O#....OO#OO.#O#@.O..O.O.#...#.O.........#
#O....O.....O...O.#........O.OO.O..#...O....OO...#
#..OO.....O#.........O#........OOO...OO...#O#O..O#
#O....O...#O.O......O..OOO....OO#O..OO...........#
#O#.O..O...OO..........O.O...O.......OOO.........#
#...O.....O...O..#OOOO..O......#....#.O....O.....#
#..O..O.OOOO.O.......O.....O...#....O...O..OO.O.O#
#..OOO..O..OO.OO..O......O...#O...#.....O.....O..#
#..OO.O..O..#O....OO.....OO..O#O..#..O.#..#....O.#
#.O.#.#..##O.....O.....#OO...#......O.OO.O..OOOO.#
#..OO.O..O#.....#....O#......#......#.O..#..O..O.#
#O#...O.O..#....O.OO#.O.#....O.....#O......O..O.##
#......##O.OO.O#.O...O..OO#.O..###........O.OOO..#
#...O..#..O....O.#..#......O..O..#O...O...O......#
#.OO.OOOO.OO..#...OO......O.O.....O...O....#..O#O#
#O..#OOOO..#.O.O.......O...O.OO...O.........OO...#
#.O.....OO..O.....O.O#..OO...O#......O.....O....O#
#O.O..O.O...OO.O.....##...O..O....#O...OOO...O.#.#
##.O..O.O.O..##O#......O.OOO.#.....O.....O..#....#
#....#...O#...#..##.O.............O..#O..O..#.O..#
#...O..O#O....O...O...#.....O#OO...O.....#.O.....#
#.#O...O.O.O..O.#.O....O..O#..O.OOO..O....OO.....#
#......O..........O..#.#.....O...O..OO..O.O.##..##
#.O..O..OO.OOO..O...O.....O....O.......OOOOOO.O..#
#...#.O.#O#....#.O....OO..O.##....O.O.#.....#..O.#
##################################################
>vv^v>^^<>vv>v>^^<<^^>>^><^v<v<^>>v^><><<<<vv<^vv<^<>>><<v<^>>>>^^>>>v^v>^<v>>^^<>>^>^v><vv>v<^<^>><<v>^v^^v<^><<<<^><^v>^<>>^^vv<<<v^^><>vv<<<^<^v<>v<<<>>>v>v^>><v<>>^v^<v^v><<v<<^>^^<<^v>^v>vv^<><v^<v<^>v^<>^><<<^>>>^v^>>^^^^<<v<^>vv<^<><<>vvv<><vv><><v><^<v^^^v><<<<<vvv<>^<^>>vv^^^>v^>^v^^^v>^^><<<>^^v>^<^<>vv>>v^v<^^<<v><>>><^^v^<^<^v<^><^vv>vvvvv><>v<^^v<^v<<v>>>v<v<<>>^<v^>vv^>v<<^^<^<>v<><^v>vv>>^>><v<v<>^^<^><>v<v<>^^<v^vvv>>><v>><vvv><>v^v^<^<<v<v^^v<^^v^>^vv>^^<>v^^^^>vv<v^^^<^^v^^<>^><v><>v>^<v^vvv^<<^>>^^>^<>vv>v>v<^><v^v^<>^<^^><>^<v>vv<>v>^>>v^^^^>>v<v<^v<<v<>v<>^<>vv<>><<>v<vv^^<v<v^<^><v>^^^<^>vvv<^<<vv<v>^^^^<^>>><>>>v>>v><^<vv^<v^<^vv>><>v^<v<>>>><<v><v^>v^v^^<v<v<^v>^><<>>>v<v^<<>^^^^^v^^^<<v^<v>>>v<^vvv^>>^v^<^vv^v>^vvv>>^^^>v^>>^><^>^^<^<<^v><^<^<<>^^<<^<vv>>v^vvvvvv><v<^^v><^><><>^<<>v^><<>v<v>><<v^^vv^^v<>^>>>>>^>>^>><<v>v<v<>^>v<v^v^^<^<vv^^>>v>v<<<>^v^<<<^>^>^vv^^>v>>>^^>><v><>^<><^>><v>>v^<<<<^v^>v^>^v^v<>v^>v<^v><<>^^<>>v<>^<>vv^>v>^v<^><v>v><^><<<^>>v^<<>>^v
<>>>^v<<>^<<v<>^<>>><^v<<<>^<^<<vvv>^<v><>^vv^<<>v^vvv<<^v><>^v>^v><v<>>>^vv^v<vvv>^<>^<v<^^<>vvv<<^>v^^^v^>>^vv>^vv>^^>>>^<v<^v<vv>^>v>v<v<>><vv<^v>^^^vvv^^vv<>^<v><^>^<^>>v>><>><^v>^>^>^^<<vv>v>v>>^<^><<^<v<<<^<v><<^v^><^><v^^<^^<<<><>>^v><^^<<>>v^^<^v><^<v>v><>><>v<>^v^<<>>v^<>><<^<<v>^<^>v<v<vv<<v><<^<<>>v>>^>v<v^><^>^><<<><v<<<^^>vv<v^^vv^>>><v^<>v>^v<<><^<^<<>>>^vv^>^^<<<<vv>v>^^<><><^>>v>v>v>v<><vvv^>>^<>v^<^v^>v^<<><vv^>^^vvv<<<<v>^<vv<<>>>v^v^v^<><<v^<^<>><^^vv^v><v^vv<<^^<v^<>v><^><v^<>^^>^<<>vv<^><>^vv>><v>v><><<vv<v>>^><<^^><^>^vv>^v^><>v>v<>^<<v<<>^>><>v^vv>vvv>v>v>v^v^>^<vv>^<<v>^>v<^vvvv<<^^v<^^<>v<>v^>>v^v^<^v>v>><<<^v>v><vvvv<v>^<^<<<><>v>v<<^>><^vvv><<>^<>>vv>^>^<v>>>vv^<v^>><><^vv>v>v<^^><<<<<<v>^v>v>^^<v>v><<v^^v^vv>>><^v<<<v^v<<>><>^v<>>^<^v^^vv>>>^>v>^vv<<vv>^><^<>>vv>>^^<^><^^>><v^vv^<v^>vv<v<vvv>>vv^v<<>v^>><<vv>><^<>v>vv>^<v>^^>>v><<><^<>><><>^^^^v><^>^^<v^<>v>^^<^<v<vv^^^<>>v^vv^>>^^^vv<<>^^>>^v>>>>^><^^<^<v<>>><v<^<^>vv^v>^^^v^>><>vv><v<>^>>^<<v^v^v^^vv^<v>^<
><<vv<v^^^<>>>^>v>^<^^^<v<vv<^^<>><^<>><^>><<>v<^>v^><<^><>><<v^>^<<v><^>v>><vv<^v>><>v<<^^v>v><>>><^>v>>^v>>^v<>v>><v^<v<<>>>>^v><<v>^<>>v^^v><>^v<v>>v><^^<vv<<<v><^><><<><^><v^^>v^>>^<<>^v<<^^^v^<<<><^^<><vv<>>^>^>^^>>^><>>v>v><v^>><<v^v<>^v>^^^^<^>>>>vvv>v^v>v>^<>v>v<v>>>^vv<>^><v>^<^<v<<<<>vv^v<v<v^<>^>^^^><>v^^^>v^<>>^vvv^^<>>>^<<<vv>>^v<><^>vv>v^^^<v^>>v>^v>v^>vv>vv>>>vv^vv>>v<>v^vv<v<^><^v^><^vvv^vv<vv^>vvvv<vvv><><>><^<<<^>vv^>>>v<<>v><<^>v^<<<><v<<^^<><<<><<^><>v<><<>v<^v<^^v^^>>><<^vvv<<>>^>><<vv<v<^<<^<^<<<>><<v>^v<>^^^>>>^^<^^^v^^v<<^^v^>v^<<^<>^><>^v>>>^^vvvv>v^<v^<^<v<>><v^^>>v^v^^v^^><v^^^^^^v^v><^<><><<^<vvv^><vv^<<^<v<v<^^^^><>^vvv<v>>>v<v<<v^>v>vv<>^>><<v<v<v^^^>v<<>v<><v>v>><><<v><<^^^v>^vvv>^<^>^v<<>>^><>>v><><^v<v<<^v^<<v^v>v^^<^v>>^v^v>^^^<<<<>v^>>vv<vv<<><>>^^^v^v^^^><><v<><v<<v><<v>vvv>>^^<v>v^^>^><<v<v>>>vv<>^<>^>>v>>^>v>^v>^v>>vv<^<>v>>vv<<v><>^^>><>vv<<><<^>v>>^>><>><<>v><<v>><v^<>v<>>>>v<<v>>v^>^<^>>^<>^v<<vv^<<^v>>v<>v>^>v>>^<>^<vv><^v><>^<<v>^v^^^v>^>v>^^v
<v^<^^vvv^v<<^<v^<^vv^v>><>><<><>^v^^v^^^<v>v<^v<v^><v<>vv^<vv<^>^>^^>v<>vv^v^^><^^>>><vv<>><v><^>vv>>><^>v>v<^<<><<<v>v<v<>^>>>>v<^><^v^<>^>^><v>^vv<<^>>^v>^^^>^>v^v<>>^<>vv^^v^^<^<vv>v>^v>>>vv^>><v>vv<>><^<><v><v>^v>>>>^<^^<<>v<^vv><<^^<<v<v<v<<v>v>^vv>>vv<<>><^<^<v<>v<>^<^<<>v^vv>v<>^vvv>^<vv><v>^^vvv^^^>^v<^v^v^<<>^vvv>^>^vv>v^>^><vv^^v>vv<<v^><v>v<>>>>>^^>vv>vvv<vv<<^v<^<^v>^<^><v>^><<^<^<v<vv<><<v>^v><<v>>v^vv<^<<v<^>^>v<vv<^v><v^>^<v<>>v<>>^v^v^><^<<^v<vv><v^^^v<>>><>v<vvv><>^vv<>^><v>^><<<^v>>v^^>^^<^v>><^^>v<^<<>^v>><<v<^>>v<><>vv>vv>^^<v<^^<^<<^^<^^><v^>v>><<^^>v<<<^<v^><<^vv><>>v<><>^>v<^<<^>^>v><>v>^vvv<<<^>^^vv^>v<<v>^^^v<<>v^>v>><>>^v<^^><>><>v<v<vv>v<<>^>>^v^^<vv<^>^^>vvv^>v^>><><^<<>^<^<>v^>>^^^<^^v<vv>^<<<<<^vvv<><>^>>><^v<>^^^^v<^>>v>^v<<>>v^v<^>vvv<v^vvv><^^<>^v>^v>>>>^^<^^<<v><<>>>>>^v><>^><^v<>v>v<^^v^vv^^^<^>v^>^^<<v>^>>>^>^^vv<v<^v^<>v<vv^^vv^<^>v>v<<>>>^><<<^v>v<<vv^<>><v<><<>v^<^vv<>v><<^<>^><vvvv>v><<><^^<>v>>^<>vvvvv<<^^^>><v^<v>><>v><><^>><>^>>^><^<^^^^v^^vv
>v^v^^v^>v>^vv<>^<^^vvvv<>^vvv^<^<><v<vv^^>v^^^>^vv>>^^<^<^v^>v^v<^>>v^>^^v>v^<v<^>^>v>^^^<v^v^<v>><v^^^v^>vv^v<>^>>^^<v><^^<><<<v^v><v^v<><^>v^<^<<>>^v><>^^>^^<v^<<><>v<>v<><^<>v<>vv<<^><vv>v>^<>^v^v<v<^^>>^><<v>^<vv^v^^v<^^^v>v<v<vv>>v^>v<^>>^<v<^^>^vv<v^<><>vv><>v<><<>v><v>>>><<<vv>^<<><^>>^vv^>v<^<>v<^^v<v>vv^>v><<v<^^><>><v^<^v^^>>>>>>>v^<v>^>^^<^><^v>^^<<>^^>>^><v>^<vv<^^<<^v>v<^>>vv<^^>vvvv>^^>v>>>^^<<<^<^<^^<^<^v>>^>vv^<v<v^v^<v<><<>v^v^<><<vv>><^<^^v<<vvvv<<<<>>^v><>v^v^<^<^<v^<>vvv^v^>^vv^>^<^><><^v>^v<v>>^v<v^^^v^v^v><v<<v^><<>v<^>^<>v><><>><>v<>v^<v^><v^^<>^^<>v><v>^^>^^v^>v>v<^^<>^>^>v^vvv<>vvv<<^vv<v^^^vvvv^^<<vvvvvv>v<^>>^^vv<^^><<<>v<^^<v><v^>v<^^v><v^<><^<><><^^<<><><<vvv^<<^^><>>v^^<v^^v^>v>vv>^v<^><>vv^^>v<>^v<^^><>^^^><^<<v>v^<<<v<>vv>vv<><^<^<^<^<v>v<v>^v^vv<v<><>v<<^v^^>^>>v>^>v^>^v^<^^^<<<^<<<>^<^v<>v<<vvv<>><<<v^<<>^v<<><vv^<>^vv<^^<<>v<<<^^^<v<v<>v^<^^vvv<<^^^>><^<>v><v<><v<><v^<<vv^^v>>v<v<v><vv<^v><v>v>>v^v^^v><^v><>^v^v^^v^<^^v>><<<vv><^<v^^v>><>^^<v^>^>>><^
^v^vv>><^><^>>>v>>>>v<>><<vv<vvv^<><>^^>v<<><><^^>>^><^><><^^^^v<^^<><>>>^^<<<^v>>>><<^^^<>v<v>><<v<v^^v^<^>v<^<v>><>v^>v>>^><vvv^^>^v<><><vv>^<<<^vv^<^vv<v>v>v>^<>>^<<v^^^v^>v^<<<v<^^^^v^v<v>>><<<>v>v^><>^vvv<v<v<<<><>><^v^>>^<><<v^v^>vvv^v>^^^><<^v>^>v>^<<^^v>v>>^<v^^<vvv>^>vv^^><<><v<^^<v><>>>^<>><v<<<^^v^v>v^>v<<<^<^<^<^v^>^^v<^<v<>><<>>v<vv^<^>v<^vvv<^>v><>>>^>vv^^>><^>^<v<><v<v^v<<>^^<^^><>^v>^^v^^vv^<>v><^v<>^v<v^v>><v^^<v^<vv<<<<^><^^^^vvv>^v^>^<><v<^>>v><<v><^^>v<^v<v>>><v><<^v^<v^><<<v<>vv>vv<^^vv^^^v<>vv^<v<vv>^v><v<vv>v<<>^^vv>v^<<^<^^v><>vv<>v<v>vv^<v<^><<<v><^v<><<<v^<>>vv>v<v>^v^>v<<<>v^v<^>^^^^^<v<<<v^<^^^<vv>^><>>>v>v<^<v^^>^><<<^^><><v<v<^v>vv^^^<^<>>>^>^v<>v^><>><v^^v>vv<>^<^vv^<<>><>>v^<>>v>>>>^^<v^v<^<v^v^^>v><>v<v^^v^>v^<^^>^^^vv^v<>vvv>^>^^<v^v<^^v>^^v^<>v<^<vvvvvv>>^v<^^v>^<^^<><<v<>>>vv^v<<^<vv>^^><<<<<>^<^v<<v^v<<<<<vvvv<v<>v><^^<>^<<>^v<>^v><>v<v>><^<>><v<><v^>>^<>vv^<v^v<^vv^<><<<v^<>><^>v>v^>v>v^>>^^^>>^>v<<^<>v<>^^v>>>>>v^>v<<^^^^<^^^v<>^>^^v^<<><>><>^<v>v
v>v^^^^><v^v<vv>v>vv^v>v><>^>v<^><^>>v<>v<<<<v^v^^^^<<<<v^>^<v<v>><v>><^>v><<v><v>^vv^<vvv^^<<<>^<^<v^v>^^<^>v>>vv^vvv<v^><^^v><v<<^<^^<<^^><>>^vvv^<^<>v^>>^v><v<^^<v^<v>v^>^^<<v^<>^<<^<vv^^v<<^v<^vv><^^^v>^vv^v>v>^><^>^^^^<>^^^>v>>v<^v^v>>v>^<<>^<^^<>v^<><<^>^v^v^v^>v<<^vvvv^<<^^<^<^vv>^v>v<^<><v>^><^<><v<<<>>v^<<^<^^^^v>v^<^>v^>>^v^<>v>^v<>>>v>^>^^>>v>>>^^^^><^v<^>vv^>v<>>>v^v^vv^<>^><><^<>^<><vv<v^v>v<^v><>^<<v>>vv<><vvvv>vvvv<^v<<<>vv^<^<^v^<>v^v<v^<<>^v^<vv>>v>><vvv<^>>v^^v>vv^vv<v^<v^v>^^>vv^^>^<>^<^><><<>^>^^<<<>^v>v^<>v^>>><<>>^<>v<<v<^v<v>vvvvv><<<v<^<<>>v^>v^^<^v><^>vv^>vv^<><<>vv>vv^<>^^v^v<vv<>v>^<><^<<>^v<v<^^<>^<>>^<<>^^^<<v>^>><v<^^<><v><><v<v>^>v^<vv<<>>^v<>>^>v^v^>^vvv^><<v<<v<^<v<<><^^^^<<^^<<^<v>^>^>^<>>>^^>v<<^<>v<^<^<>><>v^>v>>>^^^v<^^><^><>v<v>>v^^vv>^v<v<^<^<^>^v>>^<^vv>^^<^^^<^>^<^<v^^<><v^><v^v<v<<^v^<>v>v^^v>^vvv^<^^v<^<>vv<v<v<^v<><^v<>v^><<^vv<v^<<<v<<v<vv<^v<>>^^<v<v>^v<<>v<^^<>v<^^^^<vv^^v<^><<v^>>^<<^<<<<><>>^v<<<>^><<^>vvv^v<^v<v^vv<vv^<>^^<^^^<<^<^<><<v
>vv^>^vv^<>^>>>^<^<vv<v><>>v>^>>v^<><<<^vv^<v^^v^vvv><<^>>v<^v>><^><vvv^>^v^<><<v<^>>^<>^v><v>^<>><><<<^>^<v^<<v<>><^^v><>^<><<<<v<^>>>v>v>v^v<^<^v>^>^><vv<>>><><^v>^v>>v^^>^<v<><^>>>vv>^v>^<>>v><^>^>^v>v<>^>vvv<>>^>vv>^v<><<<<v>>>v<<v^v^<v^vvv>><>^^<vv<^>v>vv<<^^<>^^v^>vv^>>v><><v><^><><v><<^><<^v^>><><><><^^^vv>vvv>v<>>v<><>^<><vv^v<^^>v>><>^>^>^^^v^>v>><><v^vv^>^^<^vvvvv^^<vv^<<v^v<<^^^<<v^^><^v<^>>>^v>v<<<^^><<v<>^vvv^<>^^<^^^v^<^v<<>>^v<<^^^vvv<v><vv><<vvvvv^^vv>><<^><<vv^><<v^v^>^^<>>v^<<>vv>v^v>><^<^>^^<><<v>^^^v<^<<^v>>^>vv^<<>>^v<>v^><<v^vvvv^^<<vv^<><^^^<>v>>^><<^vv><^><<v><<<<v>v^v<^^<v^v^>>><^v<^><<v^vv^^>v>v><>v^<v^<^<<v^^<<^^<>><v^<>^><<>><<>v>><<>^>>^v<^<^>vv<<<^<v>^v<^<v^^>v>>v<v^<<<v^<^v>v^v<^><vv^v<<<<^v>^<>^<<^>v<vv<<^><v<>^>^>v^<<^^v<<^>^>>>v^^^>>v><vvv<^vvv<><^>^>^v^<<^<^v>v^^<><vv^^><^v<<vv^^^<v^vv<<>><<<^<>><v<v<v<<^<<v>>><^vv^v><v^v<<<>v^^><>^<v<vv^^<<^<>v>v<^<vv>^>^v><v>^<^<<^<^^v<v^^v<^><v<<vv>vv<vv<<<vvvv><>^^v>vv>^<<^vvv>vvv<^^<^<<>v^v<v<>^vv><<>^>v>>^<vvv^>
vvvv^v^^>^>v^<>><<>>^>>>v<><>v<v>v>v><<<^^<>^^v^^^<>vv<v^^<<^v>>^vv^><^^>>>>^^^<<^<<>^>>vv^<>^^^>>vv<>>>^v>v^^<>>>>^^vv>^><^^vvv<^>^^>v>^<<^^><><>>v<>>^<v>>><^<<v>vv>v><^v^^v<<vv>^<v><<>vvv^>^>^<<^>>>^v^><>^^^v<<^v^>>v>v><>vv^v><vvv>vv^<<v<<^^<v<vv<<v>v<^^>>v>>v><>><>v><>v>vv<^^v><v<vv^v<>v<v<<v><<<<<>><>>v^>^^<^<<v<^^^>>^>>v>>>^v>v>^><<<^^>v>^<v^><v>v<>>^<<>^<>v<<^^<<<^<>><^<>v<>vvv<v<<><v^<v<>^><^^<^<^>>>v^>v^>v<v<v<^><>v<>v>^v>v<>><^<^<<><<^<<<>vvv>>>^^^<<vvv>^>^<v<>v^v<<^vvv><>>v>v><vv^vv^^<>^<>v>>^^<<>>><^>><v^<vvvv^>v<^v<<<><>vv^v^>^v>>>^v^<<v<>^>>^>>v>^vvv^v^^<<^^<>vvvvvv>>>v^>>>^vv>^v<<><><v<<^<>vv^^v^<^vv<<<><^v^vvv>v<>>vv>>vv<v<^^<vv<v^<<>vv^v^<<>><^v^^^>^v<<^><>^>><>v>^^<v^><v^>vvv^<>vv<<^^>><^<v<v<>vv>v<v^v<><vv^<<<>v><v>^>^>^<^v>^<^v<^>^^<v^<<<>^<^^v><>v<<^vv><<><vv<v<vv>v^v^v>>v>v>>^^><v<^v^<v>v<>vv^<<v><>><vv>>v<>^>^vv><>^^>v<<^v<v<v>>vv^>><<<v^<><<<^^><<^v^v^<^^<>v^>>>><>^<vv<v>^<v<<^>v^>vv<<<<v><v<v^>>^>v<vv^>vv<^^>^v>>^^^v>>^^v>>^>^<v<^<<<^<v><^>^^<v^>^>><>>>^v>>^<^<^
>><>>>v^><^>>>^<^>v^<^^<><^<^>v<><^><^>v^<><<v>>>>>^>vvv<^><>^>vv>>^^<v<<v^^>>>>^<>><v^>>^v^^^^^>>><<<<>>v<^^v><>>vv^>>vv^v^v<^<^<>>v><>v^^>v><>v>^^<^v<^>>>>>vv<v^vv^<><^^^v^vv>v><<^<v<vv^v>vv^^<^vv<v<v<<<>v<>>vv<><<>v><^<<vv^^v^^<v^v<vv>><^<><^>v<^<><><<^<><^v^<^^v<^<vv^>^<^vv^v>^<^<^<>v^v^<v<v^><><>v>>v<><v<^v^^<<<^>^^^<v><>><><>>>v^>>^>vv>>^vvv^^><^<<<>^^v^v^>v>^v><>^^vvv<^<^^><v^>^>>>^vv^><v<<<<^><<>v>><v<>>v<>^^^>><<<<v^<>^>^v^^<<v^>^^<v<>^v^<>^^<>><<^v<<^>^v>>^><^^<^>^^<<^^<<v<v^<vv^v>^>v^><>>^^^vv><^>>>>>^^v>^<>^<<^^v^^>>v^<<><^v<^v^v>v>v<><^vv<vv>v^^^<v<^^<^<^<^<>^^^<vv^<>v<><<><<v<v<<>v^>>v<>^<^^^^^><<<^>v<v><><>><^<<^^>^>>vvv^><>>><^>>vvv^^>><>^>>vv>v><^>^<v<v<^v^>vv>>v^v>vvvv^^^>vv<<<v>><v<v<>^>v<v^v<><v<>vv^^<vv><^^^v>^v>>v>^v><v<^<<v>vv>vv><<>>>><^v<<^>v>>^<vv^<v<^<v>v>vv^v^v>>>v><<^v^v^v>vvv<>>>>v>v^<<<<^^>^^>v^vv><v^v<vv<^<^^>>v^v><<><v><vv<<vv<v>^<>v^>>v^v>>>>^<>><>v^<^>v^<^<>>^vv<><v<<^v><>^>^<^v>><v^<>v><^v^>^^>v^>^vvv^<<>v^^^>>^<<<v<^v^^><^v^>vv>^vv^v^<>^>vv>vv>>>^>v
^^^^^>>><<^v><v>>v^>^<^>>>>v^>v>vv<>><^^^v^>^^^v<<><^v^^<^<<^<v<v<v>>v^><v^>^^^^><><<<^vv><<v^^>^v^<>v>^>^>>v>v^v^<>^v^>v^<v><>^<v>v><v^^>^><v^v<>^<v><>^>><vv>^v<>><v^v^v>vv^^<vv>^<^>><^v^^^vv>v>v<<^v>>>^^>v^>^<><^^>^<<v<v>^<<><v><>^^<<>vv>^>vv^vvv>><>>v<>>^vvv><>^^<vvv<<>>><^<v<v<<^>><<<>v^>^<v<>^^<^^<>vvv^v<^^vv<^^^>vv>>v<>v^v<<<>v>>^>v><vv>v^<vv><><>v>>vvvv^>v^v^vv>vv>^>^^<v^^>vv^^v>>^><>>>v<<<>^>^vvv^v^v><>v^^^>^>>v^><><v<^v>v>v>v>vv><<<><<^<>^vvv<<^<><v>vv>^^<<><^v>v>v>v>^vvv<>^v<v^<^^^>>vv^>v<^<<>^<>vv<v<^<vv><v^>^<^>^vv>^^>^>>>>>^vvv>^<<<v^v^v<<>v>^>>>^^<^>vvv>^v>^<v>v>>v><<^<>><^<^^^<>^<v^<><v^vv>^^><^^^<>><v<^>><v^^^v<<>><>><>><>>^^v<>>v><<v^<^^<vv^v^v<v^<v^v><<^v^>v>><v^><v<><^v>^<v^<<^>>^>vv>>v<><>v<v<<>><vvv><^>vv><v^v^^^<>v>v<^v^v<v>v<v>^^>v><><<v>>^>v<vv<>>^v>><^v^>><<>^>>v^v<>vv>^^^>^^vv^<^>v^^^>^<<vv<<^>^>^><>vv<^vv<^^<v<v<><<^v><^>>><^>^v>^v<<^^<<>^<v^v>^v<>>>^>v>v<vv^<v^vv<>>>^vv>><vv>^<vv^^>^^>>>vv>v>v^v>^vv<><>^<>>v<^^<>>v^>>>v>^>>^>v<<<>v^<^vvvv>v>^<v>^<^vv>>><vv^v
<^><>v><><>^vv^^v^<^<>>^>>v<><<<^>>^<vvvv<>vvv><>v>^>^<^^v<>^<<v^v>vv<v>v<<^v^<>>v>v>^>v>^^v^v^^<^v>^v<<><^v<<<<><<^><^>^v^^vv><>^^vvv<vvv>^>v^v^<>vv>v>^^^v>v>^<<vv^v<>^<^<vvvv^<>v><v^<<<>>vvv^>^^>>v<<v>^^<^v<<v>>v<>><>>^><v<v>>^><^<v^vvv^^>>>>>^>>>vv<v>^>v>>^<<>>v^v^^vv^>v<<><^><v><>^^<>^vvv^v<<^<^v<<><><v>v>>^>v><v>^>v<v^<v>><vv><><><v^v^^>^v<v>>>vv<^><<<v<^v^><<v><<v<^^v>>>vvv^>vv^<v^^><v^<<>v<v>^<>vvv<<^><<>^<^><^><><>>v><>>^vv<^^^^vvv<^v>>v>^<>>>^vv<>^^v<^v<<^><v^^^v<vvvvv><<vvv>v<<v><v<<v<vvv<<^>v^^v^>>^v^<^<vv^v<vvv^<<<><>>^>v>^v<^<>vv>>^><v^>^<<><^>^>><^<><^>v>^^^><v^<><v<v>^<><>>^^>^vv<v^>><>^>>><><>^<<<<v^<<^<v^>^<v<v^^<v<<<v>v<><v^<<^>^^>^>^><^vv>v>>v><v^v<^^v>>v<<>v<^^>v>vv^<v^^<v><v^^<vv<^<v><<vv^v>>^><vv<<><^>^>>v^vv><><^^<<>^^^<>^>>>^v^<>v<<v><vvv<^>v>^<>v^^<^^<v<^^<^v^<><<^<^^<vv^<<<v^><v><<><>><<<v>>v^>><vv<vv^<^>v>v>vvv><^<^v^^<>^<<>>><<^>>vv>v<v<v>vv>>>v^v><<v<>vv^>v<>>v^^<v^v^><^^^<^<>^><<<v^>^>^<>v>vv<<>^v>^<<><^^vv<v>>vvv>>^<<^>^vv<^>>>vv^<^<vv>v<v<<^>vv^<^v>>v>v^
^<^><v<<>v>v<<^<>^>>v^>>>vv<>v^^<vvv><<v^<<<v>>>vvvv><v<^<<^<>^vv<v^vv>>^^^v^<vv<<v^<>vv^<^vv<<>^^><v<vvvv<<>>v<^<<>^><<><<v<><<v>^><^v^v>v>v<>^vv^v<>>>^v^^>v^>v^v<vv^^>v^><^^^^>>v<vv<^>v>>^^><^<^>>v><v<><<<<v^<>^>><v>>>v^>>v>v^>v<vvv<^^>v<>^<^<^v^^v><^>>v<<v<<<<>v<^^vv>^vv>^^v<>^><>v<<v^<>v>><<^^<v>>^^<<<^v<v<<v^<<v<^v><>^<vv<<>><<v^^^<v>>^<v<^>^>v^>^>vv<v>^v<<>vv<^vv^<<<vv<<><v^^v>^^vvv^v>^<vv>><><<<<v^v^<v^v^>^vvv^v^<<>^>^<<<<^><><>>vv<>^v^<>>vv<>^^><>vv>v>vv><><^<<^<^vv>>v>>^<^^v<v>^^<v<^v<v<vvv>^><>v>v^v>>>vv^<^^^v^<^^>vv>^vvv^v^^v<vv^^<^^v><^v<<<^>v>vv^>^^<^<>vv>^<v^>vvv>^<>>>>vvvvv^^^<^v^>>>v<v>>>v^>^^<<><<v><v^>>^<^vv>^<<v^v^v>v>v<vv<<^<^^^<><^^><>v>^>v<^<^^^^^<^^^>^vv<>>>v><><>v<<<>v>vv><v><><^>^<<v^<^vv<>v^><^vv^^<<>v<<<>v><<>^<^>^^^><<v^>><<<vv^^v>^^<^^vv<<<vvvv^><v>>>v<<<<>^^<<<<>v^<<>^<v^v^>v><v<v><><<>>^^<>^v>^v>>vv^<<<v<><<^v>><v>><<>>^>vv>v>v>>v<>>^><><<><<<><>v<>>^^vv<>^<<<^^><>><v^<v<^>^<v<^^<<<>v>><^<<>v<v^>>^^>^^vv^<^>^^^v^^<v<<<^<vv^<<>>vv>vvv>^>v^vv<><^><>v^^<>vv<
^v^v>v^><^<<vv^<>^vv^v>>^>v>v^vvv>^>^v<<<<>^<v>>>v^vv>v>>^vv^<><<^><>v>>>v>v>^>v^vvv>^>^^<<<<^<vv^<v<<><>^^v^>vvv>>>^<>>^v<>^^>>>^<<>^>v>>>v<<><v>><<v<<<vv^<><v<^v>>>^vv>>>^>^^<>v^vvv<>vv<v<^<^vv<^^>>>v>v^^^v><^>>vv>>v<<vv^>v>^><<v>^vv^v<><v>^v>vvv^<<<^^>>>>^^v^vv><<<<<<<><^^v^^<v^v^>^^v^^v<>><v^>>v>>v<^^vv>^<^<<v>^<v<<v<>>vv<^<vvv<^v^<v><^<><<<^>>>><>^^v>v<^v<^<vvvv^^<v<^<v<^<>vvv>><<<vv^<vv><vv^v<><<>^v^<^<<v>^>>><^>^^>^<^>^vv^^<>v<^>v^^^^^><<<vv><>v<^v^<>v^>^><>v<<^v>>>^v<^v<^<^vvv>vv<>^v^>>^v^v>vv<v>>v>v^v^>>v>><><v^v<^>vv<<vvv^^<<vv^^<^v^<>v>^<<^>^<<<>v><^<<v>><^vv>^>>vv^vv^<^^^<^v>vvv<v<^v^<>^>>>^v<<<>v^^<^v<>^^^<^v^<>>>v<^<<^vv<>v>^^<v^><<vv<^v<<^v<v<v^<v<<^<<v<^>>>v><>^<><<^^^<^>^>vv<^vvv^><v^v>^^<v^<>^<^<^<<<^v>^^<v<vv>vvvv^<<<>^<^>v^^>^>>vv>^v^><>>^<<^^v>>v<^v>v>^^^>v^^>^>>>>><^^>>v^>^v<>><<vv^^v<^>v^v^vv><<>v^><<>v^>^^^vvvvv^^^>^^>v<>>>^><^v^<^>v><>>>>>vv^^<^v<<<<<<v^^^<^>v<^><><<^v^^<v><<<v>>^^<<v<>v<<>>v>v<<>v^v>vv<>>^><^<>v<v<<^>v^<v<^^^v>^<<v>>vv>>v^<<><<<<<^<<>vv^><^^>>
<><>^v^^^<vv><<^>^><^<><<v>^<v<>><v><<v>>vv^<^^^<v<^v>^^<^>v<v>v^v^<^><>>^>^^^v>^v^>>><v>^^^^vv<>v>>>^v<<<v<<v<^<v^v>>^>>>>vv><><^^<><vv<^v<vv<v<vv<vv>v<>v<^v>>^>v<><v>^^v^^>^^<<^><<v<<<<v<v><^^v^<^<<<>v>v^<^v<>>^>vv<^>^<>v>v^<^vv^<>>^^v>><vv^<>v>^<<<><^<>v<<v<<>^>><vv>^>v^><<v^>>vvv^v>>>^^<v<<v<v<^>^vv^v>>^^v^>vv>^>>v<>v<>v>><^<v^v>^<^^v<<>v<vv><vv^^>>v>v>v<><^v^v<<>^v>>>><v<>vv^><<>v<v^>>v^^v><<^<vvv^><<^><v<^^v^>^>v<>^<<^><^<>><>>v^<>^v^^<^<>>>><<<v>^^^vvv<<vv>v^<vv^^<^<v><v<vvvvvv>>vvvv^<v<^^>v<>><^<v^>^<^<^<>v<>^>v<>^^>v^^>vv>><v>^>^v^<>vv>>>^>vvv>^<>^<^<>^>v^v^<vv<>vv^<>^<v>><>^^>>vv^<><vv^^v><^>^^vv<>^<<<<vv<<vv^<v<v>^vv><^<<><v<vv^<<v<><>^>v<^^vvv^<^v>v^>>>^<v><^v<<v>^v<vvv>^^<^^vv>>v^^>v<<^>v>><^<v><v^>^>v^^<<v^vv^^vv>^^^<<<v><<<^<^v<v<^>v<^>>v^<<^<^>^v><<<>>>>>><>v^v^><>v^><^^^v>>v^v<<^v^<vv<>>^^<v^vv>v<^<v>>^<<<>><^<>^v>>><>>>^>>^v<<vvv^<<^<v>>^v>vvv<^^^^vv>v<>><>^<<><<vvv>^<^<^v>><>v<^>v^>v>v<<<>vv<>^v^^>>>>^<<>v><>>>^v^>^><<<>v<>><^>>^^<vv^^>^<^vv>>v<v>vv<<><^><<^v<>^v<<v<
v>^><v^^vvv>>>^<<<>v<v^v>>v>^<^>v^<<^>>^^<^vv>>>><>^><^^^vv><v<^^<<^<<>v^><<v<<v><>v>v<>^>>v^<<^>^<<v>^><^^v<<^>>vv>^^^^^v<^>>>v^v<^v>>>^^>v^<><<vvvv<^<v^>^<><^v^vvvvv^^<<>><<>>v^vv<^v<>>^<<vv<vv>^<<v>^^>v>>^<>><v>>v^v>v>^><<<>>>><<<<<v>^v>>>>^vv<<<^>^>vv><v^v^^vv^v^<v^<^>v><><v>><^^<^>>v^^<^><^<<v<<v>^v>vv^<^><<>v^>><>>v<^>^><vvv<>vv<<vv>^v>v<<^>^<v><<<<>^<^^v<vv<>>><^vv^v<<<>^^v<<><v^v^v>^<v>v^<<v^><v<<^v^^>v^^^^<>^<<>v<>>^>vvv<^^v><^><<vv<<^<<vvv^<>^^<<>v^<^^<<<>^v^<^<><v>v<^v>v<^v>^^<<^^><<<v<^<v>^<<^^><^>><^^<v>v<^^<vv<<>>^v^>^<^<^>v>>^<^>v>vv^<v>vv>vv<<<<<<<<v^<^<v<^<^v<>^<v>^v>^>vv<<^^<v><v<^<v<^>vv>v>^^v^v<>>^^>>>v<^^>><>>vvv^v^<>>vv^<>v^v^v<^>>^>><^><^<v^^vv<<><<<v<^v^vv<<<>vvv>^v^<>><v<v<<<^^^^v^>^><>^v^v>vv^v><^>^<vv^>vv<^<^>>vv<^^^><v^v^>^>v>><<v^v>vvvv^<>v<^>^vv^^^v^<^^v>v>^v>v>>^<v^>v>>>v^^<^v><<<>v<v^v<v^v<vv<<>vv^^<>vvv<><>^<v^>^v<^<^>v>^vv><>vvv^<>><<^v<>^^^<<<vvv^^>^vv<<^>><^v><>vv>vv<^<vv<^v><^>vvv<<^>^^<<^<^>v<^><^^v^^<v<<v>^v<^v>^^<<^^<>v^v^v^<^v^>>><>v^v^v^<<^<><v
<vv>^<v<<^<v>^^v><>vvvvvvvvv<vv<^v<>v<v><v>^><v<^^v^<^^v^v><v^^^<<<vvv<v^^^><><<<>><^><^vv<<><<^vv<>^v^<>>v>^vv^>v>v<^vvv^><<vv<vvv<v^^>v^v>v>v><v^><v^<^v<v^>>^<>v<>>^<^<^^><vv^^^>>v^^><<>^<^v^^vv^<<vv^<>><v^v^<^^v^v^>>^^<>v<^v>v>v<vvv>^^v<><>>vv>v<v>><^v>^>^>v<^<>^v<<vvv^v>^v>^^>>>vv<>v><vv>>>>^>>v^<<v^v<>v><><^^v>v<v^<vv^>>><<>>>vvv<>^<<v<<<<vv<>>>vv><^vv>><<v>><^v>^<<^v^vvv^v^>^>^v<v^<>v>><v<^v^>><>>>vv^>^>v<^><^^>>><^^v^<>v^^<^>>^<vv^>>v><^^>^^>^^v^>>v^<>^^<<<>><><>>^>^<>^><^><<^>><v>>vvvv^^^vv<><<>>^v<<<<>^^v><^v<<v>vv>>v<><>^^^>^<>v>>v^v<v<>^<<^>v^vv>^^v>v<>^>vvv^^v>^^v<^<>^v><<v^v^<>^^><^vv<<>>>^>v^>^>>><<<v^<<v<<<^v><^^>^v^^>v^^v<^v<>^>^<v<>><^>>>^>><<v^^<<<^><<<v><^>><^>>><v<>^><^vv<^>v>vvv^<^><^v<<<^v^^vv<^<v<>^vvv<>v>^<^><>>>^v^v^^>^^<<>>>^<>>^>^><><><^^<^^^<>>^<^>^><<vv>^<v><^>^^v><>>^>^>v^v<<<v<>v^<><^>v>v>v<>^^>vv^><v>>^v^<>^^>v<><><^<>><^><^v<<<<v^vv><^^v<<^v<v<<<v^<vv^<<<vv>v<<<>vvv<^^<<vv^>^<^vvv^^v^<>v>v^>><>^v>><v^^^><^^<<>^<>^<v>v^<<vv>><<^>><>^v>>>^v^vvv<v^vv^>^>v<
^>v^^<>^>v^^<>^<<v<><v^>^><<^<>^vv^vvv>>v^vv<<^^>^v<v^<vv>>^^^^vvv>>^^<>^v><<^^>>^><^<^>^v>^v<>^v<<v<<v>^><<v<v^vvv>v<v<<^^>>>^vv^vvv>vv<>^>v<vvv<^^vv>^v^><v^>vv><>><^>^^>^v^^<<^vvvv<v^v>>^>><^>>^<<v^>v>^v><v<<<v>>v<^<>^^^^vv>v>><>><v><><vv<<v<<^<^<^<^v<v^^>>>^<^<v^>>^v<><^<>^<vv<^<v<v^>>vv^>>>v<v^<^v^v^^>v><>^^v<<^^><^^>v^>v^^>>v^^<vv<v^>>^v>><>v>>>^v<<>^vv<^^>>>><v<>^>vvv>^v^>v^>^^<^>>>>>v^^<<>v>v<<>>>><>v<<>>>v^v<><>><<>^vvv<^^^>^v<^<v<^<><<<><^^<<>>v^^<v>^vv<^^v^^^>v^<><<^^v^^v<<<>v>^^^<>v<v<^>>>v^^>^v^^v>^^^v<>^^^>>v^^>>^v^<v<<>>><>><^>^><^v<<<^<<vvv^>>vv<v<vv^><>>^>^^v>v<^v>^^><>>v>>v>v>^^<>^vv<^v^vv^>vv>v<^v>><^v>vv^^>^vv<v<^>v<^v<<<^>^^>^<>>^<v<^>^<^>>v<vv^^<^<>^v<^v^<>>^^v^vv^>v<v^<<vv^<><^v><><^^<v^v<v^><<<>><><<^<^^^vv^v<v<><vvvv<>v<>vv^v^v>v<^v><^>v<<v>><^v<v<<^v<><^^^^v>v^v>v<^^^v^>v<vv>v<<vvv^<^v^<^>><<v<^v<><v<<vv^<>v<v<<>>v>v>>v^^v<<^v>><^<<<><>^^v^^<v<><>^<vv<>v<^<><>>v>v<^<^>><v<<><<>>>^v>^<v>><^>^v^vv<<^>^^v<^v<^^<<>^^vvv<>v<v<>>><v^^v^^v^^>^^<^^>v>^^<<>^>^^^><v>v>v>
v>v^vvvv^<<<>v<v>v><<<vv<>^>>v<><<<vvv>v>v^^<<<v<^v<<v<>v>v<^v>v^^><^<^^>><^^><^^^><^^v^v^<>>^<^v^^^>^<>^>v<<<vvv^<<^>><<>^<><<v^^<<<vvv><^v>vv<^>v>v>^vv>^<vvv<<v>v<<<>v<>vvv<v^^v<><v<v^v>>v^<<^v>^v^^>>v<>^<<>v>><^^^><^<<><v>><>^^>>^vv^<^^<v^^><<^v^^v<>v<>vv>v^>^>^>^<><><^^<^v>^><^^v^>v>>>^<^^^>vv^^>^>^^<vv><^><><^<<>^v<^<v^<^<v<v<^v<<<>vvv^>^^<><^^<<v>><^>v<^^^>v<v^><v>>>>^v<v>><^v<>v><^^vv^^<v<v<v<v>^<^v>vv><v>^<^<v^v>^<<><^<^v<>vv<<v>v>^<v<<^v<<^<<>^<<v<^>vvv^>^>v<>>^<v^^<^<>v>>v<>^v>>v<v^<>^>>^<^<v^vv>v>>v>>>v>^<<><^<>><><><vv>^<<<<v<<<v^^>^<^<vv>v<>^^>v^^<>v>><^>><vv<vv>>v<vv^v><<<<^>^<<<>><v>>^^^>^>^^v>>>^<<v^v><<^v><>v>^>>>>v^^^<^v>v^>>>^<>^<vv<>v^<><>>>^>^>^^^^<<<>>v><^^<<^><>vv>^<>^<><^vv<^>>vv^^>v^vv<v^<^^^^vv>vv>vv^vv^^^vvv^<>^v^<vv<><^^<<><>v^<^^^<v^<<>>^><<v<^v^><<^>v>>v^<v>^<>>>^v>^<<<v^^v<^>vv^^v<^v^vv>><>><^>^^>v>^^v^<^^v^^><>v<<<v>^>vv^><>v^v^><<>^^<v^<><v><v><>^v><>v><^^v^<v>^><<v>v<v>>>^v><<>^>^^>>v<v<v<vv<<<^>><^<vv<^v>^vvv>>v>>^<<>><v<^>vvv^v^^v><v<><<v<v>v^v^v<<v^
>>^v<v^v><>^^>v<>>v<v^^<vv>^v^>v<v^>>^>><^v>^^>^<^v<>v>>^>v<v>v><vvv^><vv^^^<v>>>>^<><v<^<>v>^v<^v^vv<>^<v>^vvv^>^><v<^v^<<<^^^>>>^<<^v^vv^>>^v^v^^<^v><<v<>^v<v>vv<v^vvv^<<>vvvv<^^v<^<vv<><v<^<>v^^<<>v<<>v^^<<><<<<>v^>^v<^^^<^^<^<^^><>>^<v>^^<^vv<>v>>^^^<>><^<^^v<vv><v^<><<^v><><<^v^>^>^^^<^^><vvv>^>v^<^v>v^>v<v<v^>><<v^^><^v^<<vvv^<>vv>^v<><v>>><>^v<v>^<<<v<>v>v>^<<<^^v<>>v<>v<>v<>v>^<^v><^^v<<^^>v><<<<>^^<vvv>>^^><<v<>><<v><^v^^vv><vv^>^^><v<>^v>^>vv>^<^><>^<v>v>><<^><>>>v^v>>^>v^><^<v<<><<>^vvv<v<<^>vv>v^<><<v^^<v<^<<><v<<>>^><v><>^^^^<v^v<^><>^<^<^<v><<v>v<^v>v<>><>>vv<v^>>v<^<<^^>^<<^^^^<v<v>^v^<^^v^vvv><<v>>>v<<v^><<^>>v>>v<<^^>>v^v><<<^>^^<vv<^^^<<vv>>^vv>>^<vv><<v>vvvv<<<<>vv>^<>>v<^<v>^<v^>><^<^>^vv^<vv><<<<<<<<>v>>>^v<>>^>^<^^><v>vv^v>^<^^<<<v^>^>^^v><vv^^<><v>><<^<<>v<vv^v<vvv<<v<^<^^v>^v<^^<v^>vv<>vv>>^>v<<>^vv^<>>^>vvv<>^^^v^<v^><>>vv^vv^^>>v^v<^^<>>v<>v>>>^<vv>^<><<>v<><>vv^v^v>^<<v^<^>><vv^v>vv>v>>>>^^^vv<^>v>vv^<<><>^^><^<<^>vv^>^^<<>><<><>^>^^<>>v^v<v^v^vvv><^v^^v<>vvv

View File

@@ -0,0 +1,141 @@
#############################################################################################################################################
#.................#.................#.............#.......#...................#.......#.............................#...#.......#.........#E#
#.#.###############.#####.#####.###.#.#########.###.#.###.#.#################.#.#####.#.#.#####.#################.#.###.#.###.#.#.#.#.###.#.#
#.#.#.....#.........#...#.#...#.#.#.#.........#.....#.#...#.....#...#.........#.#.......#.#.....#.....#.#.........#...#.......#.#.#.#...#.#.#
###.#.###.#.#########.#.###.#.#.#.#.###.#############.#.###.###.#.###.#########.#.#####.#.#######.###.#.#.#######.###.#######.#.#.#.#.#.#.#.#
#...#...#...#...#...#.#.#...#...#.....#.#...#.........#...#...#.#.#...#.......#.#...#.....#.......#...#.#.#.#.......#.#...#...#.#.#.#.#...#.#
#.#####.#####.###.#.#.#.#.###.#######.###.#.#.###########.#####.#.#.###.#####.#.###.#.#.###.#######.###.#.#.#.###.###.#.#.#.#.#.#.#.#####.#.#
#.......#...#...#.#.#.#...#...#...#.................................#...#...#...#...#.#.#.....#.............#...#.....#.#...#.#...#.....#...#
#.#######.#.#.#.#.#.#.#######.#.#.#.###.###.#.#.#.#####.###.#.###.#.#.#####.###.#.###.#.#.###.#.#.#.#.###.#####.#.#####.#####.###.#####.#.###
#.#.....#.....#.#.#...#.....#.#.#.#.....#.#.#.#.....#.#...#...#...#.#.....#.....#...#...#.#.....#...#.....#...#.......#.#...#...#.....#.....#
#.#.###.#####.#.#.#####.###.#.#.#.#######.#.#.#####.#.#.#######.#.#.#.###.#####.###.###.#.#.#.#############.#.###.###.#.###.#.#.#####.###.#.#
#.#...#.....#.#.#.#.....#...#.#.#.....#.....#...#.#...#...#.............#.....#...#...#...#.#.#.....#.....#.#.....#...#...#...#...#...#.....#
#.###.#####.###.#.#.#####.#####.#####.#.#####.#.#.#.#####.#.###########.#####.###.###.#####.#.#.###.#.###.#.#####.#.#####.#.#.###.###.#.#.###
#.....#.....#...#.#.#.....#.....#.....#.....#.#.#...#.....#.#.........#.....#...#...#.....#.......#.....#...#...#.#.......#.....#...#.#.....#
#######.#####.#.#.#.#.#####.#.###.#########.#.#.#.###.###.#.#####.###.#########.#######.#####.#########.#.###.#.#.#########.#.#.###.#######.#
#.....#.#.....#.#...#.......#...#.......#.#.#.#.#.#.#.#...#.#...#.#.......#.....#...#...#.....#.......#.#.....#...#.....#.....#...#...#.....#
#.###.#.#.###.#.###.#########.#.#####.#.#.#.###.#.#.#.#.###.#.#.#.#######.#.#####.#.#.###.###.#.#####.#.#.###########.#.#.###.#.#.###.#.###.#
#.#...#.#.#...#.#.............#.#.......#.#.....#.#.#.#...#...#.#...#.....#.#.....#.#...#.#...#...#...#.#.#.....#.....#.#...#...#...#.......#
#.#.###.###.###.###.#########.###.#######.#####.#.#.#.#########.#.#.#.#####.#.#####.#.#.#.#.#####.###.#.#.#.#.###.#.###.#####.#.#####.#.#.#.#
#.#.#...#...#.#...#.#.......#...#.#.............#...#.........#.#.#.#.#...#.......#...#.#.#.....#...#.....#.#.#...#...#.......#.#.......#...#
#.#.#.###.###.###.#.#####.#####.#.#.#.#############.#########.#.###.#.###.#.#######.#.#.#.#####.###.#########.#.#####.###########.#####.###.#
#.#...............#...#...#.....#...#.......#.......#.......#.....#.#...#...#.....#.#...#.#...#...#.........#...#...#.........#.............#
#.#.#.#.###.#.#######.#.#.#.###.###.#.#####.#.###########.#######.#.###.#####.###.#######.###.###.#.#######.#.#####.#########.#.###.#####.#.#
#.#...#...#.#.#.....#...#.#.#.....#.#...#.#.......#.......#...#.#...#.#.....#.#...#.......#.....#.#.......#.#.....#.......#...#...#...#.#.#.#
#.#######.#.#.#.###.#######.#.#####.###.#.#######.#.###.###.#.#.#####.#####.#.#.#.#.#######.#.###.#######.#.#####.#.###.#.#.#####.###.#.#.#.#
#.#.......#.#.#...#.......#.#.#.#...#.....#...#.#...#...#...#.#...........#.#.#...#.#...#...#.#...#...#...#.#...#.#.#...#.......#.#.....#.#.#
#.#####.###.#.###.#######.#.#.#.#.#########.#.#.#####.###.###.#.###.#.#.#.#.#.#.###.#.#.#.#.###.###.#.#.###.#.#.#.#.#.###.###.###.#.#####.###
#.......#.........#.....#...#...#.....#.....#.........#.......#...#...#.#.....#...#.#.#...#.....#...#.#...#.#.#...#.#.#...#...#...#.#...#...#
#########.#.#########.#.#.#####.#####.#.#####.#.###.###.###.#####.#####.#########.#.#.#.#.#########.#.#.###.#.#####.#.#.###.#.#.#####.#.###.#
#.#.......#...#.......#...#...#.#...#...#...#.#.......#.#.#.....#.#...#...#.......#.#...............#.#.#...#...#.#.#.#.#...#.#.......#.....#
#.#.#.#########.#.#########.#.#.#.#######.#.#.#####.###.#.#####.#.#.#####.#.#######.#.###############.#.#.#####.#.#.#.#.#.#.###.###########.#
#...#.......#...#.....#.....#...#.......#.#.#.#.........#.#.....#...#.....#.........#...#...........#.#.#.#...#.#.#.#.....#...#.#.......#...#
#.#########.#.#######.#.#############.#.#.#.#.#.#########.#.#####.###.#######.#########.#.#########.#.###.#.###.#.#.#.###.###.#.#.#####.###.#
#...#.....#...#.#.....#...#...#.....#.#.#.#.#...#.........#.....#.#...#.......#...#.....#.#.#.......#.....#...#.#...#.#.#...#.#.#.#...#...#.#
###.###.#######.#.###.###.#.#.#.#.#.#.#.#.#.#####.#######.#####.#.#.###.#####.#.#.#.#####.#.#.###.#########.#.#.#####.#.###.#.#.#.###.###.###
#.#...#.#.......#.#.#.#...#.#...#.#.#.#...#.....#...#.#...#...#.#.#.....#.#.....#.#.#...#...#.#.#.#.............#.....#.....#...#...#...#...#
#.###.#.#.#####.#.#.#.#.#########.#.###.#####.#####.#.#.#.#.#.#.#.#######.#.#####.#.#.#####.#.#.#.#.#.#####.#.###.###.#############.#.#####.#
#.....#.....#...#.#...#...........#.........#...#.....#.#...#.#.#.........#.#.#...#.........#.#...#.#.....#.#.....#...#.............#.#.....#
#.#########.#.###.#########################.###.#.#####.#####.#.#########.#.#.#.#####.#.#####.#.###.###.#.#.#######.###.#############.#.#####
#.......#.#.#...#.............#.......#.......#.#.#...#.#.......#.....#...#...#...#...#.#.....#...#.....#.#...#...#.#...#...#.........#.....#
#######.#.#.###.###########.#.#.#.###.#.#.###.#.#.#.#.#.#.#####.#.###.#######.###.#####.#.#####.#####.###.###.#.###.#.###.#.#.#.#####.#####.#
#...#...#.#...#.#.......#...#.#.#.#...#.#.#...#...#.#.#.#...#...#.#.#.#.....#.#.#.....#.#.#.....#.......#...#.#.....#.....#.#.#.#.#...#...#.#
#.#.#.###.###.#.#.#.###.#.#####.#.#####.#.#.###.###.#.#.###.#####.#.#.#.###.#.#.#####.#.#.#.#####.#.###.###.#.#.###########.###.#.#.#####.#.#
#.#.#.#.#.....#...#...#.#.......#.......#...#...#...#.#...#.....#.#.#...#...#.#...#...#.#.#.#...#.#...#...#.#.#.#.#.......#.................#
#.###.#.#.###########.#.#######################.#.###.#.#.#####.#.#.#####.#.#.#.###.###.#.#.#.#.#.###.###.#.#.#.#.#.###.#.#######.#####.#.#.#
#...#.#...#...#.....#.#.#.............#.......#.#.#.....#.....#.#...........#...#...#...#.#...#.#...#.#...#.#.#.....#.#.#.#.....#.....#.#.#.#
###.#.#####.#.#.#.#.#.#.#######.#####.#.#####.###.#########.#.#.#.###.#####.#.###.###.###.#.#.###.###.#####.#.#####.#.#.###.#.###.#.###.#.#.#
#...#.......#.....#.#.#...#.....#...#.#.#...#...#...#.....#...#...#.........#.#...#.....#...#.#...#...#.....#.........#.#...#.....#...#...#.#
#.#.#######.#####.#.#.###.#.#######.#.#.###.###.#.#.#.###.#.#######.###.#####.#.###.#######.###.###.###.#####.#########.#.#########.#.###.#.#
#.#...#.#.........#...#.#.....#...#.#.#...#.#...#.#.....#.....#.....#...#.....#.#.....#...#.......#.........#.......#...#.#.................#
#.###.#.#.#.#####.#####.#.#.#.#.#.#.#.#.#.#.#.#######.###.###.#.###.#####.#####.#.#####.#.###########.#####.#.#####.#.#.#.###.#.###.#######.#
#.#.....#...#.#...#.....#.#.#.#.#...#.#.#.#.#.......#.#...#...#.....#.....#...#...#.....#...........#.#...#.#.#...#.#.#.#.................#.#
#.###.#.###.#.#.#.#.#.#.#.###.#.###.#.###.#.#####.#.#.#.###.###.#.###.#.###.#######.#####.###.#####.###.#.###.#.#.#.#.#############.#.###.#.#
#.....#...#...#.#.#.#.#.......#...#.#.....#.......#.#.#...#.#...#.#...#...........#.#.....#.......#.....#.....#.#.....#...........#.#.#...#.#
#.###.###.#.#.#.###.#.#.#######.#.#########.#####.#.#####.#.#.#.###.###.#######.#.#.#######.#####.###.#.#####.#########.#.#####.###.#.#.###.#
#.#...#...#.#.#.....#.#.#.......#.#...........#...#.....#.#.#...#...#.#...#...#.#.#.#.......#...#.#.#...#...#.#.........#.....#.#...#.#...#.#
###.#.#.###.#.#######.###.#######.#.###.###.#.#.#######.#.###.#.#.###.#.###.#.#.#.#.#.#####.#.###.#.#####.#.#.#.#########.#.#.#.#.#.#####.#.#
#...#.#.....#.#.....#.#...#.#.....#.#.#.....#.#.#...#...#...#.#.#.#.....#...#.#.#.#.#.#.........#.#.......#.#.....#.....#.#.#.#.#.#.......#.#
#.###.#####.#.#.#####.#.###.#.#####.#.#######.###.#.#.#####.#.#.#.###.###.###.#.#.#.#.#########.#.#######.#.#.###.###.#.#.###.#.#.#.#.###.#.#
#.#.........#.#...#...#.....#.....#.#.......#.....#.........#.#.#...#.#...#.#...#.#...#.........#.......#.#.#.#.#...#.#.#...#.#.#.....#...#.#
#.#########.#.###.#.#######.#####.#.#######.#######.#########.#.###.#.#.###.#####.#.#.#.#######.#######.#.#.#.#.###.###.###.#.#.###.###.###.#
#...#.........#...#.....#...#...#...#.....#...#.........#.....#.#...#.#.#...#.....#.#...#...#.#.......#.#.#...#...#.#...#...#.#.....#.....#.#
#.#.#.#####.###.#.###.###.#####.#####.###.#.###.#######.#.#.#####.#####.#.#.#.#####.#####.#.#.#######.#.#####.###.#.#.###.###.###.#.#.#####.#
#.#...#.........#.#.....#.#.......#...#...#.#...#.........#.#.....#.....#.#.......#...#...#...#...#...#.#...#.....#...#...#.......#...#.#...#
#.#######.#.#####.#.###.#.#.#.###.#.#####.#.#.#####.#######.#.#####.#####.#######.###.#.#.###.#.#.#.###.#.#.#####.###.#.#######.###.###.#.#.#
#.........#.....#.#...#...#.#.#.#.#.....#.#.#.#...#.#.......#.#.....#.......#...#...#...#.#...#.#.....#...#.#...#...#.#.......#.#.......#.#.#
###########.###.#.#.#########.#.#.#####.#.#.#.#.#.###.#.###.#.###.###.#######.#.###.#####.#####.#####.#####.#.#.#####.#.#.###.###.#######.#.#
#.....#.....#.#...#...........#.........#.#.#...#.....#.#...#...#.#.#.#.....#.#.#...#...#.#...#.#...........#.#.......#.#.#.#.....#.......#.#
#.###.#.###.#.#######.###################.#.###########.#.#.#.#.#.#.#.#.###.#.#.#####.#.#.#.#.#.#.#.#######.#.#########.#.#.#.#####.###.###.#
#.#...#.#.#...........#.....#...#...#.........#.......#...#...#.#.#.#.#...#...#.......#.#...#...#.#.#.......#...#...#...#.#.......#.......#.#
###.###.#.#.#####.#####.###.#.#.#.#.#########.#####.#.#######.#.#.#.#.###.#############.#.#######.#.#.#.###.###.#.###.###.#.#####.#######.#.#
#.................#...#.#.#.#...#.#.......#.#.#.....#.....#...#...#...#.#...#.........#.#.#.#.....#.#.#.......#.#...#.....#.....#.......#.#.#
#.#.#.###.###.###.#.#.#.#.#.#.#.#.#######.#.#.#.###########.#.#.#.#####.###.###.#.#####.#.#.#.#######.#.#.###.#.###.###########.#########.#.#
#.#.#...#...#...#.#.#...#.#...#...#.....#...#.#...#.........#.#.#.#...#...#...#.#.#.....#.#.#.........#...#.#...#.........#.....#...........#
#.#.###.###.###.###.#####.#########.###.#.#.#.###.#.#.#.#######.#.#.#.###.#.#.#.###.#####.#.###############.#####.#######.#.#.#.#.#####.#.###
#.#...#...#...#.#...#.......#.......#...#.#...#...#.#.#...#.....#...#...#.#.#.#.....#.............#...................#.....#.....#.....#...#
#.#.#.###.#####.#.###.#.#####.#######.#.#.#.###.###.###.#.#.#########.#.#.#.#.#.#####.#########.#.#.###.###.#####.###.#######.###.#.###.###.#
#...#...#...#...#...#.#.......#.#.....#.#.#...#.#...#...#...#...#.....#.#.#.#.#.....#.#.......#.#...#...#.#.....#.#...#.....#...#.#...#.#.#.#
#.#.#######.#.#.###.#######.###.#.#######.###.#.#.###.#######.#.#.#####.#.###.#####.###.#####.#.#####.###.#####.#.#.#.#.###.###.#####.#.#.#.#
#.#.......#.#.#...#.......#.#...#.......#...#...#.#...#.......#.#.#.....#.....#...#.....#...#.#.......#.....#...#.#.#.#.#.....#...#...#...#.#
#.#.#####.#.#.###.#######.#.###.#######.###.#####.#.#######.###.#.#.###########.#.#########.#.#########.###.#.#####.#.#.#####.###.#.#######.#
#.#.....#...#.#.........#.#...#.......#...#.......#.......#.#.....#...#.......#.#.#.........#...#.......#.....#.....#.......#...#...#.......#
#.#.#.#######.###.#######.###.#.#####.###.#######.#######.#.#########.#####.#.#.#.#.#.#.#######.#.#######.###.#.###########.###.#####.#######
#.#.#.#...................#.#...#.....#...#.....#.#...#...#...#.#.....#...#.#.#.#...#.#.#.......#.......#...#.#...#.....#...#.#.......#.....#
#.#.#.#.#######.#.#######.#.#####.#####.#.#####.#.###.#.###.#.#.#.#####.#.#.###.#####.#.#.#################.#.#.#.#.#.###.#.#.#########.#.#.#
#...#.#.#...#...#.#.#...........#.#.....#.......#...#.#.#...#.#...#.....#...#.....#...#.#.................#...#.#...#...#.#.#.....#.....#.#.#
###.#.#.#.#.#.#.#.#.#.#######.###.#.#####.#########.#.#.#.###.#.###.###.###.#.###.#.###.#################.#.#######.###.#.#.#.#.#.#####.#.#.#
#...#.....#.#.#.#.#.#.#.....#.....#.....#.#.......#...#.#...#.#...#...#...#.#.#...#...#.#...#...........#.#.#.......#...#.#.#.#.#.........#.#
#.###########.###.#.#.#.###.###.#######.#.#.#####.###.#.#.#.#.###.#######.###.#.#.###.#.#.#.#.#######.#.#.#.#.#####.#.###.#.#.#.#####.#.#.#.#
#.#...............#.#.#.#.#.........#.#...#.#...#.....#.#.#...#.#.......#.....#.#...#.#.#.#...#.#.....#.#.#...#.......#...#...#...#.#.....#.#
#.#.#.#########.###.#.#.#.#####.#.#.#.###.#.#.#.#######.#.#####.#######.#.#######.#.#.#.#.#####.#.#######.###########.#.#####.###.#.#.#.###.#
#.#.#.....#...#.#...#...#.....#...#...#.#...#.#.......#...#...........#.#.........#...#.......#.#.......#...........#.#.#...#...#.#...#...#.#
#.#######.#.#.#.#.#######.###.#######.#.#####.###.#######.###.#########.#.#.###.###.###.#####.#.#######.#.#.#######.#.#.#.#.#.#.#.#####.#.###
#...#.....#.#.#.#.........#...#.....#.....#.....#.............#.........#.......#...#.......#.....#.#...#.#...#...#.#.#...#...#.#.#.....#...#
###.#.#####.#.#.###.#####.#####.###.#####.###############.###.#.#######.#####.#.#.###############.#.#.###.#.#.###.#.###########.#.#.###.###.#
#.#...#...#.#.#.........#.........#.....#...#...#...#.....#...#.#...#...#.....#.#.............#...#.#.....#.#.#...#.#...........#...#.....#.#
#.###.#.#.#.#.#########.#.#.#######.###.###.#.#.#.#.#.#######.#.#.#.#.###.#####.###########.#.#.###.###.###.#.#.###.#.#####.#.###.###.#.#.#.#
#.....#.#...#.....#.....#.#.....#...#.....#...#.#.#...#.....#.#.#.#...#...#.....#...........#.#...#.......#.#.#...#.#.#...#.#.#.............#
#######.###.#####.#.#####.#####.#.#############.#.#####.###.###.#.#####.#####.#.#.#####.#####.###.#.#####.###.#.#.#.#.#.###.#.#.###.###.#####
#.....#.........#...#.........#.#.............#.#.#.....#.#.....#.....#.#.....#.#.#.#.......#.#...#.#...#.#...#.#...#.#...#.#.#...#.#...#...#
#.###.#.###.###.#####.#####.#.#.#########.###.#.#.#.#.###.#####.###.#.#.#.#######.#.#.#.#####.#.###.###.#.#.###.#####.#.#.#.#.###.#.#.###.#.#
#...............#...#.#...#.#.#.....#.#...#...#...#.........#.....#.#.....#.......#...#.......#.#...#...#...#.#.......#.#.#...#.....#.#...#.#
#.#.#.#.#.#.#####.###.#.#.###.#####.#.#.#########.###.#####.#.###.#########.#######.###########.###.#.#.#####.#########.#.###.#######.#.###.#
#.#.....#.#...#.......#.#...#.....#.#.#.......#...#.#.....#...#.#...........#.....#.#.........#.....#.#.#.....#...#.....#...........#...#...#
#.#####.#.#.#.#.#######.###.#.###.#.#.###.#.#.#.###.#.###.#####.###############.#.#.#.#.#.#.#########.#.###.#.#.#.###########.#####.#.###.#.#
#.............#.....#...#...#...#.#...#.#.........#.....#.....#.........#.......#.#.#.#.#.#...........#.....#...#...#.......#.#.....#...#...#
#.#.#.#.#.#.#########.###.###.#.#.###.#.#########.###########.#.###.#####.###.#####.#.#.###.###.###################.#.#####.#.#.#####.###.#.#
#.#.#.#.#...#.........#.#.#...#.#...#.....#.#...#.........#.......#.....#.#.#.......#.#.......#...#.....#.........#.#.#...#.#.#.#.......#.#.#
#.#.#.#.###.#.#####.###.#.#.###.###.#####.#.#.#.#########.#.#.###.#####.#.#.###############.#####.###.#.###.#.#.#.#.#.#.#.#.#.#.#####.#.###.#
#.#...#.....#.#.....#...#.#.#.#...#.#...#.#.#.#...#.....#.#.#...#.....#.........#.........#.#.....#...#...#.#.#...#...#.#.#...#.......#.....#
#.#####.###.#.#.###.#.###.#.#.###.###.#.#.#.#.###.###.#.#.#.###.#####.#.#######.#####.###.#.#.#####.#####.###.#.#######.#.#####.#####.###.#.#
#.#.....#.#.#.#.......#...#.....#.#...#.#...#.#.#...#.#.#.#...........#.#.....#.....#.#...#.#...#...#...#.....#.........#.#.........#...#...#
#.###.#.#.#.#.###.#.###.#####.#.#.#.###.###.#.#.###.#.###.###.###.#####.#.#.#######.#.#.#######.###.#.#.#################.###.#.###.#.#.###.#
#.....#.#.........#.#...#...#.#...#...#.....#...#...#...........#.#.....#.#.....#...#.#.........#...#.#.....#.....#.....#...#...#...#.#...#.#
#######.#.#.#.#.###.#.###.#.#.#.###.#.###.#####.#.###.#########.###.###.#.###.###.###.###########.#####.#####.#.###.###.###.###.#.###.#.#.#.#
#.....#.#.#.....#...#...#.#.#.#.....#...#...#.........#.....#.#.........#...#.......#...#...#.........#.......#.....#...#.........#...#.....#
#.#.#.#.#.#############.#.#.#########.#.#####.###.###.#.###.#.#######.#.###.###.###.###.#.#.#.#######.#.###.#########.###.#####.###.###.#.###
#...#.#...#...#.........#.#.........#.#.#.....#.#...#.#.#.#.#...........#...#.#.........#.#.#...#...#.#.........#...#.............#...#.....#
###.###.#.###.#.#######.#.#####.###.#.#.#.#####.###.###.#.#.###########.#.###.#######.#####.###.#.#.#.#########.###.#######.#####.###.#.#.###
#...#.........#.#.#.....#.......#...#.#...........#.....#.#...#.....#...#.........#...#...#.....#.#.#...#.....#...........#.#.....#...#.#...#
#.###.#.#######.#.#.#####.#.#.###.###.#####.#.#########.#.###.#.###.#############.#.#.#.#.#.#####.#.###.###.#########.#####.#.#####.###.#.#.#
#.....#.........#.......#.#.#...#...#...#...#.....#...........#...#.........#.....#.#...#.#.......#...#...#.....#.....#.....#.....#.........#
#.#####.#########.###.###.#.###.###.###.#.#######.#.#.#.###.#.###.#.#####.###.#.#########.#####.#########.#.###.#.#####.#########.#.###.###.#
#.....#...#.........#...#.#.#.#...#...#.#.......#.....#.#...#...#.....#...#...#...........#.#...#.............#.........#.......#.#...#...#.#
#####.###.#.#######.#.#.#.#.#.#.#.#.#.#.#####.#########.#.###########.#.###.#####.#########.#.###.###########.#########.#.#.###.#.###.#.#.#.#
#...#...#.#.#.....#.#.#...#...#.#.#.#.#...#...#.....#...#.......#.....#.....#.....#.......#.#...#.#.......#...#.#.......#.#.................#
#.###.#.#.#.#.###.#.#.#########.###.#####.###.#.###.#.#########.#.###########.#.###.#####.#.###.#.#####.#.#.###.#.###########.###.###.#.###.#
#.......#.#.#...........#.....#...#.....#...#.#.#...#.........#.#.#...#.....#.#...#.#...#.#.#...#.....#.#.#.....#.#.........#.#...#...#.....#
#.#.#####.#.###.#.#####.#.###.#.#.#####.###.###.#.#######.#####.#.#.###.###.#.###.#.#.#.#.#.#.#####.#.#.#.#####.#.#####.###.#.#.#.#.###.#.###
#...#.#.......#.#...#...#.#...#.#.....#...#.....#.....#...#...#...#.....#.#...#.#.#...#.#...#...#...#.#.......#.#.......#...#.#.#.#.....#.#.#
#.#.#.#.#.#####.###.#.###.#.###.###.#.###.###########.#.###.#.#.#.#.#####.###.#.#.#####.#######.#.#.#.#.###.###.#########.###.#.#######.#.#.#
#.......#.#.....#.#...#...#.#.#.#.#.#.#.#...#.....#.............................#.#...#.......#.#.#.#.#.#.#.#.....#.......#...#.........#...#
#####.#.#.#.#####.#######.#.#.#.#.#.#.#.###.#.###.#.#########.#####.#.#########.#.#.#.#.###.###.###.#.#.#.#.#.#####.#######.#.#######.#.###.#
#.....#...........................#.#.#...#.#.#.#.#.........#...#...#...#.....#.#...#.#.#...#...#...#.#...#...#.#...#.......#.....#...#...#.#
#.#####.#.#.#####.#.#.###.#.#.###.#.#.#.###.#.#.#.#########.#.###.#.#.#.#####.#.#####.#.#.#.#.###.#.#.###.#####.#.#####.#.#######.#.###.#.#.#
#.#.....#.#.#...#.#...#.....#.....#.#.#.#...#.#.#...................#.......#.#.#.....#.#.#.#...#.#...#.....#...#.....#.#.....#.#.#...#...#.#
###.#####.#.#.#.#.#####.#.#######.#.#.#.#.###.#.###.###.###########.###.###.#.#.#.#.###.#.#####.#.#.#######.#.#######.#######.#.#.###.#.###.#
#...#.....#...#.#...#...#.......#.#.#.#...........................#.........#...#.#.#...#.....#.#.#...#...#...#.....#...#.....#...#.#.#...#.#
#.#############.###.#.###.###.#.###.#.#.#########.#.#.#####.#####.#.###.#########.#.#.#####.###.#.###.#.#.#####.#.#####.#.#####.###.#.#####.#
#S..................#.........#.....#.............#.........#.....................#.......#.........#...#.......#.........#.........#.......#
#############################################################################################################################################

View File

@@ -0,0 +1,5 @@
Register A: 53437164
Register B: 0
Register C: 0
Program: 2,4,1,7,7,5,4,1,1,4,5,5,0,3,3,0

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,402 @@
ggrru, ugu, gwgg, bwrw, bww, brg, brwu, ruugb, grggr, wrgbuug, bbbrbr, rgrrbrbw, gbwg, wuruug, gbgwbg, rgw, buu, ggbgb, rwg, gr, ggurggr, wruuwgrr, wbgg, gggrb, rgwuu, uuwww, bgrw, uuguubw, bbbrwu, ugurb, uwbggg, rurg, ubb, wrr, rbbbbg, gguuug, gbur, wb, bubbu, gbwru, bgg, ugg, bbrrg, wubr, bgwgbwgg, rguurb, bugu, wuww, urugr, bwb, wug, brr, u, rru, wwgbw, gwu, bw, ugrwggr, rgubuw, bbg, bwru, uwgbwu, gbrugg, rgub, rgbbuwwg, wwr, grw, rwggwwrw, bbbu, wr, wbwu, wwrbuu, rbbgwru, gur, buurr, ggbrg, gwg, wrg, urw, uubub, gwrgb, bbw, rrw, ugrurw, rubrw, bgb, bwgbwbw, guw, ur, wgrbu, bgu, rrrrbrw, uww, uuu, wuugbw, wwbugw, rwbr, ruwbr, uwu, wgrb, b, rrwugru, gwb, burw, rurb, rbrrbgu, uwgw, brubr, bwu, rbw, ugbu, gww, wwrb, wbgbrww, brrwgrg, rugug, grgrrb, wuubbgu, brub, rrwwwb, ugr, wbw, ruwgguu, wgw, rrwrg, bwbbrwbg, rggg, gbgrguw, rwgw, rbbgwbr, gub, rgrrg, wbgggu, bbbgww, ugb, rbbgr, wru, rubbuu, bggrbu, gbg, bgrgbb, wwrwugbg, rrgu, wrrubwu, wrbuu, rgug, bbu, wrww, wbb, wgrwu, bbrurru, wgrugwu, uuw, uggwg, rrbuwu, gruw, ubr, urgug, www, wgrwrrw, rruw, rbg, bbwu, brww, rbwbw, grgr, bgr, wgwwu, wur, gubu, rrubgg, wbrurbb, ugub, wrrr, gbbr, wwubu, uwwbuw, wuu, rgb, bbr, rbrbuwg, urwb, gg, grug, br, wwguuwb, wu, ruu, guuwrw, wgb, gbr, wgggug, rw, brggww, wrgrw, guggub, gbbrug, gbbrb, bugrg, bwr, gwwg, wwbbrggw, urwu, rgwr, rwb, rrub, ggb, wbwrrbw, wrub, wwg, ww, ggg, brugwrr, wbur, ubbbrw, uwugrg, buw, grg, rrr, bgwu, rbggg, rgr, wuwub, rg, guuwu, rrwwwrbr, rrg, gurwg, wburrwug, rwr, wbg, grwbr, bgwbwug, bwg, bru, rbwuug, gggg, gurb, bbb, ubwu, gugbr, buru, gbbg, brb, wgr, guwg, gurgrbug, wgwugwwu, uw, wrbbr, wgwugurr, uwww, urr, bgubug, bbgu, bbuugb, rwug, gurbb, bguw, ubbbub, bbwb, gugbgwb, bb, wrrg, ggr, wrbub, uu, wwbw, ub, uggw, ugbggrw, bur, uuuguru, bgwuu, gwr, uurrrw, rb, buwugrr, brwrrrgb, guu, bgur, wggur, wub, gbb, rr, wubw, uuwgww, bwurwur, gubgg, ubwg, grbr, rwgr, wrubw, grgwb, uuguu, rwgwb, bwrrgg, ubu, bwbwggrw, uwg, bgguu, wwu, grwgw, bwrr, uur, rwuww, bwbb, gwrr, gwgrww, rbgw, grub, wugu, grrwuwg, bburbb, wbgb, ubbr, gggu, wbu, rrbugrbu, gbbubrwg, gwwurw, grbb, gbugu, wguwrw, ubggbb, rbgbu, rwub, gb, wbrgr, wubwwb, brwg, bwwbur, gugwg, gru, rbrwurr, wrb, gwubug, ggbguu, bubg, uruub, wuw, gubbr, gu, uwrubg, wggrbug, uub, ggrb, rwu, ug, ugrggw, wgg, rrb, bbug, wrw, uubbbur, uwgb, bwgr, uru, bu, guuuguw, gwwu, uwb, uwwwb, w, rur, wguuw, guru, gwrrwwb, wwrww, rww, bbur, ruuwr, rbb, bugubgrr, ru, rbubwr, grr, bbrbu, gwww, uwwgw, wwwu, uwr, uguw, rbwrr, bguwg, rguw, guwgbbg, rub, rrur, bwwbgw, rrrg, bgggru, ggu, wrrggu, rug, uuburg, rbu, wggrbgb, brguurw, r, guwrr, bwbgrb, urwgbb, rwgur, urg, gbwrw, grb, gwburg, wbr, bwww, brwr, ugw, uwgu, uggwr, brw, wgu, gug, gbu, gwrur, ggbrb, rbubr, rrggurbw, rwrru, uug, urb, grbu, gbgug, bugg, gbw, rgu, rgurrw, gwbw, ggw, bgub, wwgugug, ugubwg, wuggr, ruw, rbr, bbwuwwgb, wg, ubw, rwwg, wggbr, urubb, wwb, bubr
ggrbbwbbwbuguwbuguwbbuwrbbbrwgurgwggbbwbguurb
gruurruwgbwwrbbggwuwrwugwrguuwwrurugbbgubrurubrgwubg
wguwwgbbggbbrbwurguububrwgbubwbwwuwgrgbuwgubg
gbgrwggwbgwuwbgwgwgubwguwwwuwbwugbwgwrgrubg
uubwgrwrwrruwrwggggwwrbgbbwgwwbwguwbrrwrgugbrbwrurggb
rgruubburgubugugbwuguwururrbbgwuurwwbugburgrbbgbbgugwgbgg
urggwuuwgubugurguwwrrbwuggbwbruuwbwugwwrwrguubbbbw
bgrwuggburgggbubbgrwwrbuuwgwrrwuuurbugwgurubrwwrrugru
rrbbrwgurwgrrgburbwurgbbuwrgrwwgrrgwrbrbrubbrwrg
uururbwwwurbruwwwbubgbrugubrwubgwuuubggburbbu
wrwrrgbrgwgububrgwggbguurgugwbuwgwwbggurbrw
uugbgwuwbgwggrbwrwruwgrrwugbguwguuuuwurugwwbbruwuubg
gwgrrwrguwgwbwgbuwuurgugugguwbrrrbguwrwubgwrgubggbburbu
bbugbburwuggwrugrbgbbubbrrurbwbwburwrgubgwurgubg
wuwubwguwuwwbbwgwugwugurgrbugurwbuubbuurrrrwwbgrgwgwgwgubg
wurgwbwrgguwbbuuurrgrrgrgurgbrubbrgrgwbrrbgrurguurw
brrburwwuwugbwrrrwruuwgrrrgruwrwgrbbgwwrruwwwbrbguuuww
wgurrugrwbbrgubwrgbuwuubrggubbrwwwbwrggwggbrbg
gurgrrwgruwbruwrbbbrugrgrrwrbbubgrbgbbgrwurwuguubgw
rwrrruwrwwruugbgbbururbubgrrugguggbwgwgwguwwurb
wuguguruwrurbwbwggrwuuwwrbwrbguuwwwruuwrguubgwbg
wggbrgubrwrwgwubbgbuwgwggwgubrwurrrrrbggubg
urgbbgggurgrbugbbubwbugrburgrurbgwbwuuuugbbuuuuub
gwbuubrgwrwrguwbwubbruurgrrwwuwrrrrrwbbwuguugguwbrurrbbugw
rrwuubbwruwuwbbbrrgbguwbguwgbruruubggbrbrwbwgbrbrbggu
gbrruuwuwruwgwuubrwwwuugubwubwuwbwwrrgbrgwrr
rwwrrbbgurgwuwgugwrgbgbgurwruwwwruugrbggwubwr
uwbrrugrbgwwgwrguwgrbgwbrbbruugggwgggwwbwrwgr
wguubgwuuwbrbgrgggrgbbguugrwgwgbrgugbrugbbuuurrruruuggrbr
uwggbgrugruguggrrgwbwbguwwgugbgrbuuwugrubbgbuubg
wbuwggugwruuurbwwrrrrbbwruugurwurrbggwgubg
buwrbburrubggwurgburuwrurrgwgbuugrruugbbbgrgurw
ubugwbrbwwrugrbwwrgwugubrrbbrwbbwbubugbububwwwubrrubwur
gwgwwuwurgruubbwgrguuggubrrubgrwwwbwbwbbrrburbbbu
rrbrwrwwrwrwbwbrbrgwwbrwwwrgwubwrrgbuugrugurrbug
wurgrrbuurrbwwgwbguuuwgruwuubuwwgrrrwubgrbgw
bbrwbrbbwgubbbwgubbruwrrbrbrrrgwbbruggbgrr
buurbwrurgwrbugruuwrbbubbbubgbuwurugrbwrubuwbwwgb
uwbwwgugruugbururbgwgrbbwruwrbruggbrrgbburggbwg
grurbwwuwruwwbrrguwbwwrgrruuguubrrubrrrwruwwrrggbuugwu
ubgrrwbwrrbbgrrgwuugrggbwgrrwrrrwbbwubrrrugugwubg
urwbugwwwbrbbggwgwggwuwwggbuurrbuguubbrgubrwgrwubbrgubr
wbbrgrugrgwuuwbubgwrgwrwuubgwwubuguugwgbgwuubg
gwwrwbruwwgwbgwbgrggwwububurbbgggruurwwbgbbrugubbwuwb
grggruggrgggbrubguwggruwbbbgrgruurrrgwguwuubrwbrrurgrubg
wugbrrurrwbgurwgggwwgrurrbwubbuwwwburrwuggubgwwggbwggubgu
bbuwrruwgrwuuwgrwrwgggbwrgrrbugubgururrwuubg
bgwgbwgguwbugrrbwwugwuwgwbuwbwuwrgwbuwubggurbruwruuubr
bwwrrggbuwwgrrgugruuurgrgrubrbwuuwbwgrubg
brbrwrurruwurrwwbuwbggbuwwrwbwwruuwguubbuubgrbbuwwgbrrr
rbwrwwrrurrrgrbuubburbrrruuurruurwwgbbguwrwgggu
wuurbgwrggbuggbgwbubgbubgrrwbrbwgwwrrbgububrbr
rgbugbrgrgwurbguuwburggwubggwrubwwggbbrrbbugbbrggrgwbbuugr
brbubwwubwbwwwrrubwggwgwwgwrbwgwwurwbugrrguurbb
grugwurwrwubbbbgubgbwrugrwwbgwburwwbrgwubu
gurrgwbbbubbggrwrrrwbburwruurgrguwggrbwbuuwguugubrwbwb
rrbgrrubuurwubrrbrrwguugrwrgrrguwggrgbrbgubububbrb
wgrwgwgrgbguwgbrwwgrwbuuubwrgbwguwbbbbuguugrwwwburrbruuuubg
uwgrrgrrbrwbrrbubggggubggbbgbbwbrugwrwrbrrwwgbwr
uburgubgbbbwgwubggwuugwbbgruwubbugbbuurwruggrggwrugrbwubg
rbguwurwwrbggrrgruuwubwgbbrgwwrgbrugguguuwwbbrggwbwurbgubg
wrurwburbugrrubggubgbwwrbwbwggrwrrrwwuguwgguwrbubbubwrb
ugrburuubbrbwgrbugrggwgbwuurgrwuwbuwrrbgubg
wgubrbggbwubgruwgrgrwrrgrugubugrwgrurguwrgrububbbg
bwgbbgwgurwgwugrbbgburgwbburrurubwbbruwgwbububgrgbrwgbuwubg
wuwbuwrbuuggwggbbugbwbbuurgbgrrubbbrgggwrbwugguwubg
wwbgbgugbgggugwrrwwguwbwubggbwgurgwurwrgwubg
bwwubrrwurbgwubbuguuubrgrwrrwuwrugguuwwurubgw
rrbbuwwrwbbruwwububbrbrwburrrrbubugwugbbgrwrw
grrrbwgwugurrwuwwrrbwggubwuugbuwwwgurwgbuurubggbgw
rwgbbgbrgubgugubwwbbruwggbwwwgbuwrrguuwwbubbrwgbgrwg
urgrwrgbrgbggrurubwwrwrwgrbgubbruurbugubww
gbburgbuggrwwgrgguugwbugwwrgurbwbugurubwbrrug
bbruuuruurrgggrwburgbrurwurgrrrbrgwbuwrwrugurwwwbb
wggguggbwguwrrrbwrgugrgwuwrubburbgbruubwuggbubuurgww
ggrubgrggwgburgwurubuubugrgrbrwwwgbbwrbuwwwruwwwwrugwb
rrrbugggrwuubwrbbgbgrwggbggwwwrwbrugruurwgrruuuubg
grurwggwgrubrbbbubgwrbrrwgwugurubgrwwwguwwbrbubwbuuuwgwwbw
uwrrguggwbrgbgrwbgguubgrrbuwurrwbubrggrwbgu
wbwgrbgwgwrwgguwrrugbwburrwugbuwwugwwurrguuuwbbwburubgrbgw
bbbrbrgwbwwgugggwwbggruwwbwurgwggbbbrurrwwbugrrgubg
gbuuguugwrburruuwbbwbbwubrwbrgwwwurrbgwbbugwwbuwuwgruubg
bwbgbwubugwgrwbubbugbwuwbubrrrwwggwbrggubwrbrbubgggw
bbbggrurgggubbbbbburugrwggwwrwggbwuwbbgbggbrbuurugbwugbg
ubgbwbguuwbrbruggwguburwwgbrwuwguwguwurbrbrrurww
bruwrrurrwwwrbrubgrrguwwrrgggbbwrwwgbggrubg
bbwugggwrwgurbrbgrwrwuurwwwruuugbgrrbuwbwbwgbgrwwburuubugg
rgbgugwwwrubgggwwbuwrugwbbwwbwuwwbbgugbwburgrr
rwrgrwbggwugguggrgurbugwbuggrrrrguwbgwubg
urwruuwgrrwggwgrwuwgrggwbuwwbrbwuwwwrubg
urwrbrrbrubbruwbguuwwggubuguwwggwwrugbuwwrbbwwgrrrbggb
uurguwwgbrbbuwrrbrrgrbggrrurbwbrwugrwugruurbgbbu
ggguuubrgwgbwuburubruuggrwwururubgwwbbubbrwbgwbubbwrg
grwbrgwbbgbwwwruubgbwbbbrbgwurrrururrgurubugbrrrugwwbuwbw
rgrubwgbwwgrbwburgwuubwbwwwbgrbbbwbbwbrwgbbrggrwubg
uuggwggrgwugrgruurgbwrugwbrrbbbgwrbbgbrubg
wurrguubwrbwuubgguuwrgrrugbgrrrwrbrwrrrgbuwwrbwrbgrgrgbwbu
gubgbwubgbbbubwgrbubbgwrrguburururbgbbruuuruu
ubwgbrwbwbgguwwruububgrrggrurruuuwwuwubuubgubwwgrubwwurggubg
grwwwubuwurruububbwugubgggwrbgrguwwwugruruubgwbbrwuruubg
ugrgbwwgbrwrwugwubbwuubburrrgrbbgruubgwug
bgrgggwurrbggwubbrgrwbgwwwwwwbgwwbwrwbbrugwrububwgubg
uugwwurrwggwrrbgwbrrgrrurugbgurggurubgbwwubbwrru
bwgggbrubwguurrgwrggggbgrwwwuggbrwbgrgbgbrrugbwwwgbbrbwu
bwgubrubrgbuwgbbuwgbwuurguwuuwwbruwuwbrrbuubg
gbuwugubrbbburrwbrwuubrwwrwburwbrwguggugbrbwburww
brguguururwgwwwbrwuwbgrrrgwwrguwwbuwrwguwgwwgwugwwugubg
brubrwbwwrgwgrgguwwgrrbggbrwgbbwugbrgwggbbgbgrbwgr
wrwgguwbrggwbgururwbrurggurwwrbuurwrrrrwburugggugbwrgubg
grwwwggubgrrrwuwggbwrwgbrrbugrrbuguggwuruwugr
wrwwwwrwubwuugurrbgugrwrbgrurgbgbubgbguuwubbwubg
rgguruwrugrrrbwwuwwrwrrrgguwbgbggwwbuguguguwwgggbr
wwwgwbbgbgbgbuwugwgrrgwbrwguguwgrggbwwbwwggbuuububgwbggugg
ubwruwgbbwwuuwuurburgwgugwuggrbbgrgwguggwrgrggru
rwrwguruubbgubrgubuwgrbwgbgbruwgurgwbbbgbrw
wuggwrbrwwurwuuuruwwrwubwrgwrwwbrugruwbgwbgguuggbubwrrwguu
ubwwuuwbggrwgbuwburuwrubgrgrbubgwrubwbwburubbbgu
bggrbbuuuubrwwrrbgrggrgurugbuwbbbgbwubrrgu
bgrwuggwwbbgubbwrggubrwwwrwwwrwgbuwbbgggwuurbugrg
ggbgubrggbwgrgwbbbbbgugurguwggbrbbgrwuguwwruwbwwruuguww
gbwbrrgwwggguwgguubwubwgrrrwrwbrgbrwbrbwbwuwrr
uwbbwrrugbgrrbwwrwgwbggbwwrwggbruwururbwgrggrrggggwbbu
uubbwuwbgbwgbugbugwrgurrgubwuguwrrbwbbbrgg
bbwrwrwurubrgrbugbgwrgruubuurwurbggbbrguubg
bbgrgbgwbbugwggwbrwubwwugwbwgrbubbubbbgwrururwwgubuuwg
rwbwgwrbgbugrbwgburburbuuggwuguggrgrwwurggwuubgw
uuuurubugrrbgwwrbuwwwbwuuwrgwrgbbwubggbwggwrgrbb
ruuwugbgbrrgrwgwwwgwrbuggbgwubwrrbbrwrrwwgwbgrwrwbg
wbbbwubwgrgwrwgwgwubwrwbwrwuuwbrwggwwrwrrugubgubg
ubwbubugggggrrbggrwwrguubgrwrrbgwuubgbbuwwubuuwubgbuguubg
rrwugrgurguguwggbwurwguuruwgwwrbwugbwrbbggbrrwgww
ruguwurwgwbrwwgburubwuugwbgbgwwrurggbrubbrubwrugugugrwrg
ggburgrubrbbbwgwuuwuugwuubrbuuwgrbwbrurbwuruu
grbbbbrwuurguruurwwgbwrbburrbwugggwrwuruurgbrwwrwgb
ruurgwgggwgbwrgrwbruuurgrbwrbgwuwbbrbggrbrrbgubbw
gurgbwbggrwbrwbbgbwuwwbugrurrbuburbwbgbgrugr
urrbgwugbuwbuwbwgrbrbugrbruwbwbwwwbugrrgrgbubbuurrrugwbwuubg
ruuwgbgbbgrgwrgurgbbggwwuwrrrugwwbgruwugbwrgrruurbrbguu
grbuurbrubrgggbbubrwgbwwgbgrbwubrurbgbuwgubgbwuguwrubgubgw
bwbbrwwruurgugggbuwugwbuuwwrruurguwbuurwgbguurbgbrwbgurgubg
rwggrwbruwgwrbuuwrruguwbbrrwwwrrgruurbwuwggrwbwgurwuubg
gguruuguurugwuwuwuwurwwbgbgbuwrrwwgwugrbuubbbwrrggrubbw
gggrbwgbggurgwrwrwgrurrrgguuwggbwwbrbbbrgwbrubrg
ububggbgrbwbbrwbggwugbwrbrgwbrgrbwugwurgwrubg
ubgugruruururwrwgguggbbgruwwruwuururbgwurwbrubgwgrw
gbgrruwurrbbwbgwbuwggggbwuwwuubrbwurrbrwrrrubg
rgwgrubrwbrwgggruwwbrwrubwwwrwbggwuugrruuwugbrg
ubgwrrgbrgbbrgwbbwubururwbwuwwwugwwwrgbbrbrwgrgrbbur
wbgbwgubbrbuwgrubbbgrwgwrgguburrgbwgbbwrgbgbwwwrwbubr
wurubbubrgwwgwrbwrurrbwgbuugugwbgwbgubbubwuwbwbugbgrwurrg
wrgggrguwgrwbbrgbrbbwwuwggrggburugwwgwuguburbwugrrgbburw
rrrruwugurugwrggbgggwrgwbuwuguwbubbwgrbwgr
rbwbbwbbwgbwggggwrbruwbugrgugubbgwrrrugubg
rbrrbrgurwbgurwbgrwuwgrwwgbbrgurgggrwbuguw
gbbgubwbguururbgrwuwrwbbbgwuurbbuwgwwruwwgubgwwbg
buwrgbgggrruugugbwuruwgwgwwurwugbbbbbrwuwwwbbugubrgrgu
gwbwrubugbrrwurwgrwwwwbwbbrgwubbguurwguuwrrb
rwugguuubbbrrgurrbbwrrwuurrggrruwururrrwwgububwgurubg
bbgbbrbgrwrgwuuwrrwubbuwuwrwuwrburggwwburwbugubgrr
uurwbwubwbgrruwwbbwgwgrrbrubrrbubwrwgubg
rrrgwguwwrwugbggrbururbgrrgugrbgbwugbgrwubg
gbuuwbrubgrrwrgwbwbgbrgbuuubrugwggwurrggbbwuwwgbwwbbuugubg
bbwbgwbwrrwgguwbrwgrgbbubwubwgwgrwguwurrrwburbgugbburuwubg
ggbuubrwrwurwgwbwburwwwgwwwrgguwgurrggbwurrgwgw
grrwrubwgbbrwburgrguurgrurwbwbrbuugrwuwrbwurubgwgu
brwwwrruggbbuwrbbgrugrbwgbwwwrbgbwgburrwrurgubg
grbwugwrugrwrwrgrrbruguwugggbrgbrwbwruwgrgguugbgwbgrur
urwgwwrgurrubugwwuwrbrrrbwwrrbwuuwuuwuwururuguruwbwurgr
urgrwuwuwbbrbwrbuurbbwbbwggbruwruwburgrwgwuwrruuubg
ruuwwrwwwgrrwwgwubwbuwgwubbggrgurruwgwrwugb
urbbgggrrrrrrrrwwbrrbgggurgwwugburwbuuuwwwrurwrrbubwrrwrw
rwbgrbbwubgbuwrrgbbguwbbrbrwbgrbuwwwwugbugwrwurwgwubg
ruwbuggwgbuuburwburgwgurrwrggrrgurrwburgbwbgr
bwwgwggrgrbbggbgrrwbggugwbgrgbbrbwbbrgrbbuubg
gggbbwbwgbbuubwrbggburrbgwwruuguruuguubrwrwwuubgw
bwwwbuwrwrwugubrwbgwrwrguubwrugurrgggubg
grwbuwwburbwbwurguuggrruuuurwwurggbgrbuwwrgr
wubbwuggrgwbrwgbwrgwwwwuubuguuwbgruuwgrwgbuuwrwwurubgwwgw
bbrwbwuwgwwbwwrrruwwbwwuwrguuuuuwrwurbbbbuuugurgugw
wggubgbuubbuurburruwurbgwbwubbgrgwgrwwbbburggbu
buurrrwbgguuurbbbgwrgggggwuwruwwbgguggbwbrrrgrggwg
gwbwrgbrburbguwbgrwuwgburgbrrubrubugbrugubg
rwgrgwwubguggrwubggbrrurwbburbuwrrbuwbgrbgrruwgrrwwubg
wbwwgwrgguguwrrgggbwwbrrgbububwwwugururrrbr
rbgurbrbgwrbgrwuwruguubgwuwbgwguwuwrbruwbbuwubbu
bgrgbwgbrwuruuugrrbugrburburgrbgubbrwbubwgubg
ggruruwrrwwwrbrgbwgwbuubgugguwgbuuwggrwgbgburbgwbr
wrgrrgrwgwbbbrgugguwbwuubbwbruuwwrbgggugwwgbbruugr
ggwwbbwugrgbgwbbbuwwwwuggrgguuwggrrbbwbugwgug
wrugrwwbwgbwruwuwwubugubggbuuwgbwgrurbgbuwguurrggrrbwwwguubg
grwurrbbuuuwrubbrwrubrbbubgugbugbwrgwggurwubg
gbggwurwgguwwurrubrgwbrbbwgbbrugburgbgrwrwguuw
rrwbwuuuugwrbwuwgbbbwbwwwrgrwrurbgrrgwrbwugbrrbrwubgr
uuwwbgguugrbrwgbwrrbbrwrgbubgwrggwwuurrgbwrbgwuugwruuwwbgr
wgrurgbugwwrrwrrrgbbggrwuruuwbrrgrrgubrrubg
uuwrruubrbbgururrrbbrwruubbwwgbwrgwrbuubgw
urwrggbbgbgrwgwugurrrgbuuwbbwrgrwburrrbugwggbuwgbw
urrggbwggggwrgrbgbrbbgrgbgubrggbgbrbwggwuurubg
wwbrbwbrrgwuuugrgwbgrwwgwuwuuwggwbbwggugwrbggwgrugrbubgw
bggggurbgugruwuggwuruububwugrbbubgrwurbbrubgw
bbwwgguwwrggwrwbwbbuwwugugrrggurbwwrgggbwuwbuburubg
rwgbgrubrrbuwwbbbbbggwruwubgbgguwuwwwgwggbubrr
rurwgwbwuugwruguwbwuururgurguggbugwwuguuwrwu
bwrbwruwubbgwguwgrwuubuwgwugwwgrbrrubgwbgbrbwugwbuwwwb
rwgbgrugggbgubugwbbbwggbguugwggrbbbrubwbubgrbb
rgwwrbrbrwrgrbgbwwuwwgwrbuwrgbrrurugwburrggrwuruub
grwbbbubbuububbrrwubgugrgrwruuwrwubrruggbuguubg
bbrrbrbrwbrgwgwuwguuuubbruwwbuuwuuwgwugbgur
uuguwbururbggrgrugbrubgggrrwwuugwgbrubwgbgwwgurr
rgwrgbbwbwwruggguwbrugwbrrwwbwrgwbwrgrrbuuuggbuubgw
wbbbguwbuuugrurggwwbgbuugwwrguggurrrbbbrbgbrb
wrbuuuwrbgwuugubguggrggbgbuguurbrrbrgbrurbrbbuugrw
bgubwwgrbwwwwwbrrrwgbwwugbuwgwruugrgbbuwwgrr
urrggurbwwrurbwbwrbwwwwuurugguwrggwwrrwgbwbrrruru
rwbgwguwurrurbwuwrubbwwbubwwwwbrggugubgw
burgrurbrugburgrbgruwggruuuwgrgwuwrgwurrrrurbwrwwwgbuwubbb
rruwuwgrubrbubugrwbwuuugwuwubbgwrbgwwgubrurwbgwbwwgwgwbwuu
wgrbggrrwbbgurwurwrwrggbwwrwugwrwuugwgwubrubgwbguuwbwwgbu
guuwrrggbrrugbrguggrbubrggbwururwbrgrwrbwb
gwgggggbgrgbbbbuurugwrruuuwrbwrggguwruggwgbbugu
rguwrwrrubbruwruubwggbuwwgbgggguwugwwubwrgwwrubrg
brggwbbbubbrrrwrbwrwbgubbugbbgwgwbrwbggurbbwuubbgrggrbbr
wuuuurbbuwgubwbwrrwbbgbuugrgwgwuburubuuwbw
ubgwrruruwbwgurwrrrrrbrrbrwuubwrwwbrwwrgww
grgbguubrugrgbgggwgrwgrguwbubbwbugrburrugrwbwbgurubgw
rgguwgruburwgbguggbwgrgggrubgwgrguubwubgw
uurubgbbuubbguwrgrwwgguwgbrrwguggggwurbwubg
uguguruuuugbgwgwbuwgbrbrwrwbubbuubugrwwbbgubg
guuwwruugbggwubrrgrbuugbwuwggwrggwgwuurwbgbwbuwbguurbrbggu
bbubwrgbggrwbbwguurrrwrugbugbruwruwwbugrwbugbbgrugwrwr
guwuuwurrububbgrwugruuuguruwbrbubgrrubgggbu
wrburuguguburrbuuwbgurbubwruubbuurgubrugrbgubub
wurbrruurgrrruggbbrbruuugbbgggurbgbgwbwbrbugubg
rwrwwrurrwgwgbrubrbwwrrgwurruwgwguuguubg
uuwwwgbgwuuruwrubrbgrbruggrggbwruurgguguwgbrrbrbwwuubg
uggugggbwrgugwrgwubwrwgrubggburgggwrbgbgbugruwugg
uggbugwwbggrbbuggubrggwrwwurbbuwugwruuubgggbww
rrrugrwrrrgwgbuguwgwugrbuguubwgrwgwbrgbbwguwuuubgwb
uwwrubgrrbbugwgwbgbrgurgrbwbgrwbwrgwruuubgwrrbuu
gwrrrwrrggwrrwgbwruwubuwwbgubgwgbwgggwuwugrgwruurwgwuubg
grrwrbugrbubuwruububbrgbuwrubrgbugrruurgwgrrgubg
gurbbbruuuuwwbbwgrgrwrrwuwubbbgburubwruwuuugwrgbgg
urggrgbwbwbgrgrrbrbwguuwbuwwbggrgbbbgggwuubwbw
ubugrubuugugwwrgwrrrbwwgbrrbruuggguugrugwrurrgrbbguwuwgrg
bubrgbbrwguuwbbgwbbbwbrgrbbbwuwrbubgrwwgbwbrubg
guwwurwgbwgbrurwuuruwbbbguuurbwuwubwbrrgrbwgwugrubrwrwbuu
rrgruubrurwurwguuwbgubruwugbuwwurrbwwuwrwwrrugrubguwubgw
ugurrrwbguggbgwggwurgggrgggrgbwuwgrgwrbugr
uwbguwugrgbgwwbugbbugubgrrgwggrgwguwgugggbu
rgbgwuwuwrrwbggrbuuwrwbrwurrrrrrwrgrgrburbu
gbwurbbbuuwugbwwgubruugwubbbbwrbwrwrrwggwgwgwbuubg
wbuggbrugrrbugbbwrbwgbbgbbgrgwwurburuurbuuuubrwgruwgrrbrubg
wrwggwurggbuwrwbgruugguwbguuurgwuwwwbbruuu
wwrurwrrwbrbwwbrgguugbugbuwwwwwwrurgbrgguguuuubg
wwubbbrubgrbrrggburgwwgugbggggburwbguguwwburbwbbgwubbur
gbubruwrwuwubbrgwuburwrgubbgbuwugruubbwrgrwubg
ugrubrugwbgbbgurrbwuwurgwggrwuwbbbuuuwugbbuugrggbgb
gwggwgwgrwubgubrbrrubrugwrbgrgbgwbuwrburrrurbgrrubgw
wgrrggwwubgurwrrruuwbwrrgwwgwruugburbguuubruwuwbrggbrbb
bbrwguwgwgwbgurbruruubrbbgrbrgburguwuwggwwurrrgu
wrrbgrgguwugwwbgurgwgbuwbwguwbwrruwwrbugwrruuwbbwurbwrru
uwuwurrwrbruwggrbbrrbwubugrbgrrurgrggwrwgrubbb
ubugrbbubgwgggrurbburwbguuugwguwgwguwurrgwuwwbugrrburb
ggrwwgrurwbrrbbbbgrbwggbwrbgurbbuurwwbbwggugww
wbuurbbbrbgruuggburrguubgrrgurbubgwuuurubrr
wgrwbwwwbrurgurrgbruggwwugwubgubububbbuuuuuubrgbwuwuurbw
bbgbggrbbburgubbruuwgggwrubuuwurgrubrwgbrggubg
rbgrbwubwurwbwwurbrruuurbrguwwwrrbugrbubrwugrwb
wrugurgwuwurrbrwugruguggwbwwwuwwwrrrwwubg
gbwuggbbwbbuububruburrrwggwbwbwgrbgwgwguwrubuururbwuubgwub
gbubwwwrruwwubruugrbgbgwrwrrwruwwuggbrburbguggubuugubg
wgbwgwrurwwurwbrububrwbrrgguwwwbwrrbruugrrru
ubrrbrugbwuwubgbbguwrwugggbrgrruuwwuwubbgrwurubg
uruuuuuuwggrbgggugugbwuuurwgruwgwugwrbgubbrrgwubg
brruurbgbburbrugwuuuwbwrurbubbbubgrgrwwurgbugwgwgrugwuuwbb
gurgwuubwrrrwbuguwuwgrbrrubrwgurrrugurbrrrrrbrwwrbugrg
wbwubwwuugrrwrbggurrgbbuwwgrwuguggbubgrrgbrbrbbgwbrubg
rrwubrwrrbgrruwrbbgrwrwuugggwgubgwuwbgwgbrwwgbgbgbgwbgrr
bbwggbbwuwwgbwuwwuuguburgwbrgbrwwruurwbuwrrbuwgbrw
rbgrbuwbuwbbrgrrurrbuwbrwrrrbruggguuuubbrbguru
ugwwubwgwgwbbbbguwbbuggbuwuburuuwwwwbwwrggwgrruwwwwbbubu
brrrrwugbuwwruwbwgbrgwwgwbbbrwrrrgbgwbbbgbubgwrurgrubg
bwrwrrwwbwguwburrrrgwbbrgubrubbbwuwrbrwuwburrugwwrwwrbbruu
gurrwuugurbuubrgbwubbgwubbbbuwruugrrbgurbggrrrguu
gwrwuuruggwbgurwwgwrwuuwwbgggbrwbugbrrgwbgrwrruuuurwrg
grggwgwgbrrbbwbrubgbrggubbbbgbrgbwwbwbrgubggbgbubgw
ugbgubrbrbrggwguwwwrgbgruggurgwgrrugbbbuuubg
gubwugguwrbuggwburrrwguwubbgrubbuwruubrgrgrugrwrrbrbbugwu
rwgwwgubggurrbwrwrguwrrbrggrggwwgwwwruuwgburrrrbuugbg
wwrwurwggggrrrbbbbruurgguwwrrurugurgubrbwgubgwgrbwbguubg
rwguurwrrwwrrwbrbrugwbgrbggbbbuwbrrrgbuggwwwuubg
wubwbgggubbbgguwurwggwbwuwbwwubwguurbwrruwwrubg
bbuugrggbbwubgurwbwrwwuwbwbggurwguggwbwubg
bgrugwuwbgwwrrwwuwubrwurwbuurwwgbrgwwggrwgwuwububwbbuubg
bubrggwuugrgrwgbruugbgrwbgbbbwbwwurrrgwgwwbuggguu
ubrbwbururbrgurgugrgurbwbbwwgrugrbubrugbbbbburbrurgrwgwgu
wuwubuwbbugbgrrwrgbgbrbbugguwbbwwwgwugwwurwwuugbwgg
bubwbgggwugrwgrrrrrrrrugguwwrrbwrrggbruwuurwguuwwgggwwwrgw
wubbbuuwwbbwubgbrgurbggggurwrrbgbrwwuggwubgw
wbubuwuuwwbuwwbwrbrggwwbbuwggbwuuwwrgrbwurguwgbrrwwubgw
gwrwggrubwguubwuggugwrrwgbrwrrrwbubgwuwbbubww
gguwuugugbuubrwbrrrbrrrubwburrgwgwgwbgurbgbrrwbrgr
bbwbbgbbwwuwbrugbwruggbugwbwgurgwgggbrwgug
ubruuuuwrggbrggbugbbwwguwguwuggbbwguuburugrugbrgruuwbbbwubg
wuggrwgwbrgwwbbwbgwrbrwgurwwgbbwrwbgubwrugggbrgrbbrbgrrgubg
rbwrubrgwrgrwugurwbguuugbrbbbwubbwbbguwbrrbbbwrrwg
brubruurbwguwrrwuwrugbuwwwgbrrgubwwgrggwgbru
rrbggwrbbwbbrwrrgrgbgubggbrwwrrbburwwbrwuwbrbbwbrgw
wrggruwrwwwwwwugbrgwgggurubbrbbgguggrwbgugugrrruwu
gggwurggwwgurugububrbbrurgwwrgrwwbwubwubrwgwrubg
uwbbwgrrrbrwbrubuuwwguwguwgubbgruruguwbwubg
bwrrgburgwguuurwggwrwgrubbbuwruwbrgwbuuwubug
ugurrwbgbuwgbuugrbwgugwguwwbrugwbbuwurugugbuuugbu
bgrbwbbuwbrrgggwugwgwrbbuwbugubgrruurubg
ggbrrgubbgurwwrgrgbbuggwrgwruguggbbrrrrbbrbwurwr
ggbgbubuubbgwgrrrbwwgbugrgrwbubburgbuuubgw
ruugggwrbbgbbuuburrgwbwwgbwgurbrbbggbgubgw
guwrbugwuubgubggwgwbruugrwbbwgwrwurrbggrrgwub
bubwgbrguugrwwgbwrwbuuurwrwrgbbuguwwbgbwubg
brubuuwgbgwgrggruruwrrubwbuuwwuubbrrrwbuurwuruuur
grgurgggwggruwuwrgrbgguggrwrbgbugwbuuubg
bwuuwgbrbwgwurrrwbrwwwbuwugbrrggbbgbuwgrubrugubg
wbbbwuwububuuuwbwgwrrbuurbwbrbgwuuwuggwubrguuwggguwuubwggr
uurgwgbgwrwwbguubuurwwrwurbuubwbwgwuurwwwwubgwrugrgru
rgwgbbbgguuwuugugwbrurbwbbbubwurwubggwuurggrugwbgb
gwgbwuwwgwuugruugrruwgbwwgwugbuwbrrbbgwwuwgwbgwugwbbrrguw
grrbbuuggrugbgbbbgbrgubuwrrrwrbwwwguwwgbgwgggwug
wwwrwgbgruubuwbrwuuuwggubwbrgrrguuuwbuwugbrgrbubrbrubg
ruwbrwugbbrggwguurgbrugrgbruuuwugugwurruuwbrbwggubg
uuuwuguwuwrubgbwbgurguubwwrbwrrgbrgrrbbgrrrgwgrur
uwubuubwrggbwwrugrbwrwwruuwbrrbuubbgrruwbg
buuwwwggwbuwwwwgwbwbguwgrwrrgbwuubwgurrguubwwwub
gguurgrurbrgwwrwgugbgurbwguugrgwrrwbruugrrubggw
rbuuwbwgwrrubbrbgrrrugggrrubgbbrbwgbuuurrubg
rbburbbwbwurrrbbggwwgwbgwggbrbubwgrugurbbbrgubwwuwwu
guwrbgbwwuwbbuwrwgurbgwrbwbwburwwggwruruburguw
ugubbggbwbubbgrwuubruwggbbwrgwgbguubbwgwwggrrburuurwrgguuubg
wggburwgrgrwuugrggburubrbwbbbwggrwbwuwguuwbr
burrbuwuwwwbrrwguwggubbrbrgrrguwuwwuuuwwbgguuuwubg
wrbbwubrrugrrbruruuubuuwbruruwburrwguwggbwwuurrgwugbruubgw
gggwbubwwrwbugwuwwuuubgwguwbubgwrbuuwbwubbbrbrugbgbur
wrgbruuguubgwbuwrrbubwwggrrrrbugugggbrrurrrgggbbgrguwrgwb
gugbrwurgruwgrrwgbruuuuwburbgwwwwwubgbrgwwrrrbgubg
wgwurwwbuwbggwgugrbwuruwuwuururbrrgwrbugugrrugubg
wbgwgrwwuubrurwwwuwwuuwrwuwuburwuwwuubgggwuuuwubgubg
rwgwguwuubwuwgwggrwgwrrbbggrwruuggrbubrrgbuugwuruubgrgr
rbububguururbwrurbrubbubuuubguwbrbuugrrbgwwgww
grubwubrgwurubbwbgwgubguguuwbgruwubwwrbuurwgurgbr
uubwgwwuubgggbgbruwuguuwbwurguuguwbgguuwwrb
bwwgbubrwwbugbrrwguwugruwwgbwbururbrbgrubg
ugugggbggbgrwwugrggbwbuwggguugububuwbubbubuwgubgw
ugrubgbbuuuwgbuurbgwbwubguggrurgwrwgbrrgrbruwrgw
rrggurwrrwugguuwrwuruuguggrbwwbrrgwwbrgubgw
rbrbgburgbuuruuugbrggbwgrubrugrbwruuwwwwrgrwwr
rrggbrgrwrbgrbrrwrgwrwwwwuubrgwwggubbwgugrwrurbgrrruwrb
rrbrwrrrruurgbwbggrrwwgubrwgggwwwugrwwubgwruguwugwbbbug
rgbgrwgbbbguggwgwbwugbbbwgbgbrgguurgbbbugrubuwrrgwubw
bggwwrbuurgwwwbrbggggbgbbgwwgwwrbwbbrwbgbbrrbgrgwwbbggbwuw
rwururuuggwbugguwgwgrbubrgbrrbruguuwbbbuurg
gbbbrbgbwrrrgwrrwgrrrbubrggrwrgrgburrrruwwurw
guguugwbrgwugwwwbuwrrbugurbbbruubggwuuwguguwu
uwbggwbururwuwbrggbuwrwubuurbrugrurruwurubuggbbwwgww
rruuububwrruugrurubbbwwugrbruggbrugrrwwgwrguwbburubwwbwbrubg
bbwrggbgrrbuwwggwgwbubwgbwugwgbrurgbwbbbbbuuuubw
gbgbgwrrugggubgrrubwguwuuwwwwguubwggwuwgugwuuubu
rguuubuwbrbrwwgwggbugbubwrrruggwrwuuguwwggugrrbgrbrwwuww
rrgrggruggbgwgggbrgurggurburrurbuburbgrgbbubrwgru
gburrbwbrbuwugwwbbrggwbwwgrbbrwwuwgubbuwbwr
bgurwuggrwuwwwgrrgrwwgurbrbgbruggrbwbgurwbwwwg
bgbbgrubbruggrgrguwrbbgbwguwwubwbrrwwubgw
bgurguwrbbrrrbgrubrwrwgwggbbggbbubgrguggbwggbbugbgbwgrwuw
urugbbrbbbwugruwrwrggbgwbwwrwgrugwugbguwubgb
rgurrwbwwugggbgwubbwbwwwruguggwruuwrwrurbbrwwggbrrbgubbwubg
ugrgwruuruuggwrrurwwwguwwuggrwwgbruburbggbrb
uurgbgbgwgbwgrburrurrrruruurrubwbgurbwubguwgubwbwrbgrr
grbrggbbbgwbbuwwrbuwuruwwrgbuguwgbgrgrgrwwbwgrbw
wwruburuwggbrwbruwurrrgbbwwrwgguruwbrwubbr
bbwburbbrbwubrbwuruugrrwwgbubgugggrwugrbgurgwwgubg
ugbwwbrgubrrrurwgbgubrrbbrbggwburrwuuuuruwgurubgwgubg
wbwubrbgbrbgugrrguggwrrgwbugrwubgwgrrgbgrurbwrbrububwwgwubg
rrububggbrwbrubwubuuwwrbubrbuggwrbubgwwururrgwwurwr
wbrbrgbrbgubguugwruwrrgrwgguurugbguwubbuubwggrrggubwbb
rguuwbrururbwbubggugbwbwuwgggruubwbuubwrrrrug
ruwwggggwruwrurwgrguwwgurbgwrgwuuwrbrrwbgbuubrwubgbg
rugrgrwgbbrgwrggguggbwrugrrrbguwwbguwrbwwwrwugbgwwrwbr
wwubggbwubgrubwrbrgbrbwgbrggbwggggwggggguggrbr
bbuwgwgbbuwbuburgwgbgggugrgrrbrgurrguurugbbuurubggbg
rruwbwwwgurbgugbubwwwuwwuwbururgwwrrwubg
ubgbbuubwbwgrbbrbuwwuuwubrgugurbgruwurwwgu
grbwbubbrrruuuuuwuwrwugwuwgbubwbbwrbwbbubbg
urgrugbgbruwwburwrgrburbubrbbuwrrgwgbgrubg
ggububgubgwgbgguwrbrubwwburugwubuuwrgubg
brgwuugggbbuwbuuuwruwubrgguuugrggbwbwwrbugrwbguurugwgbu
wwwggugwwbbbgwgururugbgrwubgbwrwrggrubgrgwbrbrr
ggburgrrbrbwbrruwwwrwurgbwgrbrgguwrgubbubwwubg
buubugggwrbwrbbbgrbbgwwwwgbrrbbugggggbgguwbruwurwbrwbrgw
rbuurwgrwuuuwrggurbubbgbrgwrbwgrwbbuubgrrbwbwubruubg
wgwwbrrrgwbuubwgwgubwwggurggrrwugbugurrbugwbwrubbrgurbbgw
ugwguuugbrggggurubrbbgbrrwwbbwurrruwrugruwuwubwu
urrbbgwwbburrbrwbwggwrbbwbgwwbruwubrbwbgubbgwrgu

View File

@@ -0,0 +1,141 @@
#############################################################################################################################################
#.......#.........#.....#.....#...#...###...###.....###...#...###.....#.....#.......#.......#.....#...#####.....#...#...#...#...............#
#.#####.#.#######.#.###.#.###.#.#.#.#.###.#.###.###.###.#.#.#.###.###.#.###.#.#####.#.#####.#.###.#.#.#####.###.#.#.#.#.#.#.#.#############.#
#...#...#.......#.#...#.#...#.#.#...#...#.#...#...#.....#.#.#...#...#.#...#.#.....#.#...#...#.#...#.#...#...#...#.#...#.#.#.#...#...........#
###.#.#########.#.###.#.###.#.#.#######.#.###.###.#######.#.###.###.#.###.#.#####.#.###.#.###.#.###.###.#.###.###.#####.#.#.###.#.###########
#...#.....#.....#.#...#.#...#.#.......#.#.#...###.#.......#.#...#...#.....#.......#...#.#...#.#...#.#...#...#.###.....#...#...#.#...........#
#.#######.#.#####.#.###.#.###.#######.#.#.#.#####.#.#######.#.###.###################.#.###.#.###.#.#.#####.#.#######.#######.#.###########.#
#...#.....#.....#.#.#...#...#...#...#.#...#...#...#.......#.#...#...........#.......#...#...#.#...#.#...#...#...#...#.#.......#.#.........#.#
###.#.#########.#.#.#.#####.###.#.#.#.#######.#.#########.#.###.###########.#.#####.#####.###.#.###.###.#.#####.#.#.#.#.#######.#.#######.#.#
###.#.###.....#.#.#.#.#...#.#...#.#.#...#.....#.....#.....#.#...#...###...#...#...#.#.....#...#...#.#...#...#...#.#.#.#.###...#.#.#.....#.#.#
###.#.###.###.#.#.#.#.#.#.#.#.###.#.###.#.#########.#.#####.#.###.#.###.#.#####.#.#.#.#####.#####.#.#.#####.#.###.#.#.#.###.#.#.#.#.###.#.#.#
#...#...#...#.#.#.#.#.#.#...#.#...#.....#...###.....#...#...#...#.#.#...#.###...#...#...###.....#.#.#.#.....#...#.#.#.#.....#...#...#...#...#
#.#####.###.#.#.#.#.#.#.#####.#.###########.###.#######.#.#####.#.#.#.###.###.#########.#######.#.#.#.#.#######.#.#.#.###############.#######
#.....#.....#...#.#.#.#.....#.#...........#...#.#.....#.#.....#.#.#.#.#...#...#.......#.#...###.#.#.#.#.....#...#.#...#.............#.......#
#####.###########.#.#.#####.#.###########.###.#.#.###.#.#####.#.#.#.#.#.###.###.#####.#.#.#.###.#.#.#.#####.#.###.#####.###########.#######.#
#...#.........#...#.#.#...#.#...#...#...#.#...#.#...#...#.....#.#.#...#.###...#.#.....#...#...#.#.#.#.....#.#.###.#...#...........#...#.....#
#.#.#########.#.###.#.#.#.#.###.#.#.#.#.#.#.###.###.#####.#####.#.#####.#####.#.#.###########.#.#.#.#####.#.#.###.#.#.###########.###.#.#####
#.#...........#...#.#.#.#.#...#...#.#.#.#.#.....#...#...#...#...#...#...#...#...#...#.....#...#.#...#.....#.#...#.#.#.......#...#...#.#.....#
#.###############.#.#.#.#.###.#####.#.#.#.#######.###.#.###.#.#####.#.###.#.#######.#.###.#.###.#####.#####.###.#.#.#######.#.#.###.#.#####.#
#...#.....#.....#...#...#...#.....#.#.#.#.#.......#...#.....#...#...#...#.#...#...#.#...#...###.....#.#...#...#.#.#.#...###.#.#.#...#.......#
###.#.###.#.###.###########.#####.#.#.#.#.#.#######.###########.#.#####.#.###.#.#.#.###.###########.#.#.#.###.#.#.#.#.#.###.#.#.#.###########
###...###...#...#...#...#...#...#.#.#.#.#.#...#...#.........#...#.....#.#.#...#.#...#...#...#...#...#...#.....#...#...#...#.#.#...#...#...###
#############.###.#.#.#.#.###.#.#.#.#.#.#.###.#.#.#########.#.#######.#.#.#.###.#####.###.#.#.#.#.#######################.#.#.#####.#.#.#.###
#.............#...#...#.#...#.#.#.#.#.#.#.#...#.#.#...###...#.#...#...#...#...#...#...#...#.#.#.#.....#.........#.........#.#.....#.#.#.#...#
#.#############.#######.###.#.#.#.#.#.#.#.#.###.#.#.#.###.###.#.#.#.#########.###.#.###.###.#.#.#####.#.#######.#.#########.#####.#.#.#.###.#
#.#.............###...#...#.#.#...#...#...#.....#.#.#.#...#...#.#.#...#.......#...#...#.#...#.#.#...#.#.......#.#.......###.......#.#.#.#...#
#.#.###############.#.###.#.#.###################.#.#.#.###.###.#.###.#.#######.#####.#.#.###.#.#.#.#.#######.#.#######.###########.#.#.#.###
#...#...#...........#.....#...#...#...#...#.......#.#.#...#...#.#.#...#.#.....#.....#.#.#...#.#.#.#...#.......#...#...#.......#.....#...#...#
#####.#.#.#####################.#.#.#.#.#.#.#######.#.###.###.#.#.#.###.#.###.#####.#.#.###.#.#.#.#####.#########.#.#.#######.#.###########.#
#...#.#.#.........#.......#.....#...#...#.#.#...###.#.#...#...#.#.#...#...#...#.....#.#...#.#.#.#.#...#...###...#...#.........#...#.....#...#
#.#.#.#.#########.#.#####.#.#############.#.#.#.###.#.#.###.###.#.###.#####.###.#####.###.#.#.#.#.#.#.###.###.#.#################.#.###.#.###
#.#...#.......#...#.#.....#...#...#...#...#...#.#...#.#...#...#.#...#.#...#...#.....#...#.#...#.#...#.#...#...#.......###...#...#.#...#.#...#
#.###########.#.###.#.#######.#.#.#.#.#.#######.#.###.###.###.#.###.#.#.#.###.#####.###.#.#####.#####.#.###.#########.###.#.#.#.#.###.#.###.#
#.........#...#.....#.........#.#...#.#.#.......#...#.###.#...#.#...#...#.#...#...#.#...#.#.....#...#.#.###.#.......#.#...#...#.#.#...#.....#
#########.#.###################.#####.#.#.#########.#.###.#.###.#.#######.#.###.#.#.#.###.#.#####.#.#.#.###.#.#####.#.#.#######.#.#.#########
###...###.#.#...#...#.........#.....#...#...#.....#.#.#...#.#...#...#...#.#.....#.#.#.#...#...#...#...#.....#.....#.#.#...#.....#.#.....#...#
###.#.###.#.#.#.#.#.#.#######.#####.#######.#.###.#.#.#.###.#.#####.#.#.#.#######.#.#.#.#####.#.#################.#.#.###.#.#####.#####.#.#.#
#...#.....#...#.#.#.#.....#...#...#.......#.#.#...#.#.#...#.#.....#.#.#.#.....###.#.#.#.#.....#.....###.........#.#...###.#.......#...#...#.#
#.#############.#.#.#####.#.###.#.#######.#.#.#.###.#.###.#.#####.#.#.#.#####.###.#.#.#.#.#########.###.#######.#.#######.#########.#.#####.#
#.#...........#...#.......#.#...#.#.......#.#.#...#.#.#...#.#.....#.#.#.#...#.#...#.#.#.#...#.....#...#.......#...#.......#.........#.....#.#
#.#.#########.#############.#.###.#.#######.#.###.#.#.#.###.#.#####.#.#.#.#.#.#.###.#.#.###.#.###.###.#######.#####.#######.#############.#.#
#...#.....###.............#.#...#...#.....#...###.#.#.#.#...#...#...#.#.#.#.#.#...#.#...#...#.###.#...#.....#...#...#...#...#...#...#...#...#
#####.###.###############.#.###.#####.###.#######.#.#.#.#.#####.#.###.#.#.#.#.###.#.#####.###.###.#.###.###.###.#.###.#.#.###.#.#.#.#.#.#####
#...#...#.....#...........#.....#...#.#...#.....#...#...#...#...#...#.#.#.#.#S###.#.....#...#...#...###...#...#...#...#.#.....#.#.#...#...###
#.#.###.#####.#.#################.#.#.#.###.###.###########.#.#####.#.#.#.#.#####.#####.###.###.#########.###.#####.###.#######.#.#######.###
#.#.###.....#...#...#.....#.......#...#...#.#...#...#.......#.#...#...#...#...###.#.....#...#...#...#...#...#.#...#...#.........#.......#...#
#.#.#######.#####.#.#.###.#.#############.#.#.###.#.#.#######.#.#.###########.###.#.#####.###.###.#.#.#.###.#.#.#.###.#################.###.#
#.#.#...#...#...#.#.#.###.#.###.........#...#.....#.#.#.....#...#.......#.....###.#...#...#...###.#...#.....#...#.....#.....#...#.......#...#
#.#.#.#.#.###.#.#.#.#.###.#.###.#######.###########.#.#.###.###########.#.#######.###.#.###.#####.#####################.###.#.#.#.#######.###
#.#.#.#.#...#.#...#...#...#.#...#.....#.#...#...#...#.#.#...#.....#...#.#.#...###.#...#...#.....#...#...........###...#...#.#.#.#.#.......###
#.#.#.#.###.#.#########.###.#.###.###.#.#.#.#.#.#.###.#.#.###.###.#.#.#.#.#.#.###.#.#####.#####.###.#.#########.###.#.###.#.#.#.#.#.#########
#.#...#...#...###...###...#.#.....#...#.#.#...#...###...#...#...#.#.#...#...#.###.#.#.....#...#.#...#.#.........#...#...#.#...#...#...#...###
#.#######.#######.#.#####.#.#######.###.#.#################.###.#.#.#########.###.#.#.#####.#.#.#.###.#.#########.#####.#.###########.#.#.###
#.......#.....#...#.#.....#.#.......###...#.........#.......#...#...###...#...###...#...#...#...#.....#...........#...#.#.#...........#.#...#
#######.#####.#.###.#.#####.#.#############.#######.#.#######.#########.#.#.###########.#.#########################.#.#.#.#.###########.###.#
#...###.#.....#...#...#...#.#...#...#.....#.#.......#.....#...###...#...#.#...#######...#.###.................#...#.#...#.#...#...#.....#...#
#.#.###.#.#######.#####.#.#.###.#.#.#.###.#.#.###########.#.#####.#.#.###.###.#######.###.###.###############.#.#.#.#####.###.#.#.#.#####.###
#.#.....#.....###...#...#...###...#...#...#.#.....###...#.#...#...#.#...#.....#######...#.#...#.......#.....#.#.#...#...#.#...#.#...#...#...#
#.###########.#####.#.#################.###.#####.###.#.#.###.#.###.###.###############.#.#.###.#####.#.###.#.#.#####.#.#.#.###.#####.#.###.#
#...#.......#.#...#...###...#...#.......###.#.....#...#.#.....#...#.#...#.....#######...#.#...#.#.....#.#...#...#.....#...#.....#.....#.....#
###.#.#####.#.#.#.#######.#.#.#.#.#########.#.#####.###.#########.#.#.###.###.#######.###.###.#.#.#####.#.#######.###############.###########
#...#.#...#.#.#.#.........#.#.#.#.......#...#.....#...#.#...#...#.#...#...#...#######...#.###...#.......#.........#.......#.....#...........#
#.###.#.#.#.#.#.###########.#.#.#######.#.#######.###.#.#.#.#.#.#.#####.###.###########.#.#########################.#####.#.###.###########.#
#.#...#.#...#...#.........#...#.........#.#.....#...#.#.#.#.#.#.#.#...#...#...#...###E#...#...###...........#.....#.....#.#...#.#.....#.....#
#.#.###.#########.#######.###############.#.###.###.#.#.#.#.#.#.#.#.#.###.###.#.#.###.#####.#.###.#########.#.###.#####.#.###.#.#.###.#.#####
#...###.....#...#.#...###.................#.###.....#.#...#.#.#.#...#.#...#...#.#.#...#.....#.#...#...#...#...###.......#.#...#.#...#.#.....#
###########.#.#.#.#.#.#####################.#########.#####.#.#.#####.#.###.###.#.#.###.#####.#.###.#.#.#.###############.#.###.###.#.#####.#
#...###...#...#...#.#.#...#...#...#...#...#...#.......#...#...#.....#...###...#.#...###.....#.#...#.#...#.......#.......#.#...#...#.#...#...#
#.#.###.#.#########.#.#.#.#.#.#.#.#.#.#.#.###.#.#######.#.#########.#########.#.###########.#.###.#.###########.#.#####.#.###.###.#.###.#.###
#.#.#...#...#...#...#...#...#...#...#...#...#...#.....#.#.........#.#.....###...#.....#...#.#.###...#...........#.#.....#.....#...#...#...###
#.#.#.#####.#.#.#.#########################.#####.###.#.#########.#.#.###.#######.###.#.#.#.#.#######.###########.#.###########.#####.#######
#.#.#.....#.#.#.#.......................###.#.....###.#.........#...#...#.......#...#.#.#...#.#...###.............#.....###...#...#...#...###
#.#.#####.#.#.#.#######################.###.#.#######.#########.#######.#######.###.#.#.#####.#.#.#####################.###.#.###.#.###.#.###
#.#.#...#.#...#.......................#...#...#.....#...........#...#...#.......#...#.#.....#.#.#.#...###.....#.......#.....#...#...#...#...#
#.#.#.#.#.###########################.###.#####.###.#############.#.#.###.#######.###.#####.#.#.#.#.#.###.###.#.#####.#########.#####.#####.#
#.#...#...#...#.......#.....#...#...#.....#...#.#...###...#...###.#.#...#.....###...#.###...#...#...#.....###.#.....#...#...#...#...#...#...#
#.#########.#.#.#####.#.###.#.#.#.#.#######.#.#.#.#####.#.#.#.###.#.###.#####.#####.#.###.###################.#####.###.#.#.#.###.#.###.#.###
#...#.....#.#.#.#.....#.#...#.#...#.....###.#.#.#.......#.#.#.#...#...#.#.....#...#.#.....#.....#...#.......#.#...#.###...#...#...#.....#...#
###.#.###.#.#.#.#.#####.#.###.#########.###.#.#.#########.#.#.#.#####.#.#.#####.#.#.#######.###.#.#.#.#####.#.#.#.#.###########.###########.#
#...#...#.#.#.#.#...#...#...#.#.........#...#...#...#.....#.#.#.....#.#.#.#...#.#.#.......#...#...#.#.#.....#...#.#.#...#...#...#...#.......#
#.#####.#.#.#.#.###.#.#####.#.#.#########.#######.#.#.#####.#.#####.#.#.#.#.#.#.#.#######.###.#####.#.#.#########.#.#.#.#.#.#.###.#.#.#######
#.......#...#...###...#####...#...........#...#...#...###...#...###.#.#.#.#.#...#...#.....#...#...#...#...#...###.#...#...#...#...#.#.......#
###########################################.#.#.#########.#####.###.#.#.#.#.#######.#.#####.###.#.#######.#.#.###.#############.###.#######.#
#.........#.....###.....#.......#.......#...#.#.#...#...#.....#.....#.#.#.#.#.......#.......###.#...#...#...#...#...............###.#.......#
#.#######.#.###.###.###.#.#####.#.#####.#.###.#.#.#.#.#.#####.#######.#.#.#.#.#################.###.#.#.#######.###################.#.#######
#.......#.#...#.....#...#.....#.#.....#.#...#...#.#.#.#.#...#.......#.#.#.#.#.....#.....#.....#...#.#.#.......#...................#...###...#
#######.#.###.#######.#######.#.#####.#.###.#####.#.#.#.#.#.#######.#.#.#.#.#####.#.###.#.###.###.#.#.#######.###################.#######.#.#
#.......#.###.......#.#...#...#.......#.....#...#.#.#.#.#.#...#.....#...#.#.#.....#...#.#...#.###.#.#.......#.#...............#...###...#.#.#
#.#######.#########.#.#.#.#.#################.#.#.#.#.#.#.###.#.#########.#.#.#######.#.###.#.###.#.#######.#.#.#############.#.#####.#.#.#.#
#.......#.#...#.....#...#...#.............###.#...#...#.#...#.#.........#.#.#.....#...#.#...#.....#.....#...#...#.......#...#...#...#.#...#.#
#######.#.#.#.#.#############.###########.###.#########.###.#.#########.#.#.#####.#.###.#.#############.#.#######.#####.#.#.#####.#.#.#####.#
#...#...#...#...#.............#...........#...#.......#.#...#.#...#...#.#.#.#.....#...#...#.....#.....#...###.....#.....#.#...#...#.#.#.....#
#.#.#.###########.#############.###########.###.#####.#.#.###.#.#.#.#.#.#.#.#.#######.#####.###.#.###.#######.#####.#####.###.#.###.#.#.#####
#.#...#.......#...###...........#...#...###...#.....#.#.#...#.#.#.#.#...#...#...#...#...#...###...#...#.......#.....#.....#...#.#...#.#.#...#
#.#####.#####.#.#####.###########.#.#.#.#####.#####.#.#.###.#.#.#.#.###########.#.#.###.#.#########.###.#######.#####.#####.###.#.###.#.#.#.#
#...#...#.....#.#...#...........#.#.#.#.....#.#.....#...###.#.#.#.#...#...#...#.#.#...#...#.......#.....#...#...#...#.#.....#...#.....#...#.#
###.#.###.#####.#.#.###########.#.#.#.#####.#.#.###########.#.#.#.###.#.#.#.#.#.#.###.#####.#####.#######.#.#.###.#.#.#.#####.#############.#
#...#.#...#...#.#.#.#.........#...#...#.....#.#...#...###...#.#.#...#...#.#.#...#.#...#...#.....#.........#...###.#...#.......#...#...#...#.#
#.###.#.###.#.#.#.#.#.#######.#########.#####.###.#.#.###.###.#.###.#####.#.#####.#.###.#.#####.#################.#############.#.#.#.#.#.#.#
#...#.#...#.#.#.#.#...#.....#...#.......#...#.#...#.#.#...#...#.#...#.....#...#...#...#.#.#...#...#.............#...#...........#.#.#.#.#.#.#
###.#.###.#.#.#.#.#####.###.###.#.#######.#.#.#.###.#.#.###.###.#.###.#######.#.#####.#.#.#.#.###.#.###########.###.#.###########.#.#.#.#.#.#
###...#...#.#.#.#.#...#...#...#.#.........#.#.#...#.#.#...#...#.#...#.......#.#.....#.#.#.#.#.###...###.........#...#...........#...#.#.#...#
#######.###.#.#.#.#.#.###.###.#.###########.#.###.#.#.###.###.#.###.#######.#.#####.#.#.#.#.#.#########.#########.#############.#####.#.#####
###...#.....#...#...#.....#...#.............#.#...#.#.###.#...#...#.###...#.#.#...#.#.#.#.#.#.#...#...#...........#.......#...#...###.#.....#
###.#.#####################.#################.#.###.#.###.#.#####.#.###.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#############.#####.#.#.###.###.#####.#
#...#.......###.......#...#.........#.......#.#.#...#...#.#...#...#...#.#.#.#.#.#.#.#.#.#.#.#.#.#...#.#.....#.......#...#...#...#...#.......#
#.#########.###.#####.#.#.#########.#.#####.#.#.#.#####.#.###.#.#####.#.#.#.#.#.#.#.#.#.#.#.#.#.#####.#.###.#.#######.#.#######.###.#########
#.........#.....#...#...#.........#.#...###.#.#...#...#.#...#.#.#.....#.#...#.#.#...#.#.#...#.#.###...#.#...#.........#.......#...#.#.......#
#########.#######.#.#############.#.###.###.#.#####.#.#.###.#.#.#.#####.#####.#.#####.#.#####.#.###.###.#.###################.###.#.#.#####.#
###.....#.......#.#.............#...#...#...#.......#.#...#.#...#...#...#.....#.#.....#.#.....#...#...#.#...#...#...........#.#...#...#.....#
###.###.#######.#.#############.#####.###.###########.###.#.#######.#.###.#####.#.#####.#.#######.###.#.###.#.#.#.#########.#.#.#######.#####
#...#...#.....#...###...........#.....#...#.....#.....###.#.....###.#.###...#...#.#...#.#...#.....#...#...#.#.#.#.....#...#...#.......#.....#
#.###.###.###.#######.###########.#####.###.###.#.#######.#####.###.#.#####.#.###.#.#.#.###.#.#####.#####.#.#.#.#####.#.#.###########.#####.#
#...#...#...#.#.......#.....#...#.#.....#...###.#.......#...#...#...#.....#.#...#.#.#...###.#...###...#...#...#.#...#...#...........#...#...#
###.###.###.#.#.#######.###.#.#.#.#.#####.#####.#######.###.#.###.#######.#.###.#.#.#######.###.#####.#.#######.#.#.###############.###.#.###
#...#...#...#...#...#...#...#.#.#.#.....#.....#...#.....###...###.#.....#.#...#.#.#.......#...#...#...#.#...###...#...#.....#.......#...#...#
#.###.###.#######.#.#.###.###.#.#.#####.#####.###.#.#############.#.###.#.###.#.#.#######.###.###.#.###.#.#.#########.#.###.#.#######.#####.#
#...#.....#...#...#.#.###...#.#...#...#.#...#.#...#.......#.......#...#.#.#...#.#.#.....#...#.#...#...#...#.....#.....#...#.#.......#...#...#
###.#######.#.#.###.#.#####.#.#####.#.#.#.#.#.#.#########.#.#########.#.#.#.###.#.#.###.###.#.#.#####.#########.#.#######.#.#######.###.#.###
###...#...#.#.#.###...#.....#...#...#...#.#...#...#...#...#...#...#...#.#.#...#.#...###...#.#...#...#...#.......#.#.......#.#.......#...#...#
#####.#.#.#.#.#.#######.#######.#.#######.#######.#.#.#.#####.#.#.#.###.#.###.#.#########.#.#####.#.###.#.#######.#.#######.#.#######.#####.#
#.....#.#.#.#.#.#.....#.....#...#...#...#.....###...#.#.....#.#.#.#.###...#...#.....#.....#...#...#.....#.......#.#.....#...#.....###.......#
#.#####.#.#.#.#.#.###.#####.#.#####.#.#.#####.#######.#####.#.#.#.#.#######.#######.#.#######.#.###############.#.#####.#.#######.###########
#...#...#.#.#...#...#.#.....#.#####...#.#...#.....###.#.....#...#.#...#.....#.......#.......#.#.#...#...#.......#...#...#.........#.........#
###.#.###.#.#######.#.#.#####.#########.#.#.#####.###.#.#########.###.#.#####.#############.#.#.#.#.#.#.#.#########.#.#############.#######.#
###.#...#.#.#.......#...#...#...#.......#.#.#.....#...#...#.......#...#.....#.....#.........#.#.#.#.#.#.#.......#...#.........###...#...#...#
###.###.#.#.#.###########.#.###.#.#######.#.#.#####.#####.#.#######.#######.#####.#.#########.#.#.#.#.#.#######.#.###########.###.###.#.#.###
#...#...#...#.....#...#...#...#.#...#...#.#.#.....#.#...#.#.........#...###.#...#.#.#.......#.#...#.#.#.#.......#.....#.....#.....#...#.#...#
#.###.###########.#.#.#.#####.#.###.#.#.#.#.#####.#.#.#.#.###########.#.###.#.#.#.#.#.#####.#.#####.#.#.#.###########.#.###.#######.###.###.#
#...#.....#####...#.#.#.....#.#.#...#.#.#.#...#...#...#.#.....#.......#.....#.#.#.#...#.....#...#...#.#.#...........#.#...#.#...#...#...#...#
###.#####.#####.###.#.#####.#.#.#.###.#.#.###.#.#######.#####.#.#############.#.#.#####.#######.#.###.#.###########.#.###.#.#.#.#.###.###.###
#...#...#...#...#...#.....#.#...#...#.#.#.###.#.......#...#...#.....#...#...#.#.#.....#.#...#...#...#.#.#.....#...#.#.#...#...#...###.#...###
#.###.#.###.#.###.#######.#.#######.#.#.#.###.#######.###.#.#######.#.#.#.#.#.#.#####.#.#.#.#.#####.#.#.#.###.#.#.#.#.#.#############.#.#####
#.....#.....#...#.......#.#.#.......#.#...#...#...#...###.#...#.....#.#...#.#.#.#.....#...#.#.#...#...#.#...#.#.#.#.#.#.............#...#...#
###############.#######.#.#.#.#######.#####.###.#.#.#####.###.#.#####.#####.#.#.#.#########.#.#.#.#####.###.#.#.#.#.#.#############.#####.#.#
###...#.........#...#...#...#.....#...###...#...#...###...#...#.#...#...#...#.#.#...#.......#...#.###...#...#.#.#.#.#.#...#...#...#.....#.#.#
###.#.#.#########.#.#.###########.#.#####.###.#########.###.###.#.#.###.#.###.#.###.#.###########.###.###.###.#.#.#.#.#.#.#.#.#.#.#####.#.#.#
#...#...#.....#...#.#...#.........#.....#...#.........#...#...#.#.#...#.#...#.#...#.#.#.....#...#.#...#...#...#.#.#.#.#.#.#.#.#.#.#...#...#.#
#.#######.###.#.###.###.#.#############.###.#########.###.###.#.#.###.#.###.#.###.#.#.#.###.#.#.#.#.###.###.###.#.#.#.#.#.#.#.#.#.#.#.#####.#
#.........###...###.....#...............###...........###.....#...###...###...###...#...###...#...#.....###.....#...#...#...#...#...#.......#
#############################################################################################################################################

View File

@@ -0,0 +1,5 @@
129A
540A
789A
596A
582A

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,313 @@
x00: 1
x01: 0
x02: 1
x03: 1
x04: 0
x05: 0
x06: 1
x07: 1
x08: 0
x09: 1
x10: 1
x11: 1
x12: 1
x13: 0
x14: 1
x15: 1
x16: 1
x17: 1
x18: 1
x19: 1
x20: 0
x21: 1
x22: 0
x23: 1
x24: 0
x25: 1
x26: 1
x27: 1
x28: 1
x29: 0
x30: 0
x31: 1
x32: 0
x33: 1
x34: 1
x35: 0
x36: 0
x37: 1
x38: 0
x39: 1
x40: 1
x41: 1
x42: 1
x43: 0
x44: 1
y00: 1
y01: 0
y02: 0
y03: 1
y04: 1
y05: 0
y06: 0
y07: 0
y08: 0
y09: 0
y10: 0
y11: 1
y12: 0
y13: 1
y14: 0
y15: 1
y16: 1
y17: 1
y18: 1
y19: 0
y20: 0
y21: 1
y22: 1
y23: 1
y24: 1
y25: 0
y26: 0
y27: 1
y28: 1
y29: 1
y30: 1
y31: 0
y32: 0
y33: 0
y34: 1
y35: 1
y36: 1
y37: 0
y38: 1
y39: 1
y40: 1
y41: 1
y42: 0
y43: 1
y44: 1
x03 AND y03 -> htr
gwb AND kvf -> pkd
x04 AND y04 -> jjm
qcm XOR twv -> z21
rrq XOR bmp -> z44
x43 AND y43 -> pnn
x06 XOR y06 -> qmt
x26 AND y26 -> z26
y00 AND x00 -> whb
jfq XOR fbb -> z36
y33 AND x33 -> mmb
x38 AND y38 -> vqt
bbh OR qtd -> jfq
cbs AND ttb -> qtd
wqs OR cmf -> tpf
x10 AND y10 -> bfm
djp OR pfb -> qvr
x20 XOR y20 -> vhb
kkd XOR cjg -> z32
qpp XOR stg -> z41
kkd AND cjg -> mdv
tpp OR pfj -> twv
www AND qdf -> vjf
y15 XOR x15 -> hmr
mtg XOR sqm -> z09
x33 XOR y33 -> chc
x41 AND y41 -> pkj
x31 AND y31 -> cvn
x09 AND y09 -> nvw
mtg AND sqm -> chg
pkr AND kcv -> thc
x07 XOR y07 -> cds
x15 AND y15 -> fpr
mwv AND jsg -> wdw
mwv XOR jsg -> z38
y16 XOR x16 -> svs
y14 XOR x14 -> fnq
wth OR vjf -> btv
bvp AND gdb -> stc
cjb XOR rjc -> z04
x13 AND y13 -> pfb
x30 AND y30 -> qgf
htq AND rtk -> dsm
x18 XOR y18 -> kvf
y12 AND x12 -> mqn
bcj XOR bkh -> z03
x07 AND y07 -> sdj
bdf OR wbw -> qkf
y30 XOR x30 -> kbn
tpf AND vhb -> tpp
hqd OR fpr -> hgh
vfm XOR hbw -> z23
x01 AND y01 -> bdf
nvw OR chg -> vgp
x21 XOR y21 -> qcm
bwg AND mfn -> djp
dnf OR pkj -> ksp
y44 AND x44 -> gqr
y11 AND x11 -> smr
smr OR dsm -> ksn
jkm OR pkd -> rjf
thc OR sqt -> rbd
qvr XOR fnq -> z14
cjb AND rjc -> fsb
svg XOR fmt -> z31
x06 AND y06 -> ssv
dtj OR vvq -> jvp
chv XOR fqf -> z34
cvr AND hck -> pjd
dqp AND nbm -> hvv
x29 AND y29 -> vvq
y13 XOR x13 -> mfn
ksn AND nft -> z12
jjd XOR whb -> z01
chc AND rnq -> vjh
y36 AND x36 -> kfn
cwh OR vvw -> ttb
qkf AND wsv -> pqc
rdj OR kfv -> gdb
x08 AND y08 -> jrr
x02 AND y02 -> vdf
x12 XOR y12 -> nft
ptf OR jrr -> sqm
tdv OR wjp -> cjw
qvr AND fnq -> mch
x28 XOR y28 -> cfj
gtn XOR qmt -> z06
mqn OR jpj -> bwg
x36 XOR y36 -> fbb
qht OR bfm -> htq
y42 AND x42 -> mkg
ksn XOR nft -> jpj
x20 AND y20 -> pfj
cmt AND nbq -> gmc
rbd XOR knm -> z25
pvj XOR ksp -> z42
kgj OR stc -> www
tpf XOR vhb -> z20
pjd OR dsg -> mwv
cbs XOR ttb -> z35
bfk OR jvm -> gwb
ffj XOR rpg -> z17
vjr OR kwg -> pkr
pvj AND ksp -> dkc
y37 XOR x37 -> cvr
btv XOR cfj -> z28
gtq OR qgf -> fmt
nbq XOR cmt -> z39
wgq AND dqj -> tws
x24 AND y24 -> sqt
whj OR pnn -> bmp
x02 XOR y02 -> wsv
stg AND qpp -> dnf
kbn XOR jvp -> z30
y39 AND x39 -> gwq
cds AND rkv -> nph
kvf XOR gwb -> z18
mkg OR dkc -> sch
bqh XOR rjf -> z19
hck XOR cvr -> z37
jmk OR ssv -> rkv
x21 AND y21 -> cgd
pqc OR vdf -> bkh
rff OR mts -> rpg
bkh AND bcj -> rhq
bnv OR bst -> stg
bwg XOR mfn -> z13
sgt AND scc -> bnv
btv AND cfj -> tdv
svs AND hgh -> rff
hbw AND vfm -> kwg
x40 XOR y40 -> scc
y17 AND x17 -> jvm
y34 AND x34 -> chv
y35 AND x35 -> bbh
mdv OR rft -> rnq
fqf AND chv -> cwh
y28 AND x28 -> wjp
sch AND srj -> whj
htr OR rhq -> rjc
x05 XOR y05 -> dqp
cvn OR qnk -> cjg
y14 AND x14 -> tfr
y11 XOR x11 -> rtk
jfq AND fbb -> trr
ppb AND hmr -> hqd
gtb OR hvv -> gtn
y44 XOR x44 -> rrq
rtk XOR htq -> z11
x01 XOR y01 -> jjd
hmv XOR rts -> z08
y10 XOR x10 -> vpc
jvp AND kbn -> gtq
cjw AND ntj -> dtj
x22 AND y22 -> prp
ppb XOR hmr -> z15
y18 AND x18 -> jkm
x39 XOR y39 -> nbq
jjd AND whb -> wbw
x34 XOR y34 -> vvw
x19 AND y19 -> wqs
gwq OR gmc -> sgt
rbd AND knm -> rdj
srj XOR sch -> z43
y05 AND x05 -> gtb
x08 XOR y08 -> hmv
y25 AND x25 -> kfv
cgd OR jth -> dqj
vpc XOR vgp -> z10
tws OR prp -> hbw
jjm OR fsb -> nbm
wdw OR vqt -> cmt
rrq AND bmp -> cbv
rts AND hmv -> ptf
svs XOR hgh -> z16
y41 XOR x41 -> qpp
ntj XOR cjw -> z29
ffj AND rpg -> bfk
gqr OR cbv -> z45
x25 XOR y25 -> knm
chc XOR rnq -> z33
y43 XOR x43 -> srj
vgp AND vpc -> qht
x00 XOR y00 -> z00
cds XOR rkv -> rts
x24 XOR y24 -> kcv
x32 AND y32 -> rft
nbm XOR dqp -> z05
x35 XOR y35 -> cbs
mch OR tfr -> ppb
x16 AND y16 -> mts
www XOR qdf -> z27
x23 AND y23 -> vjr
x26 XOR y26 -> bvp
gtn AND qmt -> jmk
x29 XOR y29 -> ntj
y19 XOR x19 -> bqh
rjf AND bqh -> cmf
y38 XOR x38 -> jsg
x32 XOR y32 -> kkd
y03 XOR x03 -> bcj
y31 XOR x31 -> svg
y22 XOR x22 -> wgq
qkf XOR wsv -> z02
bvp XOR gdb -> kgj
x04 XOR y04 -> cjb
x17 XOR y17 -> ffj
y37 AND x37 -> dsg
y27 AND x27 -> wth
y23 XOR x23 -> vfm
sgt XOR scc -> z40
mmb OR vjh -> fqf
qcm AND twv -> jth
y09 XOR x09 -> mtg
sdj OR nph -> z07
wgq XOR dqj -> z22
trr OR kfn -> hck
y27 XOR x27 -> qdf
kcv XOR pkr -> z24
x42 XOR y42 -> pvj
x40 AND y40 -> bst
svg AND fmt -> qnk

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,4 @@
inc a
jio a, +2
tpl a
inc a

View File

@@ -0,0 +1,10 @@
1
2
3
4
5
7
8
9
10
11

View File

@@ -0,0 +1 @@
To continue, please consult the code grid in the manual. Enter the code at row 6, column 5.

View File

@@ -0,0 +1,10 @@
[({(<(())[]>[[{[]{<()<>>
[(()[<>])]({[<{<<[]>>(
{([(<{}[<>[]}>{[]{[(<()>
(((({<>}<{<{<>}{[]{[]{}
[[<[([]))<([[{}[[()]]]
[{[{({}]{}}([{[{{{}}([]
{<[[]]>}<{[{[{[]{()[[[]
[<(<(<(<{}))><([]([]()
<{([([[(<>()){}]>(<<{{
<{([{{}}[<[[[<>{}]]]>[]]

View File

@@ -0,0 +1,10 @@
5483143223
2745854711
5264556173
6141336146
6357385478
4167524645
2176841721
6882881134
4846848554
5283751526

View File

@@ -0,0 +1,18 @@
fs-end
he-DX
fs-he
start-DX
pj-DX
end-zg
zg-sl
zg-pj
pj-he
RW-he
fs-DX
pj-RW
zg-RW
start-pj
he-WI
zg-he
pj-fs
start-RW

View File

@@ -0,0 +1,8 @@
89010123
78121874
87430965
96549874
45678903
32019012
01329801
10456732

Some files were not shown because too many files have changed in this diff Show More