135 Commits

Author SHA1 Message Date
Mikaël Capelle
377e501d34 Start fixing 2015 for new API.
Some checks failed
continuous-integration/drone/pr Build is failing
continuous-integration/drone/push Build is failing
2024-12-08 12:13:41 +01:00
Mikaël Capelle
d1f4f5bed0 2024 day 8.
Some checks failed
continuous-integration/drone/push Build is failing
continuous-integration/drone/pr Build is failing
2024-12-08 08:53:36 +01:00
Mikaël Capelle
03a950c485 Force flush API message.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-07 12:38:02 +01:00
Mikaël Capelle
22b1513271 Fix answer API model.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-07 12:21:57 +01:00
Mikaël Capelle
1f5b21a13a 2024 day 7.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-07 09:39:17 +01:00
Mikaël Capelle
8c707c00ba 2024 day 6 new API.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-06 21:15:18 +01:00
Mikael CAPELLE
ae4f42517c Start adding progress.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-06 14:39:23 +01:00
Mikael CAPELLE
17432f7ac6 Refactor main entrypoint for UI. 2024-12-06 14:11:35 +01:00
Mikael CAPELLE
664dcfe7ba Refactor 2023 for new system. 2024-12-06 14:11:35 +01:00
Mikael CAPELLE
a9bcf9ef8f Start refactoring code better flexibility. 2024-12-06 14:11:32 +01:00
Mikael CAPELLE
1caf93b38b Refactor 2024 day 6 to be a little bit faster.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-06 14:10:51 +01:00
Mikaël Capelle
f9a3dee20b 2024 day 6, brute force.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-06 06:50:35 +01:00
Mikael CAPELLE
1a1ff0c64d Refactor 2024 day 5 without networkx.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-05 08:28:55 +01:00
Mikaël Capelle
d7621d09b5 2024 day 5.
Some checks failed
continuous-integration/drone/push Build is failing
2024-12-05 07:25:55 +01:00
Mikael CAPELLE
b89d29e880 Refactor 2024 day 4.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-04 09:31:47 +01:00
Mikaël Capelle
f1cd7e6c85 2024 day 4.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-04 07:35:22 +01:00
Mikael CAPELLE
d16ee7f9ad Refactor 2024 day 3.
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-03 15:22:54 +01:00
0c46d3ed18 Add .drone.yml for CI. (#2)
All checks were successful
continuous-integration/drone/push Build is passing
2024-12-03 13:38:03 +00:00
Mikael CAPELLE
acb767184e Fix linting. 2024-12-03 14:11:29 +01:00
Mikael CAPELLE
cb0145baa2 2024 day 3. 2024-12-03 08:29:25 +01:00
Mikaël Capelle
a4ad0259a9 Fix 2024 day 2. 2024-12-02 18:44:50 +01:00
Mikael CAPELLE
82452c0751 Update Python dependencies. 2024-12-02 17:08:50 +01:00
Mikael CAPELLE
79cc208875 2024 day 2. 2024-12-02 15:42:56 +01:00
Mikaël Capelle
4dd2d5d9c9 2024 day 1. 2024-12-01 10:26:02 +01:00
Mikaël Capelle
def4305c1c 2015 day 22, part 1. 2024-12-01 10:25:49 +01:00
Mikaël Capelle
3edaa249fc 2015 day 21. 2024-01-20 17:57:37 +01:00
Mikaël Capelle
57fcb47fe9 2015 day 20. 2024-01-06 22:07:34 +01:00
Mikaël Capelle
cfa7718475 2015 day 19. 2024-01-06 21:35:48 +01:00
Mikaël Capelle
2d23e355b2 2015 day 18. 2024-01-06 16:43:35 +01:00
Mikaël Capelle
fab4899715 2015 day 17. 2024-01-06 15:46:43 +01:00
Mikaël Capelle
b6e20eefa3 2015 day 16. 2024-01-06 15:27:45 +01:00
Mikaël Capelle
872fd72dcd 2015 day 15. 2024-01-06 15:11:47 +01:00
Mikaël Capelle
98f28e96f8 2015 day 12, 13 & 14. 2024-01-06 14:56:30 +01:00
Mikaël Capelle
ed7aba80ad 2015 day 11. 2024-01-06 11:46:59 +01:00
Mikaël Capelle
e507dad5e0 2015 day 10. 2024-01-06 11:30:10 +01:00
Mikael CAPELLE
04172beb5a 2015 day 9. 2024-01-05 14:46:05 +01:00
Mikael CAPELLE
15ef67e757 2015 day 8. 2024-01-05 10:01:02 +01:00
Mikaël Capelle
cd0ada785c 2015 day 4, 5, 6, 7. 2024-01-04 21:05:42 +01:00
Mikael CAPELLE
42bd8d6983 2015 day 3. 2024-01-04 18:36:30 +01:00
Mikael CAPELLE
0567ab7440 2015 day 1 & 2. 2024-01-04 18:27:17 +01:00
Mikaël Capelle
7d2eb6b5ec Faster 2023 day 24 (part 1). 2024-01-01 18:44:13 +01:00
Mikaël Capelle
3a9c7e728b Minor cleaning 2023. 2023-12-30 19:35:06 +01:00
Mikaël Capelle
d002e419c3 2023 day 25. 2023-12-25 10:36:36 +01:00
Mikaël Capelle
19d93e0c1d 2023 day 24. 2023-12-25 10:36:29 +01:00
Mikaël Capelle
5c05ee5c85 2023 day 23. 2023-12-23 11:05:35 +01:00
Mikaël Capelle
103af21915 2021 day 9. 2023-12-22 21:26:13 +01:00
Mikaël Capelle
af2fbf2da1 2023 day 22. 2023-12-22 14:49:31 +01:00
Mikaël Capelle
c496ea25c9 2023 day 21, version 2. 2023-12-21 21:56:38 +01:00
Mikael CAPELLE
5f8c74fd1c 2023 day 21. 2023-12-21 16:47:43 +01:00
Mikael CAPELLE
dda2be2505 2023 day 20. 2023-12-20 14:27:25 +01:00
Mikael CAPELLE
12891194bb Poetry stuff. 2023-12-19 17:45:33 +01:00
Mikaël Capelle
f15908876d 2023 day 19. 2023-12-19 10:41:53 +01:00
Mikael CAPELLE
5f5ebda674 2023 day 18. 2023-12-18 11:40:32 +01:00
Mikaël Capelle
5b30cc00d5 2023 day 17. 2023-12-17 18:19:49 +01:00
Mikaël Capelle
3a7f8e83dc 2023 day 16. 2023-12-16 18:33:11 +01:00
Mikaël Capelle
ba5b01c594 2023 day 15. 2023-12-15 16:18:21 +01:00
Mikaël Capelle
d0970c090b 2023 day 14. 2023-12-14 19:34:38 +01:00
Mikaël Capelle
8e90bf7002 2023 day 13. 2023-12-13 20:05:05 +01:00
9698dfcdac 2023 day 12. 2023-12-12 20:20:26 +00:00
Mikaël Capelle
1a6ab1cc0e 2023 day 11. 2023-12-11 10:25:56 +01:00
Mikaël Capelle
f5aabbee8f 2021 day 8. 2023-12-10 20:23:22 +01:00
Mikaël Capelle
6c00341ab0 2023 day 10. 2023-12-10 10:09:12 +01:00
Mikaël Capelle
755e0bd4b3 2021 day 7. 2023-12-09 12:52:46 +01:00
Mikaël Capelle
a52d077a40 2021 day 6. 2023-12-09 12:36:10 +01:00
Mikaël Capelle
3fc0f94b1c 2021 day 1-5. 2023-12-09 11:01:28 +01:00
Mikaël Capelle
8a0412f926 Clean 2022. 2023-12-09 09:54:53 +01:00
Mikaël Capelle
855efeb0aa 2023 day 9. 2023-12-09 08:08:46 +01:00
Mikaël Capelle
f2a65e03e5 2023 day 8. 2023-12-08 08:44:03 +01:00
Mikaël Capelle
759f47bfab 2023 day 7. 2023-12-08 08:38:08 +01:00
Mikael CAPELLE
999207b007 Clean 2023. 2023-12-06 08:47:59 +01:00
Mikaël Capelle
d92e4744a4 2023 day 6. 2023-12-06 07:14:26 +01:00
Mikael CAPELLE
8dbf0f101c 2023 day 5. 2023-12-05 13:41:17 +01:00
Mikaël Capelle
b8d8df06d6 2023 day 5 part 1. 2023-12-05 07:22:56 +01:00
Mikaël Capelle
825ebea299 Prepare 2023 days. 2023-12-04 19:32:41 +01:00
Mikaël Capelle
869cd4477f 2023 day 4. 2023-12-04 19:30:44 +01:00
Mikaël Capelle
fd777627d6 2023 day 3. 2023-12-03 09:09:25 +01:00
Mikaël Capelle
98f605f30e 2023 day 2. 2023-12-02 09:47:52 +01:00
Mikaël Capelle
d51fed283c Fix 2023 day 1. 2023-12-01 20:27:42 +01:00
Mikael CAPELLE
e991cd8b04 2023: Day 1. 2023-12-01 10:41:13 +01:00
Mikael CAPELLE
10f67e6bfd Post-christmas cleaning. 2023-01-06 13:48:18 +01:00
Mikaël Capelle
f291b0aa3f Day 25. 2022-12-25 11:34:49 +01:00
Mikaël Capelle
0eb5b5a88f Faster day 24. 2022-12-24 23:00:14 +01:00
Mikaël Capelle
2ec0a3d5f9 Day 24. 2022-12-24 20:50:37 +01:00
Mikael CAPELLE
0327a3f36a Add day 23. 2022-12-23 13:25:22 +01:00
Mikaël Capelle
3732e70ef7 Ugly day 22. 2022-12-22 23:00:36 +01:00
Mikaël Capelle
b0cc6b4a46 Update day 22. 2022-12-22 18:46:59 +01:00
Mikael CAPELLE
8c24b9f9e2 Update day 22. 2022-12-22 17:22:56 +01:00
Mikael CAPELLE
dca6f6a08f Update day 22. 2022-12-22 17:00:09 +01:00
Mikael CAPELLE
8d7a20f575 Day 22 part 1. 2022-12-22 14:10:30 +01:00
Mikael CAPELLE
3934dfd152 Start day 22. 2022-12-22 08:20:09 +01:00
Mikael CAPELLE
b656e8929e Remove tqdm from day 19. 2022-12-21 17:39:43 +01:00
Mikael CAPELLE
c9c69f479b Day 21. 2022-12-21 09:44:05 +01:00
Mikaël Capelle
72ebcfff1f Clean day 20. 2022-12-20 23:39:26 +01:00
Mikaël Capelle
dd72bb3238 Add empty files for following days. 2022-12-20 21:51:38 +01:00
Mikael CAPELLE
c1dd74c57d Faster day 20. 2022-12-20 18:27:09 +01:00
Mikael CAPELLE
1bf2de62c7 Day 20, slow. 2022-12-20 13:39:36 +01:00
Mikael CAPELLE
df808bc98a Start day 20. 2022-12-20 12:35:01 +01:00
Mikaël Capelle
f46e190e98 Add all tests from previous days. 2022-12-19 22:32:15 +01:00
Mikaël Capelle
7f4a34b2d7 Day 19. 2022-12-19 22:09:20 +01:00
Mikael CAPELLE
ddebd26db2 Tmp 2022-12-19 18:46:16 +01:00
Mikael CAPELLE
01300e23b2 Start working on day 19. 2022-12-19 13:51:32 +01:00
Mikaël Capelle
b8e2faa8c9 Clean day 17. 2022-12-18 16:46:00 +01:00
Mikaël Capelle
ea5b757180 Day 18. 2022-12-18 09:57:35 +01:00
Mikaël Capelle
89a71c175f Day 17. 2022-12-17 12:27:05 +01:00
Mikaël Capelle
9ffb332dea Day 17. 2022-12-17 12:25:48 +01:00
Mikaël Capelle
8167ab34c7 Less BFS for day 16. 2022-12-16 22:56:34 +01:00
Mikaël Capelle
100df02a09 Better day 16. 2022-12-16 22:52:03 +01:00
Mikael CAPELLE
15b987a590 Update ugly day 16. 2022-12-16 18:40:21 +01:00
Mikael CAPELLE
b1578f5709 Add ugly day 16, to be improved... 2022-12-16 09:21:54 +01:00
Mikael CAPELLE
d80dbb6c7c Update day 15. 2022-12-15 14:17:04 +01:00
Mikael CAPELLE
b679c1f895 Add day 15. 2022-12-15 09:36:19 +01:00
Mikael CAPELLE
e9d5f9747b Add day 14. 2022-12-14 09:29:56 +01:00
Mikael CAPELLE
fe3aad7ddd Clean day 9. 2022-12-13 11:18:31 +01:00
Mikael CAPELLE
7ac9981ae5 Clean day 13. 2022-12-13 08:59:53 +01:00
Mikael CAPELLE
652756a341 Add day 13. 2022-12-13 08:54:15 +01:00
Mikael CAPELLE
c7ef505f1b Clean day 12. 2022-12-12 17:55:24 +01:00
Mikael CAPELLE
c55f6ac8e1 One to many Dijkstra. 2022-12-12 17:50:48 +01:00
Mikael CAPELLE
726a6aecac Generic Dijkstra for day 12. 2022-12-12 15:59:19 +01:00
Mikael CAPELLE
291b188238 Clean day 12. 2022-12-12 10:48:37 +01:00
Mikael CAPELLE
289e3b7d02 Add day 12. 2022-12-12 09:35:12 +01:00
Mikaël Capelle
9820765e9c Clean monkey code. 2022-12-11 11:50:23 +01:00
Mikaël Capelle
c6522de8a2 Add day 11. 2022-12-11 11:42:47 +01:00
Mikaël Capelle
80465e5e53 Add day 10. 2022-12-10 10:24:23 +01:00
Mikaël Capelle
af1428b5e1 Add day 9. 2022-12-09 10:45:00 +01:00
Mikael CAPELLE
fca283527d Add 2022 day 8. 2022-12-08 08:59:25 +01:00
Mikael CAPELLE
0d37458ec5 Add 2021 day 5. 2022-12-07 18:41:39 +01:00
Mikael CAPELLE
198927e4a3 Add day 7. 2022-12-07 09:28:06 +01:00
Mikael CAPELLE
4192c98bba Cleaning. 2022-12-06 15:28:46 +01:00
Mikael CAPELLE
7cb8317659 Add day 6. 2022-12-06 09:03:22 +01:00
Mikaël Capelle
f46cb51c60 Add day 4. 2022-12-05 19:09:55 +01:00
Mikael CAPELLE
261a396ae7 Add day 5. 2022-12-05 08:58:25 +01:00
Mikaël Capelle
4b3af377ab Day 3. 2022-12-03 11:42:09 +01:00
Mikael CAPELLE
f697415ef2 More comments. 2022-12-02 15:06:37 +01:00
Mikael CAPELLE
ac2806b0fb Comments. 2022-12-02 09:21:38 +01:00
Mikael CAPELLE
c62b8abfd0 Day 2. 2022-12-02 09:12:49 +01:00
152 changed files with 1653 additions and 20841 deletions

1
.gitignore vendored
View File

@@ -4,4 +4,3 @@ __pycache__
.ruff_cache
.vscode
build
files

504
poetry.lock generated
View File

@@ -1,15 +1,4 @@
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.1.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = false
python-versions = ">=3.7"
files = [
{file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"},
{file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"},
]
# This file is automatically @generated by Poetry 1.8.4 and should not be changed by hand.
[[package]]
name = "appnope"
@@ -144,30 +133,6 @@ traitlets = ">=4"
[package.extras]
test = ["pytest"]
[[package]]
name = "cplex"
version = "22.1.1.2"
description = "A Python interface to the CPLEX Callable Library, Community Edition."
optional = false
python-versions = "*"
files = [
{file = "cplex-22.1.1.2-cp310-cp310-macosx_10_6_x86_64.whl", hash = "sha256:d74a91f6e9c6f4ad4c7c69f7ab937ea9e91178a556f6f105c87eef9e434ea42e"},
{file = "cplex-22.1.1.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b066b5aa01fcf7cb471ad41920b3fecdd87dc95686e9a7031ff470873f0db10f"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:a7230032928b1a657c384d3f49c04d8b80d0ab8134a2f4c0b26ff50e71ec767a"},
{file = "cplex-22.1.1.2-cp310-cp310-manylinux2014_ppc64le.whl", hash = "sha256:dd81e8ee7a7f1fb5769bcbb1349b084b37c495cbd0db1a095d774f97d790ee3c"},
{file = "cplex-22.1.1.2-cp310-cp310-win_amd64.whl", hash = "sha256:68b33bb9ff84be3442a6f71000e7214781c6aa8674143a9aa79cb9a84e697dfd"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_10_6_x86_64.whl", hash = "sha256:cda2f59af50d6c3d6476b2e38aba1e947f9bd72591d71961a9d53b5582062ba9"},
{file = "cplex-22.1.1.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0f69a539ed50994e26e32c3d2b203eb5f112d1ba64400241614e1a91c0933974"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:2a0f6984980779e6878a6cded52ee08806bae49af6bd209c7740549417e69e96"},
{file = "cplex-22.1.1.2-cp311-cp311-manylinux2014_ppc64le.whl", hash = "sha256:0ac0005414a09facbeaa976a89b3153d4ed15f23a89bf5d283f65d4e951f63be"},
{file = "cplex-22.1.1.2-cp311-cp311-win_amd64.whl", hash = "sha256:46550cac476d74cc95dc3abf6f9bfe08c9fd61d889e20f2028f754b9fe503b88"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_10_6_x86_64.whl", hash = "sha256:21f6fd1ad4876a7775e64fe8a1fb43f6bb7a010c5e099abdb8c01887a8cc1d84"},
{file = "cplex-22.1.1.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d6acbf74c3fe32f2138a98730d1ebe3fa275c8c3fdcd8b1f68d312bfe9ef6899"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:3211f9c84f44c6317ea1e83a6c2ff1cfdc08532f421987b7faa8c07a018dfae5"},
{file = "cplex-22.1.1.2-cp39-cp39-manylinux2014_ppc64le.whl", hash = "sha256:648ad8c1c83ea30b0802c571a0dbf7fac23dcb9dc121ea0768c1794313aec2a7"},
{file = "cplex-22.1.1.2-cp39-cp39-win_amd64.whl", hash = "sha256:285b26008a77942c6c9c29bff91e1658c1beed2aa520e1a8b26137d81abf81dc"},
]
[[package]]
name = "debugpy"
version = "1.8.9"
@@ -214,19 +179,6 @@ files = [
{file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"},
]
[[package]]
name = "docplex"
version = "2.28.240"
description = "The IBM Decision Optimization CPLEX Modeling for Python"
optional = false
python-versions = "*"
files = [
{file = "docplex-2.28.240.tar.gz", hash = "sha256:c0de407e33f8709bb4cd91b6efeb96fd88bfecbdce2caec51afb79253bde6ff5"},
]
[package.dependencies]
six = "*"
[[package]]
name = "exceptiongroup"
version = "1.2.2"
@@ -255,50 +207,6 @@ files = [
[package.extras]
tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"]
[[package]]
name = "imageio"
version = "2.36.1"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
optional = false
python-versions = ">=3.9"
files = [
{file = "imageio-2.36.1-py3-none-any.whl", hash = "sha256:20abd2cae58e55ca1af8a8dcf43293336a59adf0391f1917bf8518633cfc2cdf"},
{file = "imageio-2.36.1.tar.gz", hash = "sha256:e4e1d231f47f9a9e16100b0f7ce1a86e8856fb4d1c0fa2c4365a316f1746be62"},
]
[package.dependencies]
numpy = "*"
pillow = ">=8.3.2"
[package.extras]
all-plugins = ["astropy", "av", "imageio-ffmpeg", "numpy (>2)", "pillow-heif", "psutil", "rawpy", "tifffile"]
all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
build = ["wheel"]
dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"]
docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"]
ffmpeg = ["imageio-ffmpeg", "psutil"]
fits = ["astropy"]
full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpy (>2)", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "rawpy", "sphinx (<6)", "tifffile", "wheel"]
gdal = ["gdal"]
itk = ["itk"]
linting = ["black", "flake8"]
pillow-heif = ["pillow-heif"]
pyav = ["av"]
rawpy = ["numpy (>2)", "rawpy"]
test = ["fsspec[github]", "pytest", "pytest-cov"]
tifffile = ["tifffile"]
[[package]]
name = "immutabledict"
version = "4.2.1"
description = "Immutable wrapper around dictionaries (a fork of frozendict)"
optional = false
python-versions = ">=3.8"
files = [
{file = "immutabledict-4.2.1-py3-none-any.whl", hash = "sha256:c56a26ced38c236f79e74af3ccce53772827cef5c3bce7cab33ff2060f756373"},
{file = "immutabledict-4.2.1.tar.gz", hash = "sha256:d91017248981c72eb66c8ff9834e99c2f53562346f23e7f51e7a5ebcf66a3bcc"},
]
[[package]]
name = "ipykernel"
version = "6.29.5"
@@ -522,133 +430,68 @@ files = [
[[package]]
name = "numpy"
version = "2.2.0"
version = "2.1.3"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa"},
{file = "numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e"},
{file = "numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3"},
{file = "numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a"},
{file = "numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31"},
{file = "numpy-2.2.0-cp310-cp310-win32.whl", hash = "sha256:b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661"},
{file = "numpy-2.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4"},
{file = "numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6"},
{file = "numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608"},
{file = "numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74"},
{file = "numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b"},
{file = "numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d"},
{file = "numpy-2.2.0-cp311-cp311-win32.whl", hash = "sha256:4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410"},
{file = "numpy-2.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73"},
{file = "numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3"},
{file = "numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67"},
{file = "numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038"},
{file = "numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a"},
{file = "numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef"},
{file = "numpy-2.2.0-cp312-cp312-win32.whl", hash = "sha256:afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1"},
{file = "numpy-2.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3"},
{file = "numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367"},
{file = "numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69"},
{file = "numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671"},
{file = "numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d"},
{file = "numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742"},
{file = "numpy-2.2.0-cp313-cp313-win32.whl", hash = "sha256:3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e"},
{file = "numpy-2.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca"},
{file = "numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529"},
{file = "numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab"},
{file = "numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72"},
{file = "numpy-2.2.0-cp313-cp313t-win32.whl", hash = "sha256:30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066"},
{file = "numpy-2.2.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7"},
{file = "numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221"},
{file = "numpy-2.2.0.tar.gz", hash = "sha256:140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0"},
{file = "numpy-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c894b4305373b9c5576d7a12b473702afdf48ce5369c074ba304cc5ad8730dff"},
{file = "numpy-2.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b47fbb433d3260adcd51eb54f92a2ffbc90a4595f8970ee00e064c644ac788f5"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:825656d0743699c529c5943554d223c021ff0494ff1442152ce887ef4f7561a1"},
{file = "numpy-2.1.3-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a4825252fcc430a182ac4dee5a505053d262c807f8a924603d411f6718b88fd"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e711e02f49e176a01d0349d82cb5f05ba4db7d5e7e0defd026328e5cfb3226d3"},
{file = "numpy-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78574ac2d1a4a02421f25da9559850d59457bac82f2b8d7a44fe83a64f770098"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c7662f0e3673fe4e832fe07b65c50342ea27d989f92c80355658c7f888fcc83c"},
{file = "numpy-2.1.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:fa2d1337dc61c8dc417fbccf20f6d1e139896a30721b7f1e832b2bb6ef4eb6c4"},
{file = "numpy-2.1.3-cp310-cp310-win32.whl", hash = "sha256:72dcc4a35a8515d83e76b58fdf8113a5c969ccd505c8a946759b24e3182d1f23"},
{file = "numpy-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:ecc76a9ba2911d8d37ac01de72834d8849e55473457558e12995f4cd53e778e0"},
{file = "numpy-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4d1167c53b93f1f5d8a139a742b3c6f4d429b54e74e6b57d0eff40045187b15d"},
{file = "numpy-2.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c80e4a09b3d95b4e1cac08643f1152fa71a0a821a2d4277334c88d54b2219a41"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:576a1c1d25e9e02ed7fa5477f30a127fe56debd53b8d2c89d5578f9857d03ca9"},
{file = "numpy-2.1.3-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:973faafebaae4c0aaa1a1ca1ce02434554d67e628b8d805e61f874b84e136b09"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:762479be47a4863e261a840e8e01608d124ee1361e48b96916f38b119cfda04a"},
{file = "numpy-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc6f24b3d1ecc1eebfbf5d6051faa49af40b03be1aaa781ebdadcbc090b4539b"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:17ee83a1f4fef3c94d16dc1802b998668b5419362c8a4f4e8a491de1b41cc3ee"},
{file = "numpy-2.1.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:15cb89f39fa6d0bdfb600ea24b250e5f1a3df23f901f51c8debaa6a5d122b2f0"},
{file = "numpy-2.1.3-cp311-cp311-win32.whl", hash = "sha256:d9beb777a78c331580705326d2367488d5bc473b49a9bc3036c154832520aca9"},
{file = "numpy-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:d89dd2b6da69c4fff5e39c28a382199ddedc3a5be5390115608345dec660b9e2"},
{file = "numpy-2.1.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f55ba01150f52b1027829b50d70ef1dafd9821ea82905b63936668403c3b471e"},
{file = "numpy-2.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:13138eadd4f4da03074851a698ffa7e405f41a0845a6b1ad135b81596e4e9958"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:a6b46587b14b888e95e4a24d7b13ae91fa22386c199ee7b418f449032b2fa3b8"},
{file = "numpy-2.1.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:0fa14563cc46422e99daef53d725d0c326e99e468a9320a240affffe87852564"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8637dcd2caa676e475503d1f8fdb327bc495554e10838019651b76d17b98e512"},
{file = "numpy-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2312b2aa89e1f43ecea6da6ea9a810d06aae08321609d8dc0d0eda6d946a541b"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a38c19106902bb19351b83802531fea19dee18e5b37b36454f27f11ff956f7fc"},
{file = "numpy-2.1.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:02135ade8b8a84011cbb67dc44e07c58f28575cf9ecf8ab304e51c05528c19f0"},
{file = "numpy-2.1.3-cp312-cp312-win32.whl", hash = "sha256:e6988e90fcf617da2b5c78902fe8e668361b43b4fe26dbf2d7b0f8034d4cafb9"},
{file = "numpy-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:0d30c543f02e84e92c4b1f415b7c6b5326cbe45ee7882b6b77db7195fb971e3a"},
{file = "numpy-2.1.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:96fe52fcdb9345b7cd82ecd34547fca4321f7656d500eca497eb7ea5a926692f"},
{file = "numpy-2.1.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f653490b33e9c3a4c1c01d41bc2aef08f9475af51146e4a7710c450cf9761598"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:dc258a761a16daa791081d026f0ed4399b582712e6fc887a95af09df10c5ca57"},
{file = "numpy-2.1.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:016d0f6f5e77b0f0d45d77387ffa4bb89816b57c835580c3ce8e099ef830befe"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c181ba05ce8299c7aa3125c27b9c2167bca4a4445b7ce73d5febc411ca692e43"},
{file = "numpy-2.1.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5641516794ca9e5f8a4d17bb45446998c6554704d888f86df9b200e66bdcce56"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ea4dedd6e394a9c180b33c2c872b92f7ce0f8e7ad93e9585312b0c5a04777a4a"},
{file = "numpy-2.1.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b0df3635b9c8ef48bd3be5f862cf71b0a4716fa0e702155c45067c6b711ddcef"},
{file = "numpy-2.1.3-cp313-cp313-win32.whl", hash = "sha256:50ca6aba6e163363f132b5c101ba078b8cbd3fa92c7865fd7d4d62d9779ac29f"},
{file = "numpy-2.1.3-cp313-cp313-win_amd64.whl", hash = "sha256:747641635d3d44bcb380d950679462fae44f54b131be347d5ec2bce47d3df9ed"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:996bb9399059c5b82f76b53ff8bb686069c05acc94656bb259b1d63d04a9506f"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:45966d859916ad02b779706bb43b954281db43e185015df6eb3323120188f9e4"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:baed7e8d7481bfe0874b566850cb0b85243e982388b7b23348c6db2ee2b2ae8e"},
{file = "numpy-2.1.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:a9f7f672a3388133335589cfca93ed468509cb7b93ba3105fce780d04a6576a0"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7aac50327da5d208db2eec22eb11e491e3fe13d22653dce51b0f4109101b408"},
{file = "numpy-2.1.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4394bc0dbd074b7f9b52024832d16e019decebf86caf909d94f6b3f77a8ee3b6"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:50d18c4358a0a8a53f12a8ba9d772ab2d460321e6a93d6064fc22443d189853f"},
{file = "numpy-2.1.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:14e253bd43fc6b37af4921b10f6add6925878a42a0c5fe83daee390bca80bc17"},
{file = "numpy-2.1.3-cp313-cp313t-win32.whl", hash = "sha256:08788d27a5fd867a663f6fc753fd7c3ad7e92747efc73c53bca2f19f8bc06f48"},
{file = "numpy-2.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2564fbdf2b99b3f815f2107c1bbc93e2de8ee655a69c261363a1172a79a257d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:4f2015dfe437dfebbfce7c85c7b53d81ba49e71ba7eadbf1df40c915af75979f"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl", hash = "sha256:3522b0dfe983a575e6a9ab3a4a4dfe156c3e428468ff08ce582b9bb6bd1d71d4"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c006b607a865b07cd981ccb218a04fc86b600411d83d6fc261357f1c0966755d"},
{file = "numpy-2.1.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:e14e26956e6f1696070788252dcdff11b4aca4c3e8bd166e0df1bb8f315a67cb"},
{file = "numpy-2.1.3.tar.gz", hash = "sha256:aa08e04e08aaf974d4458def539dece0d28146d866a39da5639596f4921fd761"},
]
[[package]]
name = "opencv-python"
version = "4.10.0.84"
description = "Wrapper package for OpenCV python bindings."
optional = false
python-versions = ">=3.6"
files = [
{file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"},
{file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"},
{file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"},
{file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"},
]
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
]
[[package]]
name = "ortools"
version = "9.11.4210"
description = "Google OR-Tools python libraries and modules"
optional = false
python-versions = ">=3.8"
files = [
{file = "ortools-9.11.4210-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:127f20f03ce04c28f979eac635d1cacdc01597c9e035a1981070506294d7db9c"},
{file = "ortools-9.11.4210-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:250c62ba9e5fcaf18ada449bc0128c71bb0dbea83ddec5559cc506cff920235c"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7c15cefc7bc71aa2f70bee157aaa7e51ed8cb74c3edd499d15b6f5cd79cdf5b"},
{file = "ortools-9.11.4210-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c3693f0cb07ee0b5d36c4817bcfe05a745e3a613798a2ed62eb998d7fff979c"},
{file = "ortools-9.11.4210-cp310-cp310-win_amd64.whl", hash = "sha256:6b9d4ae6c7e9efac7cbef8a6289e97e238c2f0a8ef587b3e56b71af14c2f04e6"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:0f902caa1576d737714f6a4fa165db62469bce82115e250409607197b3b6b434"},
{file = "ortools-9.11.4210-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:c6f3e2869396dc6d8ee2d11b65d6f88f6386bb3ad64212c0ad7a6d32ddcb48ca"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a56c5844ff927ce3c5428159cdd01b7fdbe243e8062bf1dfdb2e0eb305a55a30"},
{file = "ortools-9.11.4210-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5a17a37aeaa7d149e2fe8c8dfd5f09630ae28ad734a109ad55536605f8059df"},
{file = "ortools-9.11.4210-cp311-cp311-win_amd64.whl", hash = "sha256:d9b858f0273e19f81555428d54d407428d0a70a8cb5df2c320935bb735f2c6bb"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:079bea08c6341dcfe3fb9586eb6edec6ae80f4ed16ed366fd7a46ef4b5709009"},
{file = "ortools-9.11.4210-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7f55124f9d1afa6434d0d6de07c6a4eb836f29b00b3413d27138634d5d79b606"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f48e3d4053a169440608d881c1abd2a706db885d9b0af85bf45b444a1fec244"},
{file = "ortools-9.11.4210-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03ecd32e5d760d48e59832ef6bf724f8cac95e4e40db72a7fb912abf7adcf931"},
{file = "ortools-9.11.4210-cp312-cp312-win_amd64.whl", hash = "sha256:bc1b6e4cc0a121ef888481a99194765e6df72d4d3da81f928543171a2bac8cbb"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:a503291dc12dc44da48567c5e1f79c77cd054fb86176f2c99d2860bc5a57e03d"},
{file = "ortools-9.11.4210-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2fd0aa0b4edfb3088f086bc05d42a381cc3d03da4b8ad18ce18ba213ab2c719f"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c242738a49279c3a58b4611a64dd24634f1638f4dbb435163e3f9308e7c84c9"},
{file = "ortools-9.11.4210-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db9186bbc7a30538f277e704e9e77ff52bc75aa2c17095a125b2dc212a75cf8e"},
{file = "ortools-9.11.4210-cp38-cp38-win_amd64.whl", hash = "sha256:afcca4919e1095a79af0375276c5377a2d75794ebd592c4cc841d9979e0526e7"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:a2828e91960c4e4fcf27bc6e200e2cd61ce1c42d4a3b95481a842a58c8315345"},
{file = "ortools-9.11.4210-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8d7d1a105f105502cf2f785816b09b796e5845fd47efac0dc0e3c0476b4c961a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f250641d7b822be25237fb78aed0878b07e8afdefddb700bafcc52f32ad520a"},
{file = "ortools-9.11.4210-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd2c0b319f4c0999360ab45a85d5764838c9dd0fd33437d12e32b2c07cbe04e4"},
{file = "ortools-9.11.4210-cp39-cp39-win_amd64.whl", hash = "sha256:219ffa56e8e4f52561586cea3dd55eb0f5d174a84c83a819d71debad766338e3"},
]
[package.dependencies]
absl-py = ">=2.0.0"
immutabledict = ">=3.0.0"
numpy = ">=1.13.3"
pandas = ">=2.0.0"
protobuf = ">=5.26.1,<5.27"
[[package]]
name = "packaging"
version = "24.2"
@@ -713,9 +556,9 @@ files = [
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.22.4", markers = "python_version < \"3.11\""},
{version = ">=1.23.2", markers = "python_version == \"3.11\""},
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
]
python-dateutil = ">=2.8.2"
pytz = ">=2020.1"
@@ -797,98 +640,6 @@ files = [
[package.dependencies]
ptyprocess = ">=0.5"
[[package]]
name = "pillow"
version = "11.0.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.9"
files = [
{file = "pillow-11.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:6619654954dc4936fcff82db8eb6401d3159ec6be81e33c6000dfd76ae189947"},
{file = "pillow-11.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3c5ac4bed7519088103d9450a1107f76308ecf91d6dabc8a33a2fcfb18d0fba"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a65149d8ada1055029fcb665452b2814fe7d7082fcb0c5bed6db851cb69b2086"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88a58d8ac0cc0e7f3a014509f0455248a76629ca9b604eca7dc5927cc593c5e9"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:c26845094b1af3c91852745ae78e3ea47abf3dbcd1cf962f16b9a5fbe3ee8488"},
{file = "pillow-11.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:1a61b54f87ab5786b8479f81c4b11f4d61702830354520837f8cc791ebba0f5f"},
{file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:674629ff60030d144b7bca2b8330225a9b11c482ed408813924619c6f302fdbb"},
{file = "pillow-11.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:598b4e238f13276e0008299bd2482003f48158e2b11826862b1eb2ad7c768b97"},
{file = "pillow-11.0.0-cp310-cp310-win32.whl", hash = "sha256:9a0f748eaa434a41fccf8e1ee7a3eed68af1b690e75328fd7a60af123c193b50"},
{file = "pillow-11.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:a5629742881bcbc1f42e840af185fd4d83a5edeb96475a575f4da50d6ede337c"},
{file = "pillow-11.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:ee217c198f2e41f184f3869f3e485557296d505b5195c513b2bfe0062dc537f1"},
{file = "pillow-11.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1c1d72714f429a521d8d2d018badc42414c3077eb187a59579f28e4270b4b0fc"},
{file = "pillow-11.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:499c3a1b0d6fc8213519e193796eb1a86a1be4b1877d678b30f83fd979811d1a"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8b2351c85d855293a299038e1f89db92a2f35e8d2f783489c6f0b2b5f3fe8a3"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6f4dba50cfa56f910241eb7f883c20f1e7b1d8f7d91c750cd0b318bad443f4d5"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:5ddbfd761ee00c12ee1be86c9c0683ecf5bb14c9772ddbd782085779a63dd55b"},
{file = "pillow-11.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:45c566eb10b8967d71bf1ab8e4a525e5a93519e29ea071459ce517f6b903d7fa"},
{file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:b4fd7bd29610a83a8c9b564d457cf5bd92b4e11e79a4ee4716a63c959699b306"},
{file = "pillow-11.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:cb929ca942d0ec4fac404cbf520ee6cac37bf35be479b970c4ffadf2b6a1cad9"},
{file = "pillow-11.0.0-cp311-cp311-win32.whl", hash = "sha256:006bcdd307cc47ba43e924099a038cbf9591062e6c50e570819743f5607404f5"},
{file = "pillow-11.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:52a2d8323a465f84faaba5236567d212c3668f2ab53e1c74c15583cf507a0291"},
{file = "pillow-11.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:16095692a253047fe3ec028e951fa4221a1f3ed3d80c397e83541a3037ff67c9"},
{file = "pillow-11.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d2c0a187a92a1cb5ef2c8ed5412dd8d4334272617f532d4ad4de31e0495bd923"},
{file = "pillow-11.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:084a07ef0821cfe4858fe86652fffac8e187b6ae677e9906e192aafcc1b69903"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8069c5179902dcdce0be9bfc8235347fdbac249d23bd90514b7a47a72d9fecf4"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f02541ef64077f22bf4924f225c0fd1248c168f86e4b7abdedd87d6ebaceab0f"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:fcb4621042ac4b7865c179bb972ed0da0218a076dc1820ffc48b1d74c1e37fe9"},
{file = "pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:00177a63030d612148e659b55ba99527803288cea7c75fb05766ab7981a8c1b7"},
{file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8853a3bf12afddfdf15f57c4b02d7ded92c7a75a5d7331d19f4f9572a89c17e6"},
{file = "pillow-11.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3107c66e43bda25359d5ef446f59c497de2b5ed4c7fdba0894f8d6cf3822dafc"},
{file = "pillow-11.0.0-cp312-cp312-win32.whl", hash = "sha256:86510e3f5eca0ab87429dd77fafc04693195eec7fd6a137c389c3eeb4cfb77c6"},
{file = "pillow-11.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:8ec4a89295cd6cd4d1058a5e6aec6bf51e0eaaf9714774e1bfac7cfc9051db47"},
{file = "pillow-11.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:27a7860107500d813fcd203b4ea19b04babe79448268403172782754870dac25"},
{file = "pillow-11.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:bcd1fb5bb7b07f64c15618c89efcc2cfa3e95f0e3bcdbaf4642509de1942a699"},
{file = "pillow-11.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0e038b0745997c7dcaae350d35859c9715c71e92ffb7e0f4a8e8a16732150f38"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ae08bd8ffc41aebf578c2af2f9d8749d91f448b3bfd41d7d9ff573d74f2a6b2"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d69bfd8ec3219ae71bcde1f942b728903cad25fafe3100ba2258b973bd2bc1b2"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:61b887f9ddba63ddf62fd02a3ba7add935d053b6dd7d58998c630e6dbade8527"},
{file = "pillow-11.0.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:c6a660307ca9d4867caa8d9ca2c2658ab685de83792d1876274991adec7b93fa"},
{file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:73e3a0200cdda995c7e43dd47436c1548f87a30bb27fb871f352a22ab8dcf45f"},
{file = "pillow-11.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fba162b8872d30fea8c52b258a542c5dfd7b235fb5cb352240c8d63b414013eb"},
{file = "pillow-11.0.0-cp313-cp313-win32.whl", hash = "sha256:f1b82c27e89fffc6da125d5eb0ca6e68017faf5efc078128cfaa42cf5cb38798"},
{file = "pillow-11.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:8ba470552b48e5835f1d23ecb936bb7f71d206f9dfeee64245f30c3270b994de"},
{file = "pillow-11.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:846e193e103b41e984ac921b335df59195356ce3f71dcfd155aa79c603873b84"},
{file = "pillow-11.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4ad70c4214f67d7466bea6a08061eba35c01b1b89eaa098040a35272a8efb22b"},
{file = "pillow-11.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:6ec0d5af64f2e3d64a165f490d96368bb5dea8b8f9ad04487f9ab60dc4bb6003"},
{file = "pillow-11.0.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c809a70e43c7977c4a42aefd62f0131823ebf7dd73556fa5d5950f5b354087e2"},
{file = "pillow-11.0.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:4b60c9520f7207aaf2e1d94de026682fc227806c6e1f55bba7606d1c94dd623a"},
{file = "pillow-11.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:1e2688958a840c822279fda0086fec1fdab2f95bf2b717b66871c4ad9859d7e8"},
{file = "pillow-11.0.0-cp313-cp313t-win32.whl", hash = "sha256:607bbe123c74e272e381a8d1957083a9463401f7bd01287f50521ecb05a313f8"},
{file = "pillow-11.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:5c39ed17edea3bc69c743a8dd3e9853b7509625c2462532e62baa0732163a904"},
{file = "pillow-11.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:75acbbeb05b86bc53cbe7b7e6fe00fbcf82ad7c684b3ad82e3d711da9ba287d3"},
{file = "pillow-11.0.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2e46773dc9f35a1dd28bd6981332fd7f27bec001a918a72a79b4133cf5291dba"},
{file = "pillow-11.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:2679d2258b7f1192b378e2893a8a0a0ca472234d4c2c0e6bdd3380e8dfa21b6a"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eda2616eb2313cbb3eebbe51f19362eb434b18e3bb599466a1ffa76a033fb916"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ec184af98a121fb2da42642dea8a29ec80fc3efbaefb86d8fdd2606619045d"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:8594f42df584e5b4bb9281799698403f7af489fba84c34d53d1c4bfb71b7c4e7"},
{file = "pillow-11.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:c12b5ae868897c7338519c03049a806af85b9b8c237b7d675b8c5e089e4a618e"},
{file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:70fbbdacd1d271b77b7721fe3cdd2d537bbbd75d29e6300c672ec6bb38d9672f"},
{file = "pillow-11.0.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5178952973e588b3f1360868847334e9e3bf49d19e169bbbdfaf8398002419ae"},
{file = "pillow-11.0.0-cp39-cp39-win32.whl", hash = "sha256:8c676b587da5673d3c75bd67dd2a8cdfeb282ca38a30f37950511766b26858c4"},
{file = "pillow-11.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:94f3e1780abb45062287b4614a5bc0874519c86a777d4a7ad34978e86428b8dd"},
{file = "pillow-11.0.0-cp39-cp39-win_arm64.whl", hash = "sha256:290f2cc809f9da7d6d622550bbf4c1e57518212da51b6a30fe8e0a270a5b78bd"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1187739620f2b365de756ce086fdb3604573337cc28a0d3ac4a01ab6b2d2a6d2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:fbbcb7b57dc9c794843e3d1258c0fbf0f48656d46ffe9e09b63bbd6e8cd5d0a2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5d203af30149ae339ad1b4f710d9844ed8796e97fda23ffbc4cc472968a47d0b"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21a0d3b115009ebb8ac3d2ebec5c2982cc693da935f4ab7bb5c8ebe2f47d36f2"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:73853108f56df97baf2bb8b522f3578221e56f646ba345a372c78326710d3830"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e58876c91f97b0952eb766123bfef372792ab3f4e3e1f1a2267834c2ab131734"},
{file = "pillow-11.0.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:224aaa38177597bb179f3ec87eeefcce8e4f85e608025e9cfac60de237ba6316"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:5bd2d3bdb846d757055910f0a59792d33b555800813c3b39ada1829c372ccb06"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:375b8dd15a1f5d2feafff536d47e22f69625c1aa92f12b339ec0b2ca40263273"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:daffdf51ee5db69a82dd127eabecce20729e21f7a3680cf7cbb23f0829189790"},
{file = "pillow-11.0.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7326a1787e3c7b0429659e0a944725e1b03eeaa10edd945a86dead1913383944"},
{file = "pillow-11.0.0.tar.gz", hash = "sha256:72bacbaf24ac003fea9bff9837d1eedb6088758d41e100c1552930151f677739"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=8.1)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
typing = ["typing-extensions"]
xmp = ["defusedxml"]
[[package]]
name = "platformdirs"
version = "4.3.6"
@@ -938,26 +689,6 @@ files = [
[package.dependencies]
wcwidth = "*"
[[package]]
name = "protobuf"
version = "5.26.1"
description = ""
optional = false
python-versions = ">=3.8"
files = [
{file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"},
{file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"},
{file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"},
{file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"},
{file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"},
{file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"},
{file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"},
{file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"},
{file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"},
]
[[package]]
name = "psutil"
version = "6.1.0"
@@ -1024,19 +755,6 @@ files = [
{file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
]
[[package]]
name = "pygifsicle"
version = "1.1.0"
description = "Python package wrapping the gifsicle library for editing and optimizing gifs."
optional = false
python-versions = "*"
files = [
{file = "pygifsicle-1.1.0.tar.gz", hash = "sha256:dcef433520ace4c1136dfc7060e77042142a3dbd6bdb6a19bd9149ef5cbe7441"},
]
[package.extras]
test = ["pytest", "pytest-cov", "touch", "validate_version_code"]
[[package]]
name = "pygments"
version = "2.18.0"
@@ -1053,13 +771,13 @@ windows-terminal = ["colorama (>=0.4.6)"]
[[package]]
name = "pyright"
version = "1.1.390"
version = "1.1.389"
description = "Command line wrapper for pyright"
optional = false
python-versions = ">=3.7"
files = [
{file = "pyright-1.1.390-py3-none-any.whl", hash = "sha256:ecebfba5b6b50af7c1a44c2ba144ba2ab542c227eb49bc1f16984ff714e0e110"},
{file = "pyright-1.1.390.tar.gz", hash = "sha256:aad7f160c49e0fbf8209507a15e17b781f63a86a1facb69ca877c71ef2e9538d"},
{file = "pyright-1.1.389-py3-none-any.whl", hash = "sha256:41e9620bba9254406dc1f621a88ceab5a88af4c826feb4f614d95691ed243a60"},
{file = "pyright-1.1.389.tar.gz", hash = "sha256:716bf8cc174ab8b4dcf6828c3298cac05c5ed775dda9910106a5dcfe4c7fe220"},
]
[package.dependencies]
@@ -1308,40 +1026,90 @@ cffi = {version = "*", markers = "implementation_name == \"pypy\""}
[[package]]
name = "ruff"
version = "0.8.3"
version = "0.8.1"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
files = [
{file = "ruff-0.8.3-py3-none-linux_armv6l.whl", hash = "sha256:8d5d273ffffff0acd3db5bf626d4b131aa5a5ada1276126231c4174543ce20d6"},
{file = "ruff-0.8.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:e4d66a21de39f15c9757d00c50c8cdd20ac84f55684ca56def7891a025d7e939"},
{file = "ruff-0.8.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:c356e770811858bd20832af696ff6c7e884701115094f427b64b25093d6d932d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c0a60a825e3e177116c84009d5ebaa90cf40dfab56e1358d1df4e29a9a14b13"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:75fb782f4db39501210ac093c79c3de581d306624575eddd7e4e13747e61ba18"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7f26bc76a133ecb09a38b7868737eded6941b70a6d34ef53a4027e83913b6502"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:01b14b2f72a37390c1b13477c1c02d53184f728be2f3ffc3ace5b44e9e87b90d"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:53babd6e63e31f4e96ec95ea0d962298f9f0d9cc5990a1bbb023a6baf2503a82"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1ae441ce4cf925b7f363d33cd6570c51435972d697e3e58928973994e56e1452"},
{file = "ruff-0.8.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7c65bc0cadce32255e93c57d57ecc2cca23149edd52714c0c5d6fa11ec328cd"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:5be450bb18f23f0edc5a4e5585c17a56ba88920d598f04a06bd9fd76d324cb20"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8faeae3827eaa77f5721f09b9472a18c749139c891dbc17f45e72d8f2ca1f8fc"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:db503486e1cf074b9808403991663e4277f5c664d3fe237ee0d994d1305bb060"},
{file = "ruff-0.8.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6567be9fb62fbd7a099209257fef4ad2c3153b60579818b31a23c886ed4147ea"},
{file = "ruff-0.8.3-py3-none-win32.whl", hash = "sha256:19048f2f878f3ee4583fc6cb23fb636e48c2635e30fb2022b3a1cd293402f964"},
{file = "ruff-0.8.3-py3-none-win_amd64.whl", hash = "sha256:f7df94f57d7418fa7c3ffb650757e0c2b96cf2501a0b192c18e4fb5571dfada9"},
{file = "ruff-0.8.3-py3-none-win_arm64.whl", hash = "sha256:fe2756edf68ea79707c8d68b78ca9a58ed9af22e430430491ee03e718b5e4936"},
{file = "ruff-0.8.3.tar.gz", hash = "sha256:5e7558304353b84279042fc584a4f4cb8a07ae79b2bf3da1a7551d960b5626d3"},
{file = "ruff-0.8.1-py3-none-linux_armv6l.whl", hash = "sha256:fae0805bd514066f20309f6742f6ee7904a773eb9e6c17c45d6b1600ca65c9b5"},
{file = "ruff-0.8.1-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b8a4f7385c2285c30f34b200ca5511fcc865f17578383db154e098150ce0a087"},
{file = "ruff-0.8.1-py3-none-macosx_11_0_arm64.whl", hash = "sha256:cd054486da0c53e41e0086e1730eb77d1f698154f910e0cd9e0d64274979a209"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2029b8c22da147c50ae577e621a5bfbc5d1fed75d86af53643d7a7aee1d23871"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2666520828dee7dfc7e47ee4ea0d928f40de72056d929a7c5292d95071d881d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:333c57013ef8c97a53892aa56042831c372e0bb1785ab7026187b7abd0135ad5"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:288326162804f34088ac007139488dcb43de590a5ccfec3166396530b58fb89d"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b12c39b9448632284561cbf4191aa1b005882acbc81900ffa9f9f471c8ff7e26"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:364e6674450cbac8e998f7b30639040c99d81dfb5bbc6dfad69bc7a8f916b3d1"},
{file = "ruff-0.8.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b22346f845fec132aa39cd29acb94451d030c10874408dbf776af3aaeb53284c"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:b2f2f7a7e7648a2bfe6ead4e0a16745db956da0e3a231ad443d2a66a105c04fa"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:adf314fc458374c25c5c4a4a9270c3e8a6a807b1bec018cfa2813d6546215540"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_i686.whl", hash = "sha256:a885d68342a231b5ba4d30b8c6e1b1ee3a65cf37e3d29b3c74069cdf1ee1e3c9"},
{file = "ruff-0.8.1-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:d2c16e3508c8cc73e96aa5127d0df8913d2290098f776416a4b157657bee44c5"},
{file = "ruff-0.8.1-py3-none-win32.whl", hash = "sha256:93335cd7c0eaedb44882d75a7acb7df4b77cd7cd0d2255c93b28791716e81790"},
{file = "ruff-0.8.1-py3-none-win_amd64.whl", hash = "sha256:2954cdbe8dfd8ab359d4a30cd971b589d335a44d444b6ca2cb3d1da21b75e4b6"},
{file = "ruff-0.8.1-py3-none-win_arm64.whl", hash = "sha256:55873cc1a473e5ac129d15eccb3c008c096b94809d693fc7053f588b67822737"},
{file = "ruff-0.8.1.tar.gz", hash = "sha256:3583db9a6450364ed5ca3f3b4225958b24f78178908d5c4bc0f46251ccca898f"},
]
[[package]]
name = "scipy"
version = "1.14.1"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.10"
files = [
{file = "scipy-1.14.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:b28d2ca4add7ac16ae8bb6632a3c86e4b9e4d52d3e34267f6e1b0c1f8d87e389"},
{file = "scipy-1.14.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d0d2821003174de06b69e58cef2316a6622b60ee613121199cb2852a873f8cf3"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:8bddf15838ba768bb5f5083c1ea012d64c9a444e16192762bd858f1e126196d0"},
{file = "scipy-1.14.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:97c5dddd5932bd2a1a31c927ba5e1463a53b87ca96b5c9bdf5dfd6096e27efc3"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2ff0a7e01e422c15739ecd64432743cf7aae2b03f3084288f399affcefe5222d"},
{file = "scipy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e32dced201274bf96899e6491d9ba3e9a5f6b336708656466ad0522d8528f69"},
{file = "scipy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:8426251ad1e4ad903a4514712d2fa8fdd5382c978010d1c6f5f37ef286a713ad"},
{file = "scipy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:a49f6ed96f83966f576b33a44257d869756df6cf1ef4934f59dd58b25e0327e5"},
{file = "scipy-1.14.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:2da0469a4ef0ecd3693761acbdc20f2fdeafb69e6819cc081308cc978153c675"},
{file = "scipy-1.14.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:c0ee987efa6737242745f347835da2cc5bb9f1b42996a4d97d5c7ff7928cb6f2"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:3a1b111fac6baec1c1d92f27e76511c9e7218f1695d61b59e05e0fe04dc59617"},
{file = "scipy-1.14.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8475230e55549ab3f207bff11ebfc91c805dc3463ef62eda3ccf593254524ce8"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:278266012eb69f4a720827bdd2dc54b2271c97d84255b2faaa8f161a158c3b37"},
{file = "scipy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fef8c87f8abfb884dac04e97824b61299880c43f4ce675dd2cbeadd3c9b466d2"},
{file = "scipy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b05d43735bb2f07d689f56f7b474788a13ed8adc484a85aa65c0fd931cf9ccd2"},
{file = "scipy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:716e389b694c4bb564b4fc0c51bc84d381735e0d39d3f26ec1af2556ec6aad94"},
{file = "scipy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:631f07b3734d34aced009aaf6fedfd0eb3498a97e581c3b1e5f14a04164a456d"},
{file = "scipy-1.14.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:af29a935803cc707ab2ed7791c44288a682f9c8107bc00f0eccc4f92c08d6e07"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2843f2d527d9eebec9a43e6b406fb7266f3af25a751aa91d62ff416f54170bc5"},
{file = "scipy-1.14.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:eb58ca0abd96911932f688528977858681a59d61a7ce908ffd355957f7025cfc"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30ac8812c1d2aab7131a79ba62933a2a76f582d5dbbc695192453dae67ad6310"},
{file = "scipy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f9ea80f2e65bdaa0b7627fb00cbeb2daf163caa015e59b7516395fe3bd1e066"},
{file = "scipy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:edaf02b82cd7639db00dbff629995ef185c8df4c3ffa71a5562a595765a06ce1"},
{file = "scipy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:2ff38e22128e6c03ff73b6bb0f85f897d2362f8c052e3b8ad00532198fbdae3f"},
{file = "scipy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1729560c906963fc8389f6aac023739ff3983e727b1a4d87696b7bf108316a79"},
{file = "scipy-1.14.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:4079b90df244709e675cdc8b93bfd8a395d59af40b72e339c2287c91860deb8e"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e0cf28db0f24a38b2a0ca33a85a54852586e43cf6fd876365c86e0657cfe7d73"},
{file = "scipy-1.14.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:0c2f95de3b04e26f5f3ad5bb05e74ba7f68b837133a4492414b3afd79dfe540e"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b99722ea48b7ea25e8e015e8341ae74624f72e5f21fc2abd45f3a93266de4c5d"},
{file = "scipy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5149e3fd2d686e42144a093b206aef01932a0059c2a33ddfa67f5f035bdfe13e"},
{file = "scipy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:e4f5a7c49323533f9103d4dacf4e4f07078f360743dec7f7596949149efeec06"},
{file = "scipy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:baff393942b550823bfce952bb62270ee17504d02a1801d7fd0719534dfb9c84"},
{file = "scipy-1.14.1.tar.gz", hash = "sha256:5a275584e726026a5699459aa72f828a610821006228e841b94275c4a7c08417"},
]
[package.dependencies]
numpy = ">=1.23.5,<2.3"
[package.extras]
dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"]
doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0,<=7.3.7)", "sphinx-design (>=0.4.0)"]
test = ["Cython", "array-api-strict (>=2.0)", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "six"
version = "1.17.0"
version = "1.16.0"
description = "Python 2 and 3 compatibility utilities"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
files = [
{file = "six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274"},
{file = "six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81"},
{file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
]
[[package]]
@@ -1527,4 +1295,4 @@ files = [
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "5b57bccd8dc65a9acecbe187939bae625ef6a259f4188c6587907245bcfa604f"
content-hash = "c91bc307ff4a5b3e8cd1976ebea211c9749fe09d563dd80861f70ce26826cda9"

View File

@@ -12,12 +12,10 @@ python = "^3.10"
numpy = "^2.1.3"
tqdm = "^4.67.1"
parse = "^1.20.2"
scipy = "^1.14.1"
sympy = "^1.13.3"
networkx = "^3.4.2"
pillow = "^11.0.0"
imageio = "^2.36.1"
pygifsicle = "^1.1.0"
opencv-python = "^4.10.0.84"
pandas = "^2.2.3"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.389"
@@ -27,13 +25,6 @@ ipykernel = "^6.29.5"
networkx-stubs = "^0.0.1"
types-networkx = "^3.4.2.20241115"
[tool.poetry.group.cplex.dependencies]
docplex = "^2.28.240"
cplex = "^22.1.1.2"
[tool.poetry.group.ortools.dependencies]
ortools = "^9.11.4210"
[tool.poetry.scripts]
holt59-aoc = "holt59.aoc.__main__:main"

View File

@@ -52,6 +52,7 @@ class Solver(BaseSolver):
m2 += molecule[i]
i += 1
# print(m2)
molecule = m2
yield count

View File

@@ -173,6 +173,7 @@ class Solver(BaseSolver):
)
)
# 1242 (not working)
yield sum(
c
for _, c in play(

View File

@@ -1,107 +0,0 @@
import inspect
from typing import Any, Callable, Final, Iterator, Mapping
from ..base import BaseSolver
class Instruction:
def __init__(self, fn: Callable[..., None]):
self._fn = fn
args = inspect.getfullargspec(fn)
self._argtypes = [args.annotations[arg] for arg in args.args[1:]]
def __call__(self, args: tuple[str, ...]):
self._fn(
*(argtype(arg) for arg, argtype in zip(args, self._argtypes, strict=True))
)
class Machine:
def __init__(
self, instructions: list[str], registers: dict[str, int] = {"a": 0, "b": 1}
):
self.instructions: Final = [
(part[0], tuple(arg.strip() for arg in " ".join(part[1:]).split(",")))
for instruction in instructions
if (part := instruction.split())
]
self._fns = {
name: Instruction(getattr(self, name))
for name in ("hlf", "tpl", "inc", "jmp", "jie", "jio")
}
self._registers = registers.copy()
self._ip = 0
@property
def registers(self) -> Mapping[str, int]:
return self._registers
@property
def ip(self) -> int:
return self._ip
def reset(self, registers: dict[str, int] = {"a": 0, "b": 0}):
self._registers = registers.copy()
self._ip = 0
def hlf(self, register: str):
self._registers[register] //= 2
self._ip += 1
def tpl(self, register: str):
self._registers[register] *= 3
self._ip += 1
def inc(self, register: str):
self._registers[register] += 1
self._ip += 1
def jmp(self, offset: int):
self._ip += offset
assert 0 <= self._ip < len(self.instructions)
def jie(self, register: str, offset: int):
if self._registers[register] % 2 == 0:
self._ip += offset
else:
self._ip += 1
def jio(self, register: str, offset: int):
if self._registers[register] == 1:
self._ip += offset
else:
self._ip += 1
def _exec(self) -> bool:
# execute next instruction
if self._ip >= len(self.instructions):
return False
ins, args = self.instructions[self._ip]
if ins not in self._fns:
return False
self._fns[ins](args)
return True
def run(self):
while self._exec():
...
return self.registers
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
machine = Machine(input.splitlines())
registers = machine.run()
yield registers["b"]
machine.reset({"a": 1, "b": 0})
registers = machine.run()
yield registers["b"]

View File

@@ -1,88 +0,0 @@
from typing import Any, Iterator, TypeAlias
from ..base import BaseSolver
TupleOfInts: TypeAlias = tuple[int, ...]
def check_n_groups(
target: int, groups: tuple[TupleOfInts, ...], numbers: TupleOfInts
) -> bool:
n_groups = len(groups)
groups_s = tuple(sum(group) for group in groups)
if all(target == group_s for group_s in groups_s):
return not numbers
if not numbers:
return False
head, *tail_l = numbers
tail, tail_s = tuple(tail_l), sum(tail_l)
return any(
groups_s[i] + head <= target
and sum(groups_s[j] for j in range(len(groups)) if i != j) + tail_s
>= (n_groups - 1) * target
and check_n_groups(
target, groups[:i] + ((groups[i] + (head,)),) + groups[i + 1 :], tail
)
for i in range(len(groups))
)
def enumerate_single_subset(
target: int, numbers: TupleOfInts
) -> Iterator[tuple[int, TupleOfInts, TupleOfInts]]:
"""
Enumerate subset of numbers whose sum equals target.
Subset are enumerated in increasing order of length, then product (quantum value).
Args:
target: Target for the sum of the subset.
numbers: Tuple of integers to find the subset from.
Returns:
A generator (quantum, subset, remaining) where subset if the subset of numbers
whose sum equals target, quantum the product of the subset, and remaining the
remaining numbers.
"""
groups: list[tuple[int, TupleOfInts, TupleOfInts]] = [(1, (), numbers)]
for _ in range(len(numbers)):
new_groups: list[tuple[int, TupleOfInts, TupleOfInts]] = []
for g_quantum, group, remaining in groups:
sg = sum(group)
for i in range(len(remaining)):
if group and remaining[i] <= group[-1]:
continue
uv = remaining[:i] + remaining[i + 1 :]
kv = g_quantum * remaining[i], group + (remaining[i],), uv
if sg + remaining[i] == target:
yield kv
elif sg + remaining[i] < target:
new_groups.append(kv)
groups = new_groups
def find_min_quantum(numbers: tuple[int, ...], n_groups: int):
return next(
g_quantum
for g_quantum, group_1v2, group_234v2 in enumerate_single_subset(
sum(numbers) // n_groups, numbers
)
if check_n_groups(sum(group_1v2), ((),) * (n_groups - 1), group_234v2)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
numbers = tuple(map(int, input.split()))
yield find_min_quantum(numbers, 3)
yield find_min_quantum(numbers, 4)

View File

@@ -1,16 +0,0 @@
import re
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools.math import pow_mod
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
m = re.search(r"row\s*([0-9]+)\s*,\s*column\s*([0-9]+)", input)
assert m is not None
row, col = int(m.group(1)), int(m.group(2))
n = (row * (row - 1)) // 2 + col * (col + 1) // 2 + (row - 1) * (col - 1)
yield (20151125 * pow_mod(252533, n - 1, 33554393)) % 33554393

View File

@@ -1,17 +1,14 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
values = [int(line) for line in lines]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1
answer_1 = sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:]))
print(f"answer 1 is {answer_1}")
values = [int(line) for line in lines]
# part 1
yield sum(v2 > v1 for v1, v2 in zip(values[:-1], values[1:]))
# part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
yield sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))
# part 2
runnings = [sum(values[i : i + 3]) for i in range(len(values) - 2)]
answer_2 = sum(v2 > v1 for v1, v2 in zip(runnings[:-1], runnings[1:]))
print(f"answer 2 is {answer_2}")

View File

@@ -1,47 +1,11 @@
from functools import reduce
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
BRACKETS = {"{": "}", "[": "]", "<": ">", "(": ")"}
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
CORRUPT_SCORES = {")": 3, "]": 57, "}": 1197, ">": 25137}
COMPLETE_SCORES = {")": 1, "]": 2, "}": 3, ">": 4}
def corrupted_or_incomplete(line: str) -> tuple[bool, str]:
opens: list[str] = []
for c in line:
if c in BRACKETS:
opens.append(c)
elif BRACKETS[opens[-1]] != c:
return True, c
else:
opens.pop()
return (False, "".join(opens))
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
answer_1: int = 0
incomplete_scores: list[int] = []
for line in lines:
c, r = corrupted_or_incomplete(line)
if c:
answer_1 += CORRUPT_SCORES[r]
else:
incomplete_scores.append(
reduce(
lambda s, c: s * 5 + COMPLETE_SCORES[BRACKETS[c]],
reversed(r),
0,
),
)
yield answer_1
yield sorted(incomplete_scores)[len(incomplete_scores) // 2]
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,66 +1,11 @@
import itertools as it
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
def do_step(values: list[list[int]]) -> tuple[list[list[int]], set[tuple[int, int]]]:
values = [[c + 1 for c in r] for r in values]
flashed: set[tuple[int, int]] = set()
while True:
found = False
for i_row, row in enumerate(values):
for i_col, col in enumerate(row):
if col <= 9 or (i_row, i_col) in flashed:
continue
found = True
flashed.add((i_row, i_col))
for dr, dc in it.product((-1, 0, 1), repeat=2):
if 0 <= i_row + dr < len(values) and 0 <= i_col + dc < len(
values[0]
):
values[i_row + dr][i_col + dc] += 1
if not found:
break
for i, j in flashed:
values[i][j] = 0
return values, flashed
class Solver(BaseSolver):
def print_grid(self, values: list[list[int]], flashed: set[tuple[int, int]]):
for i_row, row in enumerate(values):
s_row = ""
for i_col, col in enumerate(row):
if (i_row, i_col) in flashed:
s_row += f"\033[0;31m{col}\033[0;00m"
else:
s_row += str(col)
self.logger.info(s_row)
self.logger.info("")
def solve(self, input: str) -> Iterator[Any]:
values_0 = [[int(c) for c in r] for r in input.splitlines()]
values = values_0
total_flashed: int = 0
for _ in range(100):
values, flashed = do_step(values)
total_flashed += len(flashed)
yield total_flashed
n_cells = len(values) * len(values[0])
flashed: set[tuple[int, int]] = set()
values, step = values_0, 0
while len(flashed) != n_cells:
values, flashed = do_step(values)
step += 1
yield step
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,64 +1,11 @@
import string
from collections import defaultdict
from functools import cache
from typing import Any, Iterator, Mapping, Sequence
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
@cache
def is_small(node: str):
return all(c in string.ascii_lowercase for c in node)
def enumerate_paths(
neighbors: Mapping[str, Sequence[str]],
duplicate_smalls: int = 0,
start: str = "start",
current: tuple[str, ...] = ("start",),
) -> Iterator[tuple[str, ...]]:
if start == "end":
yield current
for neighbor in neighbors[start]:
if not is_small(neighbor):
yield from enumerate_paths(
neighbors, duplicate_smalls, neighbor, current + (neighbor,)
)
elif neighbor not in current:
yield from enumerate_paths(
neighbors, duplicate_smalls, neighbor, current + (neighbor,)
)
elif duplicate_smalls > 0:
yield from enumerate_paths(
neighbors, duplicate_smalls - 1, neighbor, current + (neighbor,)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
neighbors: dict[str, list[str]] = defaultdict(list)
for row in input.splitlines():
a, b = row.split("-")
if a != "end" and b != "start":
neighbors[a].append(b)
if b != "end" and a != "start":
neighbors[b].append(a)
if self.files:
graph = "graph {\n"
for node, neighbors_of in neighbors.items():
graph += (
" ".join(
f"{node} -- {neighbor};"
for neighbor in neighbors_of
if node <= neighbor or node == "start" or neighbor == "end"
)
+ "\n"
)
graph += "}\n"
self.files.create("graph.dot", graph.encode(), False)
yield len(list(enumerate_paths(neighbors)))
yield len(list(enumerate_paths(neighbors, 1)))
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,38 +1,41 @@
import sys
from math import prod
from typing import Any, Iterator, Literal, TypeAlias, cast
from typing import Literal, TypeAlias, cast
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
Command: TypeAlias = Literal["forward", "up", "down"]
commands: list[tuple[Command, int]] = [
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
commands: list[tuple[Command, int]] = [
(cast(Command, (p := line.split())[0]), int(p[1])) for line in lines
]
def depth_and_position(use_aim: bool):
aim, pos, depth = 0, 0, 0
for command, value in commands:
d_depth = 0
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
def depth_and_position(use_aim: bool):
aim, pos, depth = 0, 0, 0
for command, value in commands:
d_depth = 0
match command:
case "forward":
pos += value
depth += value * aim
case "up":
d_depth = -value
case "down":
d_depth = value
if use_aim:
aim += d_depth
else:
depth += value
if use_aim:
aim += d_depth
else:
depth += value
return depth, pos
return depth, pos
yield prod(depth_and_position(False))
yield prod(depth_and_position(True))
# part 1
answer_1 = prod(depth_and_position(False))
print(f"answer 1 is {answer_1}")
# part 2
answer_2 = prod(depth_and_position(True))
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,11 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# part 1
answer_1 = ...
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]: ...
# part 2
answer_2 = ...
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import sys
from collections import Counter
from typing import Any, Iterator, Literal
from ..base import BaseSolver
from typing import Literal
def generator_rating(
@@ -21,23 +20,20 @@ def generator_rating(
return values[0]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
lines = sys.stdin.read().splitlines()
# part 1
most_and_least_common = [
tuple(
Counter(line[col] for line in lines).most_common(2)[m][0]
for m in range(2)
)
for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
yield gamma_rate * epsilon_rate
# part 2
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2)
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2)
yield oxygen_generator_rating * co2_scrubber_rating
# part 1
most_and_least_common = [
tuple(Counter(line[col] for line in lines).most_common(2)[m][0] for m in range(2))
for col in range(len(lines[0]))
]
gamma_rate = int("".join(most for most, _ in most_and_least_common), base=2)
epsilon_rate = int("".join(least for _, least in most_and_least_common), base=2)
print(f"answer 1 is {gamma_rate * epsilon_rate}")
# part 2
oxygen_generator_rating = int(generator_rating(lines, True, "1"), base=2)
co2_scrubber_rating = int(generator_rating(lines, False, "0"), base=2)
answer_2 = oxygen_generator_rating * co2_scrubber_rating
print(f"answer 2 is {answer_2}")

View File

@@ -1,52 +1,45 @@
from typing import Any, Iterator
import sys
import numpy as np
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
numbers = [int(c) for c in lines[0].split(",")]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
boards = np.asarray(
[
[[int(c) for c in line.split()] for line in lines[start : start + 5]]
for start in range(2, len(lines), 6)
]
)
numbers = [int(c) for c in lines[0].split(",")]
# (round, score) for each board (-1 when not found)
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))]
marked = np.zeros_like(boards, dtype=bool)
boards = np.asarray(
[
[[int(c) for c in line.split()] for line in lines[start : start + 5]]
for start in range(2, len(lines), 6)
]
)
for round, number in enumerate(numbers):
# mark boards
marked[boards == number] = True
# (round, score) for each board (-1 when not found)
winning_rounds: list[tuple[int, int]] = [(-1, -1) for _ in range(len(boards))]
marked = np.zeros_like(boards, dtype=bool)
# check each board for winning
for index in range(len(boards)):
if winning_rounds[index][0] > 0:
continue
for round, number in enumerate(numbers):
# mark boards
marked[boards == number] = True
if np.any(np.all(marked[index], axis=0) | np.all(marked[index], axis=1)):
winning_rounds[index] = (
round,
number * int(np.sum(boards[index][~marked[index]])),
)
# check each board for winning
for index in range(len(boards)):
if winning_rounds[index][0] > 0:
continue
# all boards are winning - break
if np.all(marked.all(axis=1) | marked.all(axis=2)):
break
if np.any(
np.all(marked[index], axis=0) | np.all(marked[index], axis=1)
):
winning_rounds[index] = (
round,
number * int(np.sum(boards[index][~marked[index]])),
)
# part 1
(_, score) = min(winning_rounds, key=lambda w: w[0])
print(f"answer 1 is {score}")
# all boards are winning - break
if np.all(marked.all(axis=1) | marked.all(axis=2)):
break
# part 1
(_, score) = min(winning_rounds, key=lambda w: w[0])
yield score
# part 2
(_, score) = max(winning_rounds, key=lambda w: w[0])
yield score
# part 2
(_, score) = max(winning_rounds, key=lambda w: w[0])
print(f"answer 2 is {score}")

View File

@@ -1,48 +1,48 @@
from typing import Any, Iterator
import sys
import numpy as np
from ..base import BaseSolver
lines: list[str] = sys.stdin.read().splitlines()
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
(
(
int(line.split(" -> ")[0].split(",")[0]),
int(line.split(" -> ")[0].split(",")[1]),
),
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
np_sections = np.array(sections).reshape(-1, 4)
sections: list[tuple[tuple[int, int], tuple[int, int]]] = [
(
(
int(line.split(" -> ")[0].split(",")[0]),
int(line.split(" -> ")[0].split(",")[1]),
),
(
int(line.split(" -> ")[1].split(",")[0]),
int(line.split(" -> ")[1].split(",")[1]),
),
)
for line in lines
]
x_min, x_max, y_min, y_max = (
min(np_sections[:, 0].min(), np_sections[:, 2].min()),
max(np_sections[:, 0].max(), np_sections[:, 2].max()),
min(np_sections[:, 1].min(), np_sections[:, 3].min()),
max(np_sections[:, 1].max(), np_sections[:, 3].max()),
)
np_sections = np.array(sections).reshape(-1, 4)
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
counts_2 = counts_1.copy()
x_max, y_max = (
max(np_sections[:, 0].max(), np_sections[:, 2].max()),
max(np_sections[:, 1].max(), np_sections[:, 3].max()),
)
for (x1, y1), (x2, y2) in sections:
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
counts_1 = np.zeros((y_max + 1, x_max + 1), dtype=int)
counts_2 = counts_1.copy()
if x1 == x2 or y1 == y2:
counts_1[list(y_rng), list(x_rng)] += 1
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
for (x1, y1), (x2, y2) in sections:
x_rng = range(x1, x2 + 1, 1) if x2 >= x1 else range(x1, x2 - 1, -1)
y_rng = range(y1, y2 + 1, 1) if y2 >= y1 else range(y1, y2 - 1, -1)
answer_1 = (counts_1 >= 2).sum()
print(f"answer 1 is {answer_1}")
if x1 == x2 or y1 == y2:
counts_1[list(y_rng), list(x_rng)] += 1
counts_2[list(y_rng), list(x_rng)] += 1
elif abs(x2 - x1) == abs(y2 - y1):
for i, j in zip(y_rng, x_rng):
counts_2[i, j] += 1
yield (counts_1 >= 2).sum()
yield (counts_2 >= 2).sum()
answer_2 = (counts_2 >= 2).sum()
print(f"answer 2 is {answer_2}")

View File

@@ -1,21 +1,21 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
values = [int(c) for c in sys.stdin.read().strip().split(",")]
days = 256
lanterns = {day: 0 for day in range(days)}
for value in values:
for day in range(value, days, 7):
lanterns[day] += 1
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
values = [int(c) for c in input.split(",")]
for day in range(days):
for day2 in range(day + 9, days, 7):
lanterns[day2] += lanterns[day]
days = 256
lanterns = {day: 0 for day in range(days)}
for value in values:
for day in range(value, days, 7):
lanterns[day] += 1
# part 1
answer_1 = sum(v for k, v in lanterns.items() if k < 80) + len(values)
print(f"answer 1 is {answer_1}")
for day in range(days):
for day2 in range(day + 9, days, 7):
lanterns[day2] += lanterns[day]
yield sum(v for k, v in lanterns.items() if k < 80) + len(values)
yield sum(lanterns.values()) + len(values)
# part 2
answer_2 = sum(lanterns.values()) + len(values)
print(f"answer 2 is {answer_2}")

View File

@@ -1,22 +1,19 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
positions = [int(c) for c in sys.stdin.read().strip().split(",")]
min_position, max_position = min(positions), max(positions)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
positions = [int(c) for c in input.split(",")]
# part 1
answer_1 = min(
sum(abs(p - position) for p in positions)
for position in range(min_position, max_position + 1)
)
print(f"answer 1 is {answer_1}")
min_position, max_position = min(positions), max(positions)
# part 1
yield min(
sum(abs(p - position) for p in positions)
for position in range(min_position, max_position + 1)
)
# part 2
yield min(
sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
for position in range(min_position, max_position + 1)
)
# part 2
answer_2 = min(
sum(abs(p - position) * (abs(p - position) + 1) // 2 for p in positions)
for position in range(min_position, max_position + 1)
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,8 @@
import itertools
from typing import Any, Iterator
import os
import sys
from ..base import BaseSolver
VERBOSE = os.getenv("AOC_VERBOSE") == "True"
digits = {
"abcefg": 0,
@@ -16,74 +17,71 @@ digits = {
"abcdfg": 9,
}
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
# part 1
lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)}
answer_1 = sum(
len(p) in lengths for line in lines for p in line.split("|")[1].strip().split()
)
print(f"answer 1 is {answer_1}")
# part 1
lengths = {len(k) for k, v in digits.items() if v in (1, 4, 7, 8)}
yield sum(
len(p) in lengths
for line in lines
for p in line.split("|")[1].strip().split()
)
# part 2
values: list[int] = []
# part 2
values: list[int] = []
for line in lines:
parts = line.split("|")
broken_digits = sorted(parts[0].strip().split(), key=len)
for line in lines:
parts = line.split("|")
broken_digits = sorted(parts[0].strip().split(), key=len)
per_length = {
k: list(v)
for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
per_length = {
k: list(v)
for k, v in itertools.groupby(sorted(broken_digits, key=len), key=len)
}
# a can be found immediately
a = next(u for u in per_length[3][0] if u not in per_length[2][0])
# a can be found immediately
a = next(u for u in per_length[3][0] if u not in per_length[2][0])
# c and f have only two possible values corresponding to the single entry of
# length 2
cf = list(per_length[2][0])
# c and f have only two possible values corresponding to the single entry of
# length 2
cf = list(per_length[2][0])
# the only digit of length 4 contains bcdf, so we can deduce bd by removing cf
bd = [u for u in per_length[4][0] if u not in cf]
# the only digit of length 4 contains bcdf, so we can deduce bd by removing cf
bd = [u for u in per_length[4][0] if u not in cf]
# the 3 digits of length 5 have a, d and g in common
adg = [u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])]
# the 3 digits of length 5 have a, d and g in common
adg = [
u for u in per_length[5][0] if all(u in pe for pe in per_length[5][1:])
]
# we can remove a
dg = [u for u in adg if u != a]
# we can remove a
dg = [u for u in adg if u != a]
# we can deduce d and g
d = next(u for u in dg if u in bd)
g = next(u for u in dg if u != d)
# we can deduce d and g
d = next(u for u in dg if u in bd)
g = next(u for u in dg if u != d)
# then b
b = next(u for u in bd if u != d)
# then b
b = next(u for u in bd if u != d)
# f is in the three 6-length digits, while c is only in 2
f = next(u for u in cf if all(u in p for p in per_length[6]))
# f is in the three 6-length digits, while c is only in 2
f = next(u for u in cf if all(u in p for p in per_length[6]))
# c is not f
c = next(u for u in cf if u != f)
# c is not f
c = next(u for u in cf if u != f)
# e is the last one
e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
# e is the last one
e = next(u for u in "abcdefg" if u not in {a, b, c, d, f, g})
mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg"))
mapping = dict(zip((a, b, c, d, e, f, g), "abcdefg"))
value = 0
for number in parts[1].strip().split():
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
value = 0
for number in parts[1].strip().split():
digit = "".join(sorted(mapping[c] for c in number))
value = 10 * value + digits[digit]
if VERBOSE:
print(value)
self.logger.info(f"value for '{line}' is {value}")
values.append(value)
values.append(value)
yield sum(values)
answer_2 = sum(values)
print(f"answer 2 is {answer_2}")

View File

@@ -1,18 +1,18 @@
import sys
from math import prod
from typing import Any, Iterator
from ..base import BaseSolver
values = [[int(c) for c in row] for row in sys.stdin.read().splitlines()]
n_rows, n_cols = len(values), len(values[0])
def neighbors(point: tuple[int, int], n_rows: int, n_cols: int):
def neighbors(point: tuple[int, int]):
i, j = point
for di, dj in ((-1, 0), (+1, 0), (0, -1), (0, +1)):
if 0 <= i + di < n_rows and 0 <= j + dj < n_cols:
yield (i + di, j + dj)
def basin(values: list[list[int]], start: tuple[int, int]) -> set[tuple[int, int]]:
n_rows, n_cols = len(values), len(values[0])
def basin(start: tuple[int, int]) -> set[tuple[int, int]]:
visited: set[tuple[int, int]] = set()
queue = [start]
@@ -23,25 +23,22 @@ def basin(values: list[list[int]], start: tuple[int, int]) -> set[tuple[int, int
continue
visited.add((i, j))
queue.extend(neighbors((i, j), n_rows, n_cols))
queue.extend(neighbors((i, j)))
return visited
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
values = [[int(c) for c in row] for row in input.splitlines()]
n_rows, n_cols = len(values), len(values[0])
low_points = [
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if all(values[ti][tj] > values[i][j] for ti, tj in neighbors((i, j)))
]
low_points = [
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if all(
values[ti][tj] > values[i][j]
for ti, tj in neighbors((i, j), n_rows, n_cols)
)
]
# part 1
answer_1 = sum(values[i][j] + 1 for i, j in low_points)
print(f"answer 1 is {answer_1}")
yield sum(values[i][j] + 1 for i, j in low_points)
yield prod(sorted(len(basin(values, point)) for point in low_points)[-3:])
# part 2
answer_2 = prod(sorted(len(basin(point)) for point in low_points)[-3:])
print(f"answer 2 is {answer_2}")

View File

@@ -1,12 +1,7 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
blocks = sys.stdin.read().split("\n\n")
values = sorted(sum(map(int, block.split())) for block in blocks)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blocks = input.split("\n\n")
values = sorted(sum(map(int, block.split())) for block in blocks)
yield values[-1]
yield sum(values[-3:])
print(f"answer 1 is {values[-1]}")
print(f"answer 2 is {sum(values[-3:])}")

View File

@@ -1,43 +1,38 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
cycle = 1
x = 1
values = {cycle: x}
for line in lines:
cycle += 1
if line == "noop":
pass
else:
r = int(line.split()[1])
values[cycle] = x
cycle += 1
x += r
values[cycle] = x
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
print(f"answer 1 is {answer_1}")
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
for i in range(6):
for j in range(40):
v = values[1 + i * 40 + j]
cycle, x = 1, 1
values = {cycle: x}
if j >= v - 1 and j <= v + 1:
print("#", end="")
else:
print(".", end="")
for line in lines:
cycle += 1
if line == "noop":
pass
else:
r = int(line.split()[1])
values[cycle] = x
cycle += 1
x += r
values[cycle] = x
answer_1 = sum(c * values[c] for c in range(20, max(values.keys()) + 1, 40))
yield answer_1
yield (
"\n"
+ "\n".join(
"".join(
"#"
if j >= (v := values[1 + i * 40 + j]) - 1 and j <= v + 1
else "."
for j in range(40)
)
for i in range(6)
)
+ "\n"
)
print()

View File

@@ -1,8 +1,7 @@
import copy
import sys
from functools import reduce
from typing import Any, Callable, Final, Iterator, Mapping, Sequence
from ..base import BaseSolver
from typing import Callable, Final, Mapping, Sequence
class Monkey:
@@ -120,28 +119,24 @@ def monkey_business(inspects: dict[Monkey, int]) -> int:
return sorted_levels[-2] * sorted_levels[-1]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
monkeys = [parse_monkey(block.splitlines()) for block in input.split("\n\n")]
monkeys = [parse_monkey(block.splitlines()) for block in sys.stdin.read().split("\n\n")]
# case 1: we simply divide the worry by 3 after applying the monkey worry operation
yield monkey_business(
run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3)
)
# case 1: we simply divide the worry by 3 after applying the monkey worry operation
answer_1 = monkey_business(
run(copy.deepcopy(monkeys), 20, me_worry_fn=lambda w: w // 3)
)
print(f"answer 1 is {answer_1}")
# case 2: to keep reasonable level values, we can use a modulo operation, we need to
# use the product of all "divisible by" test so that the test remains valid
#
# (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value
#
# (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here
# we use the product of all test value
#
total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1)
yield monkey_business(
run(
copy.deepcopy(monkeys),
10_000,
me_worry_fn=lambda w: w % total_test_value,
)
)
# case 2: to keep reasonable level values, we can use a modulo operation, we need to
# use the product of all "divisible by" test so that the test remains valid
#
# (a + b) % c == ((a % c) + (b % c)) % c --- this would work for a single test value
#
# (a + b) % c == ((a % d) + (b % d)) % c --- if d is a multiple of c, which is why here
# we use the product of all test value
#
total_test_value = reduce(lambda w, m: w * m.test_value, monkeys, 1)
answer_2 = monkey_business(
run(copy.deepcopy(monkeys), 10_000, me_worry_fn=lambda w: w % total_test_value)
)
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import heapq
from typing import Any, Callable, Iterator, TypeVar
from ..base import BaseSolver
import sys
from typing import Callable, Iterator, TypeVar
Node = TypeVar("Node")
@@ -69,6 +68,30 @@ def make_path(parents: dict[Node, Node], start: Node, end: Node) -> list[Node] |
return list(reversed(path))
def print_path(path: list[tuple[int, int]], n_rows: int, n_cols: int) -> None:
end = path[-1]
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
graph[end[0]][end[1]] = "E"
for i in range(0, len(path) - 1):
cr, cc = path[i]
nr, nc = path[i + 1]
if cr == nr and nc == cc - 1:
graph[cr][cc] = "<"
elif cr == nr and nc == cc + 1:
graph[cr][cc] = ">"
elif cr == nr - 1 and nc == cc:
graph[cr][cc] = "v"
elif cr == nr + 1 and nc == cc:
graph[cr][cc] = "^"
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
print("\n".join("".join(row) for row in graph))
def neighbors(
grid: list[list[int]], node: tuple[int, int], up: bool
) -> Iterator[tuple[int, int]]:
@@ -95,82 +118,46 @@ def neighbors(
# === main code ===
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def print_path(
self, name: str, path: list[tuple[int, int]], n_rows: int, n_cols: int
) -> None:
if not self.files:
return
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
end = path[-1]
start: tuple[int, int] | None = None
end: tuple[int, int] | None = None
graph = [["." for _c in range(n_cols)] for _r in range(n_rows)]
graph[end[0]][end[1]] = "E"
# for part 2
start_s: list[tuple[int, int]] = []
for i in range(0, len(path) - 1):
cr, cc = path[i]
nr, nc = path[i + 1]
for i_row, row in enumerate(grid):
for i_col, col in enumerate(row):
if chr(col + ord("a")) == "S":
start = (i_row, i_col)
start_s.append(start)
elif chr(col + ord("a")) == "E":
end = (i_row, i_col)
elif col == 0:
start_s.append((i_row, i_col))
if cr == nr and nc == cc - 1:
graph[cr][cc] = "<"
elif cr == nr and nc == cc + 1:
graph[cr][cc] = ">"
elif cr == nr - 1 and nc == cc:
graph[cr][cc] = "v"
elif cr == nr + 1 and nc == cc:
graph[cr][cc] = "^"
else:
assert False, "{} -> {} infeasible".format(path[i], path[i + 1])
assert start is not None
assert end is not None
self.files.create(
f"graph_{name}.txt",
"\n".join("".join(row) for row in graph).encode(),
text=True,
)
# fix values
grid[start[0]][start[1]] = 0
grid[end[0]][end[1]] = ord("z") - ord("a")
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
grid = [[ord(cell) - ord("a") for cell in line] for line in lines]
lengths_1, parents_1 = dijkstra(
start=start, neighbors=lambda n: neighbors(grid, n, True), cost=lambda lhs, rhs: 1
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
start: tuple[int, int] | None = None
end: tuple[int, int] | None = None
print_path(path_1, n_rows=len(grid), n_cols=len(grid[0]))
# for part 2
start_s: list[tuple[int, int]] = []
print(f"answer 1 is {lengths_1[end] - 1}")
for i_row, row in enumerate(grid):
for i_col, col in enumerate(row):
if chr(col + ord("a")) == "S":
start = (i_row, i_col)
start_s.append(start)
elif chr(col + ord("a")) == "E":
end = (i_row, i_col)
elif col == 0:
start_s.append((i_row, i_col))
assert start is not None
assert end is not None
# fix values
grid[start[0]][start[1]] = 0
grid[end[0]][end[1]] = ord("z") - ord("a")
lengths_1, parents_1 = dijkstra(
start=start,
neighbors=lambda n: neighbors(grid, n, True),
cost=lambda lhs, rhs: 1,
)
path_1 = make_path(parents_1, start, end)
assert path_1 is not None
self.print_path("answer1", path_1, n_rows=len(grid), n_cols=len(grid[0]))
yield lengths_1[end] - 1
lengths_2, _ = dijkstra(
start=end,
neighbors=lambda n: neighbors(grid, n, False),
cost=lambda lhs, rhs: 1,
)
yield min(lengths_2.get(start, float("inf")) for start in start_s)
lengths_2, parents_2 = dijkstra(
start=end, neighbors=lambda n: neighbors(grid, n, False), cost=lambda lhs, rhs: 1
)
answer_2 = min(lengths_2.get(start, float("inf")) for start in start_s)
print(f"answer 2 is {answer_2}")

View File

@@ -1,8 +1,11 @@
import json
import sys
from functools import cmp_to_key
from typing import Any, Iterator, TypeAlias, cast
from typing import TypeAlias, cast
from ..base import BaseSolver
blocks = sys.stdin.read().strip().split("\n\n")
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
Packet: TypeAlias = list[int | list["Packet"]]
@@ -25,18 +28,14 @@ def compare(lhs: Packet, rhs: Packet) -> int:
return len(rhs) - len(lhs)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blocks = input.split("\n\n")
pairs = [tuple(json.loads(p) for p in block.split("\n")) for block in blocks]
answer_1 = sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0)
print(f"answer_1 is {answer_1}")
yield sum(i + 1 for i, (lhs, rhs) in enumerate(pairs) if compare(lhs, rhs) > 0)
dividers = [[[2]], [[6]]]
dividers = [[[2]], [[6]]]
packets = [packet for packets in pairs for packet in packets]
packets.extend(dividers)
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
packets = [packet for packets in pairs for packet in packets]
packets.extend(dividers)
packets = list(reversed(sorted(packets, key=cmp_to_key(compare))))
d_index = [packets.index(d) + 1 for d in dividers]
yield d_index[0] * d_index[1]
d_index = [packets.index(d) + 1 for d in dividers]
print(f"answer 2 is {d_index[0] * d_index[1]}")

View File

@@ -1,7 +1,6 @@
import sys
from enum import Enum, auto
from typing import Any, Callable, Iterator, cast
from ..base import BaseSolver
from typing import Callable, cast
class Cell(Enum):
@@ -13,6 +12,26 @@ class Cell(Enum):
return {Cell.AIR: ".", Cell.ROCK: "#", Cell.SAND: "O"}[self]
def print_blocks(blocks: dict[tuple[int, int], Cell]):
"""
Print the given set of blocks on a grid.
Args:
blocks: Set of blocks to print.
"""
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
for y in range(y_min, y_max + 1):
print(
"".join(str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1))
)
def flow(
blocks: dict[tuple[int, int], Cell],
stop_fn: Callable[[int, int], bool],
@@ -65,82 +84,57 @@ def flow(
# === inputs ===
lines = sys.stdin.read().splitlines()
class Solver(BaseSolver):
def print_blocks(self, name: str, blocks: dict[tuple[int, int], Cell]):
"""
Print the given set of blocks on a grid.
paths: list[list[tuple[int, int]]] = []
for line in lines:
parts = line.split(" -> ")
paths.append(
[
cast(tuple[int, int], tuple(int(c.strip()) for c in part.split(",")))
for part in parts
]
)
Args:
blocks: Set of blocks to print.
"""
if not self.files:
return
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
blocks: dict[tuple[int, int], Cell] = {}
for path in paths:
for start, end in zip(path[:-1], path[1:]):
x_start = min(start[0], end[0])
x_end = max(start[0], end[0]) + 1
y_start = min(start[1], end[1])
y_end = max(start[1], end[1]) + 1
self.files.create(
f"blocks_{name}.txt",
"\n".join(
"".join(
str(blocks.get((x, y), Cell.AIR)) for x in range(x_min, x_max + 1)
)
for y in range(y_min, y_max + 1)
).encode(),
True,
)
for x in range(x_start, x_end):
for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
print_blocks(blocks)
print()
paths: list[list[tuple[int, int]]] = []
for line in lines:
parts = line.split(" -> ")
paths.append(
[
cast(
tuple[int, int], tuple(int(c.strip()) for c in part.split(","))
)
for part in parts
]
)
x_min, y_min, x_max, y_max = (
min(x for x, _ in blocks),
0,
max(x for x, _ in blocks),
max(y for _, y in blocks),
)
blocks: dict[tuple[int, int], Cell] = {}
for path in paths:
for start, end in zip(path[:-1], path[1:]):
x_start = min(start[0], end[0])
x_end = max(start[0], end[0]) + 1
y_start = min(start[1], end[1])
y_end = max(start[1], end[1]) + 1
# === part 1 ===
for x in range(x_start, x_end):
for y in range(y_start, y_end):
blocks[x, y] = Cell.ROCK
blocks_1 = flow(
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
)
print_blocks(blocks_1)
print(f"answer 1 is {sum(v == Cell.SAND for v in blocks_1.values())}")
print()
self.print_blocks("start", blocks)
# === part 2 ===
y_max = max(y for _, y in blocks)
# === part 1 ===
blocks_1 = flow(
blocks.copy(), stop_fn=lambda x, y: y > y_max, fill_fn=lambda x, y: Cell.AIR
)
self.print_blocks("part1", blocks_1)
yield sum(v == Cell.SAND for v in blocks_1.values())
# === part 2 ===
blocks_2 = flow(
blocks.copy(),
stop_fn=lambda x, y: x == 500 and y == 0,
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
)
blocks_2[500, 0] = Cell.SAND
self.print_blocks("part2", blocks_2)
yield sum(v == Cell.SAND for v in blocks_2.values())
blocks_2 = flow(
blocks.copy(),
stop_fn=lambda x, y: x == 500 and y == 0,
fill_fn=lambda x, y: Cell.AIR if y < y_max + 2 else Cell.ROCK,
)
blocks_2[500, 0] = Cell.SAND
print_blocks(blocks_2)
print(f"answer 2 is {sum(v == Cell.SAND for v in blocks_2.values())}")

View File

@@ -1,4 +1,4 @@
import itertools as it
import sys
from typing import Any, Iterator
import numpy as np
@@ -21,7 +21,9 @@ class Solver(BaseSolver):
no_beacons_row_l.append(sx + np.arange(0, d - abs(sy - row) + 1)) # type: ignore
beacons_at_row = set(bx for (bx, by) in sensor_to_beacon.values() if by == row)
no_beacons_row = set(it.chain(*no_beacons_row_l)).difference(beacons_at_row) # type: ignore
no_beacons_row = set(np.concatenate(no_beacons_row_l)).difference(
beacons_at_row
) # type: ignore
return len(no_beacons_row)
@@ -60,9 +62,8 @@ class Solver(BaseSolver):
for (sx, sy), (bx, by) in sensor_to_beacon.items():
d = abs(sx - bx) + abs(sy - by)
m.add_constraint(
m.abs(x - sx) + m.abs(y - sy) >= d + 1, # type: ignore
ctname=f"ct_{sx}_{sy}",
)
m.abs(x - sx) + m.abs(y - sy) >= d + 1, ctname=f"ct_{sx}_{sy}"
) # type: ignore
m.set_objective("min", x + y)
@@ -91,5 +92,5 @@ class Solver(BaseSolver):
# x, y, a2 = part2_cplex(sensor_to_beacon, xy_max)
x, y, a2 = self.part2_intervals(sensor_to_beacon, xy_max)
self.logger.info(f"answer 2 is {a2} (x={x}, y={y})")
self.logger.info("answer 2 is {at} (x={x}, y={y})")
yield a2

View File

@@ -3,10 +3,11 @@ from __future__ import annotations
import heapq
import itertools
import re
import sys
from collections import defaultdict
from typing import Any, FrozenSet, Iterator, NamedTuple
from typing import FrozenSet, NamedTuple
from ..base import BaseSolver
from tqdm import tqdm
class Pipe(NamedTuple):
@@ -35,8 +36,8 @@ def breadth_first_search(pipes: dict[str, Pipe], pipe: Pipe) -> dict[Pipe, int]:
Runs a BFS from the given pipe and return the shortest distance (in term of hops)
to all other pipes.
"""
queue = [(0, pipe)]
visited: set[Pipe] = set()
queue = [(0, pipe_1)]
visited = set()
distances: dict[Pipe, int] = {}
while len(distances) < len(pipes):
@@ -60,100 +61,98 @@ def update_with_better(
node_at_times[flowing] = max(node_at_times[flowing], flow)
def part_1(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0))
)
node_at_times[0] = {start_pipe: {frozenset(): 0}}
for time in range(max_time):
for c_pipe, nodes in node_at_times[time].items():
for flowing, flow in nodes.items():
for target in relevant_pipes:
distance = distances[c_pipe, target] + 1
if time + distance >= max_time or target in flowing:
continue
update_with_better(
node_at_times[time + distance][target],
flow + sum(pipe.flow for pipe in flowing) * distance,
flowing | {target},
)
update_with_better(
node_at_times[max_time][c_pipe],
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
flowing,
)
return max(
flow
for nodes_of_pipe in node_at_times[max_time].values()
for flow in nodes_of_pipe.values()
)
def part_2(
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
return part_1(start_pipe, max_time, distances, pipes_for_me) + part_1(
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
)
combs = [
frozenset(relevant_pipes_1)
for r in range(2, len(relevant_pipes) // 2 + 1)
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
]
return max(compute(comb) for comb in tqdm(combs))
# === MAIN ===
class Solver(BaseSolver):
def part_1(
self,
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
node_at_times: dict[int, dict[Pipe, dict[FrozenSet[Pipe], int]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(lambda: 0))
)
node_at_times[0] = {start_pipe: {frozenset(): 0}}
lines = sys.stdin.read().splitlines()
for time in range(max_time):
for c_pipe, nodes in node_at_times[time].items():
for flowing, flow in nodes.items():
for target in relevant_pipes:
distance = distances[c_pipe, target] + 1
if time + distance >= max_time or target in flowing:
continue
update_with_better(
node_at_times[time + distance][target],
flow + sum(pipe.flow for pipe in flowing) * distance,
flowing | {target},
)
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
update_with_better(
node_at_times[max_time][c_pipe],
flow + sum(pipe.flow for pipe in flowing) * (max_time - time),
flowing,
)
g = r.groups()
return max(
flow
for nodes_of_pipe in node_at_times[max_time].values()
for flow in nodes_of_pipe.values()
)
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
def part_2(
self,
start_pipe: Pipe,
max_time: int,
distances: dict[tuple[Pipe, Pipe], int],
relevant_pipes: FrozenSet[Pipe],
):
def compute(pipes_for_me: FrozenSet[Pipe]) -> int:
return self.part_1(
start_pipe, max_time, distances, pipes_for_me
) + self.part_1(
start_pipe, max_time, distances, relevant_pipes - pipes_for_me
)
# compute distances from one valve to any other
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
combs = [
frozenset(relevant_pipes_1)
for r in range(2, len(relevant_pipes) // 2 + 1)
for relevant_pipes_1 in itertools.combinations(relevant_pipes, r)
]
# valves with flow
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
return max(compute(comb) for comb in self.progress.wrap(combs))
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
# 1651, 1653
print(part_1(pipes["AA"], 30, distances, relevant_pipes))
pipes: dict[str, Pipe] = {}
for line in lines:
r = re.match(
R"Valve ([A-Z]+) has flow rate=([0-9]+); tunnels? leads? to valves? (.+)",
line,
)
assert r
g = r.groups()
pipes[g[0]] = Pipe(g[0], int(g[1]), g[2].split(", "))
# compute distances from one valve to any other
distances: dict[tuple[Pipe, Pipe], int] = {}
for pipe_1 in pipes.values():
distances.update(
{
(pipe_1, pipe_2): distance
for pipe_2, distance in breadth_first_search(pipes, pipe_1).items()
}
)
# valves with flow
relevant_pipes = frozenset(pipe for pipe in pipes.values() if pipe.flow > 0)
# 1651, 1653
yield self.part_1(pipes["AA"], 30, distances, relevant_pipes)
# 1707, 2223
yield self.part_2(pipes["AA"], 26, distances, relevant_pipes)
# 1707, 2223
print(part_2(pipes["AA"], 26, distances, relevant_pipes))

View File

@@ -1,16 +1,23 @@
from typing import Any, Iterator, Sequence, TypeAlias, TypeVar
import sys
from typing import Sequence, TypeVar
import numpy as np
from numpy.typing import NDArray
from ..base import BaseSolver
T = TypeVar("T")
Tower: TypeAlias = NDArray[np.bool]
def print_tower(tower: np.ndarray, out: str = "#"):
print("-" * (tower.shape[1] + 2))
non_empty = False
for row in reversed(range(1, tower.shape[0])):
if not non_empty and not tower[row, :].any():
continue
non_empty = True
print("|" + "".join(out if c else "." for c in tower[row, :]) + "|")
print("+" + "-" * tower.shape[1] + "+")
def tower_height(tower: Tower) -> int:
def tower_height(tower: np.ndarray) -> int:
return int(tower.shape[0] - tower[::-1, :].argmax(axis=0).min() - 1)
@@ -38,8 +45,8 @@ def build_tower(
n_rocks: int,
jets: str,
early_stop: bool = False,
init: Tower = np.ones(WIDTH, dtype=bool),
) -> tuple[Tower, int, int, dict[int, int]]:
init: np.ndarray = np.ones(WIDTH, dtype=bool),
) -> tuple[np.ndarray, int, int, dict[int, int]]:
tower = EMPTY_BLOCKS.copy()
tower[0, :] = init
@@ -88,24 +95,26 @@ def build_tower(
return tower, rock_count, done_at.get((i_rock, i_jet), -1), heights
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
tower, *_ = build_tower(2022, input)
yield tower_height(tower)
line = sys.stdin.read().strip()
TOTAL_ROCKS = 1_000_000_000_000
_tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, input, True)
assert prev_1 > 0
tower, *_ = build_tower(2022, line)
answer_1 = tower_height(tower)
print(f"answer 1 is {answer_1}")
# 2767 1513
remaining_rocks = TOTAL_ROCKS - n_rocks_1
n_repeat_rocks = n_rocks_1 - prev_1
n_repeat_towers = remaining_rocks // n_repeat_rocks
TOTAL_ROCKS = 1_000_000_000_000
tower_1, n_rocks_1, prev_1, heights_1 = build_tower(TOTAL_ROCKS, line, True)
assert prev_1 > 0
base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
# 2767 1513
remaining_rocks = TOTAL_ROCKS - n_rocks_1
n_repeat_rocks = n_rocks_1 - prev_1
n_repeat_towers = remaining_rocks // n_repeat_rocks
yield base_height + (n_repeat_towers + 1) * repeat_height + remaining_height
base_height = heights_1[prev_1]
repeat_height = heights_1[prev_1 + n_repeat_rocks - 1] - heights_1[prev_1]
remaining_height = (
heights_1[prev_1 + remaining_rocks % n_repeat_rocks] - heights_1[prev_1]
)
answer_2 = base_height + (n_repeat_towers + 1) * repeat_height + remaining_height
print(f"answer 2 is {answer_2}")

View File

@@ -1,58 +1,50 @@
from typing import Any, Iterator
import sys
import numpy as np
from ..base import BaseSolver
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in sys.stdin.read().splitlines()
]
)
xyz = xyz - xyz.min(axis=0) + 1
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
xyz = np.asarray(
[
tuple(int(x) for x in row.split(",")) # type: ignore
for row in input.splitlines()
]
)
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
xyz = xyz - xyz.min(axis=0) + 1
n_dims = len(cubes.shape)
cubes = np.zeros(xyz.max(axis=0) + 3, dtype=bool)
cubes[xyz[:, 0], xyz[:, 1], xyz[:, 2]] = True
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
faces = [(-1, 0, 0), (1, 0, 0), (0, -1, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1)]
answer_1 = sum(
1 for x, y, z in xyz for dx, dy, dz in faces if not cubes[x + dx, y + dy, z + dz]
)
print(f"answer 1 is {answer_1}")
yield sum(
1
for x, y, z in xyz
for dx, dy, dz in faces
if not cubes[x + dx, y + dy, z + dz]
)
visited = np.zeros_like(cubes, dtype=bool)
queue = [(0, 0, 0)]
visited = np.zeros_like(cubes, dtype=bool)
queue = [(0, 0, 0)]
n_faces = 0
while queue:
x, y, z = queue.pop(0)
n_faces = 0
while queue:
x, y, z = queue.pop(0)
if visited[x, y, z]:
continue
if visited[x, y, z]:
continue
visited[x, y, z] = True
visited[x, y, z] = True
for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))):
continue
for dx, dy, dz in faces:
nx, ny, nz = x + dx, y + dy, z + dz
if not all(
n >= 0 and n < cubes.shape[i] for i, n in enumerate((nx, ny, nz))
):
continue
if visited[nx, ny, nz]:
continue
if visited[nx, ny, nz]:
continue
if cubes[nx, ny, nz]:
n_faces += 1
else:
queue.append((nx, ny, nz))
yield n_faces
if cubes[nx, ny, nz]:
n_faces += 1
else:
queue.append((nx, ny, nz))
print(f"answer 2 is {n_faces}")

View File

@@ -1,11 +1,10 @@
from typing import Any, Iterator, Literal
import sys
from typing import Any, Literal
import numpy as np
import parse # pyright: ignore[reportMissingTypeStubs]
from numpy.typing import NDArray
from ..base import BaseSolver
Reagent = Literal["ore", "clay", "obsidian", "geode"]
REAGENTS: tuple[Reagent, ...] = (
"ore",
@@ -63,6 +62,29 @@ def dominates(lhs: State, rhs: State):
)
lines = sys.stdin.read().splitlines()
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in lines:
r: list[int] = parse.parse( # type: ignore
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
# since we can only build one robot per time, we do not need more than X robots
# of type K where X is the maximum number of K required among all robots, e.g.,
@@ -151,31 +173,11 @@ def run(blueprint: dict[Reagent, dict[Reagent, int]], max_time: int) -> int:
return max(state.reagents["geode"] for state in state_after_t[max_time])
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blueprints: list[dict[Reagent, IntOfReagent]] = []
for line in input.splitlines():
r: list[int] = parse.parse( # type: ignore
"Blueprint {}: "
"Each ore robot costs {:d} ore. "
"Each clay robot costs {:d} ore. "
"Each obsidian robot costs {:d} ore and {:d} clay. "
"Each geode robot costs {:d} ore and {:d} obsidian.",
line,
)
answer_1 = sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
print(f"answer 1 is {answer_1}")
blueprints.append(
{
"ore": {"ore": r[1]},
"clay": {"ore": r[2]},
"obsidian": {"ore": r[3], "clay": r[4]},
"geode": {"ore": r[5], "obsidian": r[6]},
}
)
yield sum(
(i_blueprint + 1) * run(blueprint, 24)
for i_blueprint, blueprint in enumerate(blueprints)
)
yield (run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32))
answer_2 = run(blueprints[0], 32) * run(blueprints[1], 32) * run(blueprints[2], 32)
print(f"answer 2 is {answer_2}")

View File

@@ -1,6 +1,4 @@
from typing import Any, Iterator
from ..base import BaseSolver
import sys
def score_1(ux: int, vx: int) -> int:
@@ -35,23 +33,21 @@ def score_2(ux: int, vx: int) -> int:
return (ux + vx - 1) % 3 + 1 + vx * 3
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = input.splitlines()
lines = sys.stdin.readlines()
# the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using
# modulo-3 arithmetic
#
# in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move
# if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3)))
#
# the solution relies on replacing rock / paper / scissor by values 0 / 1 / 2 and using
# modulo-3 arithmetic
#
# in modulo-3 arithmetic, the winning move is 1 + the opponent move (e.g., winning move
# if opponent plays 0 is 1, or 0 if opponent plays 2 (0 = (2 + 1 % 3)))
#
# we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for
# easier manipulation
values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines]
# we read the lines in a Nx2 in array with value 0/1/2 instead of A/B/C or X/Y/Z for
# easier manipulation
values = [(ord(row[0]) - ord("A"), ord(row[2]) - ord("X")) for row in lines]
# part 1 - 13526
yield sum(score_1(*v) for v in values)
# part 1 - 13526
print(f"answer 1 is {sum(score_1(*v) for v in values)}")
# part 2 - 14204
yield sum(score_2(*v) for v in values)
# part 2 - 14204
print(f"answer 2 is {sum(score_2(*v) for v in values)}")

View File

@@ -1,8 +1,6 @@
from __future__ import annotations
from typing import Any, Iterator
from ..base import BaseSolver
import sys
class Number:
@@ -67,9 +65,10 @@ def decrypt(numbers: list[Number], key: int, rounds: int) -> int:
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
numbers = [Number(int(x)) for x in input.splitlines()]
numbers = [Number(int(x)) for i, x in enumerate(sys.stdin.readlines())]
yield decrypt(numbers, 1, 1)
yield decrypt(numbers, 811589153, 10)
answer_1 = decrypt(numbers, 1, 1)
print(f"answer 1 is {answer_1}")
answer_2 = decrypt(numbers, 811589153, 10)
print(f"answer 2 is {answer_2}")

View File

@@ -1,7 +1,6 @@
import operator
from typing import Any, Callable, Iterator
from ..base import BaseSolver
import sys
from typing import Callable
def compute(monkeys: dict[str, int | tuple[str, str, str]], monkey: str) -> int:
@@ -78,31 +77,31 @@ def invert(
return monkeys
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
lines = sys.stdin.read().splitlines()
monkeys: dict[str, int | tuple[str, str, str]] = {}
monkeys: dict[str, int | tuple[str, str, str]] = {}
op_monkeys: set[str] = set()
op_monkeys: set[str] = set()
for line in lines:
parts = line.split(":")
name = parts[0].strip()
for line in lines:
parts = line.split(":")
name = parts[0].strip()
try:
value = int(parts[1].strip())
monkeys[name] = value
except ValueError:
op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2)
try:
value = int(parts[1].strip())
monkeys[name] = value
except ValueError:
op1, ope, op2 = parts[1].strip().split()
monkeys[name] = (op1, ope, op2)
op_monkeys.add(name)
op_monkeys.add(name)
yield compute(monkeys.copy(), "root")
# assume the second operand of 'root' can be computed, and the first one depends on
# humn, which is the case is my input and the test input
assert isinstance(monkeys["root"], tuple)
p1, _, p2 = monkeys["root"] # type: ignore
yield compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")
answer_1 = compute(monkeys.copy(), "root")
print(f"answer 1 is {answer_1}")
# assume the second operand of 'root' can be computed, and the first one depends on
# humn, which is the case is my input and the test input
p1, _, p2 = monkeys["root"] # type: ignore
answer_2 = compute(invert(monkeys, "humn", compute(monkeys.copy(), p2)), "humn")
print(f"answer 2 is {answer_2}")

View File

@@ -1,243 +1,223 @@
import re
from typing import Any, Callable, Iterator
import sys
from typing import Callable
import numpy as np
from ..base import BaseSolver
VOID, EMPTY, WALL = 0, 1, 2
TILE_FROM_CHAR = {" ": VOID, ".": EMPTY, "#": WALL}
SCORES = {"E": 0, "S": 1, "W": 2, "N": 3}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
board_map_s, direction_s = input.split("\n\n")
board_map_s, direction_s = sys.stdin.read().split("\n\n")
# board
board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines)
board = np.array(
[
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines()
]
)
# board
board_lines = board_map_s.splitlines()
max_line = max(len(line) for line in board_lines)
board = np.array(
[
[TILE_FROM_CHAR[c] for c in row] + [VOID] * (max_line - len(row))
for row in board_map_s.splitlines()
]
)
directions = [
int(p1) if p2 else p1
for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
]
directions = [
int(p1) if p2 else p1 for p1, p2 in re.findall(R"(([0-9])+|L|R)", direction_s)
]
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = (
board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
)
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = (
board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
)
faces = np.zeros_like(board)
size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
# find on each row and column the first and last non-void
row_first_non_void = np.argmax(board != VOID, axis=1)
row_last_non_void = board.shape[1] - np.argmax(board[:, ::-1] != VOID, axis=1) - 1
col_first_non_void = np.argmax(board != VOID, axis=0)
col_last_non_void = board.shape[0] - np.argmax(board[::-1, :] != VOID, axis=0) - 1
SIZE = np.gcd(*board.shape)
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
faces = np.zeros_like(board)
size = np.gcd(board.shape[0], board.shape[1])
for row in range(0, board.shape[0], size):
for col in range(row_first_non_void[row], row_last_non_void[row], size):
faces[row : row + size, col : col + size] = faces.max() + 1
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
SIZE = np.gcd(*board.shape)
# TODO: deduce this from the actual cube...
faces_wrap: dict[int, dict[str, Callable[[int, int], tuple[int, int, str]]]]
if board.shape == (12, 16): # example
faces_wrap = {
1: {
"W": lambda y, x: (4, 4 + y, "S"), # 3N
"N": lambda y, x: (4, 11 - x, "S"), # 2N
"E": lambda y, x: (11 - y, 15, "W"), # 6E
},
2: {
"W": lambda y, x: (11, 19 - y, "N"), # 6S
"N": lambda y, x: (0, 11 - y, "S"), # 1N
"S": lambda y, x: (11, 11 - x, "N"), # 5S
},
3: {
"N": lambda y, x: (x - 4, 8, "E"), # 1W
"S": lambda y, x: (15 - x, 8, "E"), # 5W
},
4: {"E": lambda y, x: (8, 19 - y, "S")}, # 6N
5: {
"W": lambda y, x: (7, 15 - y, "N"), # 3S
"S": lambda y, x: (7, 11 - x, "N"), # 2S
},
6: {
"N": lambda y, x: (19 - x, 11, "W"), # 4E
"E": lambda y, x: (11 - y, 11, "W"), # 1E
"S": lambda y, x: (19 - x, 0, "E"), # 2W
},
}
else:
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
def run(wrap: Callable[[int, int, str], tuple[int, int, str]]) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(board[y0, x0 + 1 : x0 + direction + 1] == WALL)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = direction - (row_last_non_void[y0] - x0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(board[y0 + 1 : y0 + direction + 1, x0] == WALL)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = direction - (col_last_non_void[x0] - y0) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif x0 - direction >= 0 and board[y0, x0 - direction] == EMPTY:
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = direction - (x0 - row_first_non_void[y0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif y0 - direction >= 0 and board[y0 - direction, x0] == EMPTY:
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = direction - (y0 - col_first_non_void[x0]) - 1
y0, x0, r0 = y0_t, x0_t, r0_t
else:
faces_wrap = {
1: {
"W": lambda y, x: (3 * SIZE - y - 1, 0, "E"), # 4W
"N": lambda y, x: (2 * SIZE + x, 0, "E"), # 6W
},
2: {
"N": lambda y, x: (4 * SIZE - 1, x - 2 * SIZE, "N"), # 6S
"E": lambda y, x: (3 * SIZE - y - 1, 2 * SIZE - 1, "W"), # 5E
"S": lambda y, x: (x - SIZE, 2 * SIZE - 1, "W"), # 3E
},
3: {
"W": lambda y, x: (2 * SIZE, y - SIZE, "S"), # 4N
"E": lambda y, x: (SIZE - 1, SIZE + y, "N"), # 2S
},
4: {
"W": lambda y, x: (3 * SIZE - y - 1, SIZE, "E"), # 1W
"N": lambda y, x: (SIZE + x, SIZE, "E"), # 3W
},
5: {
"E": lambda y, x: (3 * SIZE - y - 1, 3 * SIZE - 1, "W"), # 2E
"S": lambda y, x: (2 * SIZE + x, SIZE - 1, "W"), # 6E
},
6: {
"W": lambda y, x: (0, y - 2 * SIZE, "S"), # 1N
"E": lambda y, x: (3 * SIZE - 1, y - 2 * SIZE, "N"), # 5S
"S": lambda y, x: (0, x + 2 * SIZE, "S"), # 2N
},
}
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
def wrap_part_1(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
if r0 == "E":
return y0, row_first_non_void[y0], r0
elif r0 == "S":
return col_first_non_void[x0], x0, r0
elif r0 == "W":
return y0, row_last_non_void[y0], r0
elif r0 == "N":
return col_last_non_void[x0], x0, r0
return y0, x0, r0
assert False
def wrap_part_2(y0: int, x0: int, r0: str) -> tuple[int, int, str]:
cube = faces[y0, x0]
assert r0 in faces_wrap[cube]
return faces_wrap[cube][r0](y0, x0)
y1, x1, r1 = run(wrap_part_1)
answer_1 = 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
print(f"answer 1 is {answer_1}")
def run(
wrap: Callable[[int, int, str], tuple[int, int, str]],
) -> tuple[int, int, str]:
y0 = 0
x0 = np.where(board[0] == EMPTY)[0][0]
r0 = "E"
for direction in directions:
if isinstance(direction, int):
while direction > 0:
if r0 == "E":
xi = np.where(
board[y0, x0 + 1 : x0 + direction + 1] == WALL
)[0]
if len(xi):
x0 = x0 + xi[0]
direction = 0
elif (
x0 + direction < board.shape[1]
and board[y0, x0 + direction] == EMPTY
):
x0 = x0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_last_non_void[y0]
direction = 0
else:
direction = (
direction - (row_last_non_void[y0] - x0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "S":
yi = np.where(
board[y0 + 1 : y0 + direction + 1, x0] == WALL
)[0]
if len(yi):
y0 = y0 + yi[0]
direction = 0
elif (
y0 + direction < board.shape[0]
and board[y0 + direction, x0] == EMPTY
):
y0 = y0 + direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_last_non_void[x0]
direction = 0
else:
direction = (
direction - (col_last_non_void[x0] - y0) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "W":
left = max(x0 - direction - 1, 0)
xi = np.where(board[y0, left:x0] == WALL)[0]
if len(xi):
x0 = left + xi[-1] + 1
direction = 0
elif (
x0 - direction >= 0
and board[y0, x0 - direction] == EMPTY
):
x0 = x0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
x0 = row_first_non_void[y0]
direction = 0
else:
direction = (
direction - (x0 - row_first_non_void[y0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
elif r0 == "N":
top = max(y0 - direction - 1, 0)
yi = np.where(board[top:y0, x0] == WALL)[0]
if len(yi):
y0 = top + yi[-1] + 1
direction = 0
elif (
y0 - direction >= 0
and board[y0 - direction, x0] == EMPTY
):
y0 = y0 - direction
direction = 0
else:
y0_t, x0_t, r0_t = wrap(y0, x0, r0)
if board[y0_t, x0_t] == WALL:
y0 = col_first_non_void[x0]
direction = 0
else:
direction = (
direction - (y0 - col_first_non_void[x0]) - 1
)
y0, x0, r0 = y0_t, x0_t, r0_t
else:
r0 = {
"E": {"L": "N", "R": "S"},
"N": {"L": "W", "R": "E"},
"W": {"L": "S", "R": "N"},
"S": {"L": "E", "R": "W"},
}[r0][direction]
return y0, x0, r0
y1, x1, r1 = run(wrap_part_1)
yield 1000 * (1 + y1) + 4 * (1 + x1) + SCORES[r1]
y2, x2, r2 = run(wrap_part_2)
yield 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]
y2, x2, r2 = run(wrap_part_2)
answer_2 = 1000 * (1 + y2) + 4 * (1 + x2) + SCORES[r2]
print(f"answer 2 is {answer_2}")

View File

@@ -1,8 +1,6 @@
import itertools
import sys
from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
Directions = list[
tuple[
@@ -20,10 +18,22 @@ DIRECTIONS: Directions = [
def min_max_yx(positions: set[tuple[int, int]]) -> tuple[int, int, int, int]:
ys, xs = {y for y, _x in positions}, {x for _y, x in positions}
ys, xs = {y for y, x in positions}, {x for y, x in positions}
return min(ys), min(xs), max(ys), max(xs)
def print_positions(positions: set[tuple[int, int]]):
min_y, min_x, max_y, max_x = min_max_yx(positions)
print(
"\n".join(
"".join(
"#" if (y, x) in positions else "." for x in range(min_x - 1, max_x + 2)
)
for y in range(min_y - 1, max_y + 2)
)
)
def round(
positions: set[tuple[int, int]],
directions: Directions,
@@ -59,38 +69,35 @@ def round(
directions.append(directions.pop(0))
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
POSITIONS = {
(i, j)
for i, row in enumerate(input.splitlines())
for j, col in enumerate(row)
if col == "#"
}
POSITIONS = {
(i, j)
for i, row in enumerate(sys.stdin.read().splitlines())
for j, col in enumerate(row)
if col == "#"
}
# === part 1 ===
# === part 1 ===
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for _ in range(10):
round(p1, d1)
p1, d1 = POSITIONS.copy(), DIRECTIONS.copy()
for r in range(10):
round(p1, d1)
min_y, min_x, max_y, max_x = min_max_yx(p1)
yield sum(
(y, x) not in p1
for y in range(min_y, max_y + 1)
for x in range(min_x, max_x + 1)
)
min_y, min_x, max_y, max_x = min_max_yx(p1)
answer_1 = sum(
(y, x) not in p1 for y in range(min_y, max_y + 1) for x in range(min_x, max_x + 1)
)
print(f"answer 1 is {answer_1}")
# === part 2 ===
# === part 2 ===
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0
while True:
answer_2 += 1
backup = p2.copy()
round(p2, d2)
p2, d2 = POSITIONS.copy(), DIRECTIONS.copy()
answer_2 = 0
while True:
answer_2 += 1
backup = p2.copy()
round(p2, d2)
if backup == p2:
break
if backup == p2:
break
yield answer_2
print(f"answer 2 is {answer_2}")

View File

@@ -1,117 +1,98 @@
import heapq
import math
import sys
from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
east_winds = [{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)]
west_winds = [{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
winds = {
(i - 1, j - 1, lines[i][j])
for i in range(1, len(lines) - 1)
for j in range(1, len(lines[i]) - 1)
if lines[i][j] != "."
}
# (distance + heuristic, distance, (start_pos, cycle))
queue = [(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
n_rows, n_cols = len(lines) - 2, len(lines[0]) - 2
CYCLE = math.lcm(n_rows, n_cols)
while queue:
_, distance, ((y, x), cycle) = heapq.heappop(queue)
east_winds = [
{j for j in range(n_cols) if (i, j, ">") in winds} for i in range(n_rows)
]
west_winds = [
{j for j in range(n_cols) if (i, j, "<") in winds} for i in range(n_rows)
]
north_winds = [
{i for i in range(n_rows) if (i, j, "^") in winds} for j in range(n_cols)
]
south_winds = [
{i for i in range(n_rows) if (i, j, "v") in winds} for j in range(n_cols)
]
if ((y, x), cycle) in visited:
continue
def run(start: tuple[int, int], start_cycle: int, end: tuple[int, int]):
def heuristic(y: int, x: int) -> int:
return abs(end[0] - y) + abs(end[1] - x)
distances[y, x][cycle] = distance
# (distance + heuristic, distance, (start_pos, cycle))
queue = [
(heuristic(start[0], start[1]), 0, ((start[0], start[1]), start_cycle))
]
visited: set[tuple[tuple[int, int], int]] = set()
distances: dict[tuple[int, int], dict[int, int]] = defaultdict(lambda: {})
visited.add(((y, x), cycle))
while queue:
_, distance, ((y, x), cycle) = heapq.heappop(queue)
if (y, x) == (end[0], end[1]):
break
if ((y, x), cycle) in visited:
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
n_cycle = (cycle + 1) % CYCLE
if (ty, tx) == end:
heapq.heappush(queue, (distance + 1, distance + 1, ((ty, tx), n_cycle)))
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue
distances[y, x][cycle] = distance
heapq.heappush(
queue,
((heuristic(ty, tx) + distance + 1, distance + 1, ((ty, tx), n_cycle))),
)
visited.add(((y, x), cycle))
return distances, next(iter(distances[end].values()))
if (y, x) == (end[0], end[1]):
break
for dy, dx in (0, 0), (-1, 0), (1, 0), (0, -1), (0, 1):
ty = y + dy
tx = x + dx
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
n_cycle = (cycle + 1) % CYCLE
distances_1, forward_1 = run(start, 0, end)
print(f"answer 1 is {forward_1}")
if (ty, tx) == end:
heapq.heappush(
queue, (distance + 1, distance + 1, ((ty, tx), n_cycle))
)
break
if ((ty, tx), n_cycle) in visited:
continue
if (ty, tx) != start and (
ty < 0 or tx < 0 or ty >= n_rows or tx >= n_cols
):
continue
if (ty, tx) != start:
if (ty - n_cycle) % n_rows in south_winds[tx]:
continue
if (ty + n_cycle) % n_rows in north_winds[tx]:
continue
if (tx + n_cycle) % n_cols in west_winds[ty]:
continue
if (tx - n_cycle) % n_cols in east_winds[ty]:
continue
heapq.heappush(
queue,
(
(
heuristic(ty, tx) + distance + 1,
distance + 1,
((ty, tx), n_cycle),
)
),
)
return distances, next(iter(distances[end].values()))
start = (
-1,
next(j for j in range(1, len(lines[0]) - 1) if lines[0][j] == ".") - 1,
)
end = (
n_rows,
next(j for j in range(1, len(lines[-1]) - 1) if lines[-1][j] == ".") - 1,
)
distances_1, forward_1 = run(start, 0, end)
yield forward_1
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
_distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
yield forward_1 + return_1 + forward_2
distances_2, return_1 = run(end, next(iter(distances_1[end].keys())), start)
distances_3, forward_2 = run(start, next(iter(distances_2[start].keys())), end)
print(f"answer 2 is {forward_1 + return_1 + forward_2}")

View File

@@ -1,28 +1,27 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
def snafu2number(number: str) -> int:
value = 0
for c in number:
value *= 5
value += coeffs[c]
return value
coeffs = {"2": 2, "1": 1, "0": 0, "-": -1, "=": -2}
def snafu2number(number: str) -> int:
value = 0
for c in number:
value *= 5
value += coeffs[c]
return value
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
def number2snafu(number: int) -> str:
values = ["0", "1", "2", "=", "-"]
res = ""
while number > 0:
mod = number % 5
res = res + values[mod]
number = number // 5 + int(mod >= 3)
return "".join(reversed(res))
yield number2snafu(sum(map(snafu2number, lines)))
answer_1 = number2snafu(sum(map(snafu2number, lines)))
print(f"answer 1 is {answer_1}")

View File

@@ -1,28 +1,23 @@
import string
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = [line.strip() for line in sys.stdin.readlines()]
# extract content of each part
parts = [(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
# priorities
priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)}
# extract content of each part
parts = [
(set(line[: len(line) // 2]), set(line[len(line) // 2 :])) for line in lines
]
# part 1
part1 = sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2))
print(f"answer 1 is {part1}")
# priorities
priorities = {c: i + 1 for i, c in enumerate(string.ascii_letters)}
# part 1
yield sum(priorities[c] for p1, p2 in parts for c in p1.intersection(p2))
# part 2
n_per_group = 3
yield sum(
priorities[c]
for i in range(0, len(lines), n_per_group)
for c in set(lines[i]).intersection(*lines[i + 1 : i + n_per_group])
)
# part 2
n_per_group = 3
part2 = sum(
priorities[c]
for i in range(0, len(lines), n_per_group)
for c in set(lines[i]).intersection(*lines[i + 1 : i + n_per_group])
)
print(f"answer 2 is {part2}")

View File

@@ -1,6 +1,6 @@
from typing import Any, Iterator
import sys
from ..base import BaseSolver
lines = [line.strip() for line in sys.stdin.readlines()]
def make_range(value: str) -> set[int]:
@@ -8,13 +8,10 @@ def make_range(value: str) -> set[int]:
return set(range(int(parts[0]), int(parts[1]) + 1))
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
sections = [tuple(make_range(part) for part in line.split(",")) for line in lines]
sections = [
tuple(make_range(part) for part in line.split(",")) for line in lines
]
answer_1 = sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections)
print(f"answer 1 is {answer_1}")
yield sum(s1.issubset(s2) or s2.issubset(s1) for s1, s2 in sections)
yield sum(bool(s1.intersection(s2)) for s1, s2 in sections)
answer_2 = sum(bool(s1.intersection(s2)) for s1, s2 in sections)
print(f"answer 1 is {answer_2}")

View File

@@ -1,43 +1,41 @@
import copy
from typing import Any, Iterator
import sys
from ..base import BaseSolver
blocks_s, moves_s = (part.splitlines() for part in sys.stdin.read().split("\n\n"))
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blocks_s, moves_s = (part.splitlines() for part in input.split("\n\n"))
# this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the
# form of '[X] ' (including the trailing space)
#
for block in blocks_s[-2::-1]:
for stack, index in zip(blocks, range(0, len(block), 4)):
crate = block[index + 1 : index + 2].strip()
blocks: dict[str, list[str]] = {stack: [] for stack in blocks_s[-1].split()}
if crate:
blocks[stack].append(crate)
# this codes assumes that the lines are regular, i.e., 4 characters per "crate" in the
# form of '[X] ' (including the trailing space)
#
for block in blocks_s[-2::-1]:
for stack, index in zip(blocks, range(0, len(block), 4)):
crate = block[index + 1 : index + 2].strip()
# part 1 - deep copy for part 2
blocks_1 = copy.deepcopy(blocks)
if crate:
blocks[stack].append(crate)
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
# part 1 - deep copy for part 2
blocks_1 = copy.deepcopy(blocks)
for _i in range(int(count_s)):
blocks_1[to_].append(blocks_1[from_].pop())
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
# part 2
blocks_2 = copy.deepcopy(blocks)
for _i in range(int(count_s)):
blocks_1[to_].append(blocks_1[from_].pop())
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
count = int(count_s)
# part 2
blocks_2 = copy.deepcopy(blocks)
blocks_2[to_].extend(blocks_2[from_][-count:])
del blocks_2[from_][-count:]
for move in moves_s:
_, count_s, _, from_, _, to_ = move.strip().split()
count = int(count_s)
answer_1 = "".join(s[-1] for s in blocks_1.values())
print(f"answer 1 is {answer_1}")
blocks_2[to_].extend(blocks_2[from_][-count:])
del blocks_2[from_][-count:]
yield "".join(s[-1] for s in blocks_1.values())
yield "".join(s[-1] for s in blocks_2.values())
answer_2 = "".join(s[-1] for s in blocks_2.values())
print(f"answer 2 is {answer_2}")

View File

@@ -1,6 +1,4 @@
from typing import Any, Iterator
from ..base import BaseSolver
import sys
def index_of_first_n_differents(data: str, n: int) -> int:
@@ -10,7 +8,8 @@ def index_of_first_n_differents(data: str, n: int) -> int:
return -1
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
yield index_of_first_n_differents(input, 4)
yield index_of_first_n_differents(input, 14)
data = sys.stdin.read().strip()
print(f"answer 1 is {index_of_first_n_differents(data, 4)}")
print(f"answer 2 is {index_of_first_n_differents(data, 14)}")

View File

@@ -1,81 +1,80 @@
import sys
from pathlib import Path
from typing import Any, Iterator
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
# we are going to use Path to create path and go up/down in the file tree since it
# implements everything we need
#
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
# on Windows but that is not an issue since only the sizes matter
#
# mapping from path to list of files or directories
trees: dict[Path, list[Path]] = {}
# mapping from paths to either size (for file) or -1 for directory
sizes: dict[Path, int] = {}
# first line must be a cd otherwise we have no idea where we are
assert lines[0].startswith("$ cd")
base_path = Path(lines[0].strip("$").split()[1]).resolve()
cur_path = base_path
trees[cur_path] = []
sizes[cur_path] = -1
for line in lines[1:]:
# command
if line.startswith("$"):
parts = line.strip("$").strip().split()
command = parts[0]
if command == "cd":
cur_path = cur_path.joinpath(parts[1]).resolve()
# just initialize the lis of files if not already done
if cur_path not in trees:
trees[cur_path] = []
else:
# nothing to do here
pass
# fill the current path
else:
parts = line.split()
name: str = parts[1]
if line.startswith("dir"):
size = -1
else:
size = int(parts[0])
path = cur_path.joinpath(name)
trees[cur_path].append(path)
sizes[path] = size
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
def compute_size(path: Path) -> int:
size = sizes[path]
# we are going to use Path to create path and go up/down in the file tree since it
# implements everything we need
#
# we can use .resolve() to get normalized path, although this will add C:\ to all paths
# on Windows but that is not an issue since only the sizes matter
#
if size >= 0:
return size
# mapping from path to list of files or directories
trees: dict[Path, list[Path]] = {}
return sum(compute_size(sub) for sub in trees[path])
# mapping from paths to either size (for file) or -1 for directory
sizes: dict[Path, int] = {}
# first line must be a cd otherwise we have no idea where we are
assert lines[0].startswith("$ cd")
base_path = Path(lines[0].strip("$").split()[1]).resolve()
cur_path = base_path
acc_sizes = {path: compute_size(path) for path in trees}
trees[cur_path] = []
sizes[cur_path] = -1
# part 1
answer_1 = sum(size for size in acc_sizes.values() if size <= 100_000)
print(f"answer 1 is {answer_1}")
for line in lines[1:]:
# command
if line.startswith("$"):
parts = line.strip("$").strip().split()
command = parts[0]
# part 2
total_space = 70_000_000
update_space = 30_000_000
free_space = total_space - acc_sizes[base_path]
if command == "cd":
cur_path = cur_path.joinpath(parts[1]).resolve()
to_free_space = update_space - free_space
# just initialize the lis of files if not already done
if cur_path not in trees:
trees[cur_path] = []
else:
# nothing to do here
pass
# fill the current path
else:
parts = line.split()
name: str = parts[1]
if line.startswith("dir"):
size = -1
else:
size = int(parts[0])
path = cur_path.joinpath(name)
trees[cur_path].append(path)
sizes[path] = size
def compute_size(path: Path) -> int:
size = sizes[path]
if size >= 0:
return size
return sum(compute_size(sub) for sub in trees[path])
acc_sizes = {path: compute_size(path) for path in trees}
# part 1
yield sum(size for size in acc_sizes.values() if size <= 100_000)
# part 2
total_space = 70_000_000
update_space = 30_000_000
free_space = total_space - acc_sizes[base_path]
to_free_space = update_space - free_space
yield min(size for size in acc_sizes.values() if size >= to_free_space)
answer_2 = min(size for size in acc_sizes.values() if size >= to_free_space)
print(f"answer 2 is {answer_2}")

View File

@@ -1,54 +1,53 @@
from typing import Any, Iterator
import sys
import numpy as np
from numpy.typing import NDArray
from ..base import BaseSolver
lines = sys.stdin.read().splitlines()
trees = np.array([[int(x) for x in row] for row in lines])
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
trees = np.array([[int(x) for x in row] for row in lines])
# answer 1
highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1
highest_trees[1:-1, 1:-1] = [
[
[
trees[:i, j].max(),
trees[i + 1 :, j].max(),
trees[i, :j].max(),
trees[i, j + 1 :].max(),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
# answer 1
highest_trees = np.ones(trees.shape + (4,), dtype=int) * -1
highest_trees[1:-1, 1:-1] = [
[
[
trees[:i, j].max(),
trees[i + 1 :, j].max(),
trees[i, :j].max(),
trees[i, j + 1 :].max(),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
yield (highest_trees.min(axis=2) < trees).sum()
answer_1 = (highest_trees.min(axis=2) < trees).sum()
print(f"answer 1 is {answer_1}")
def viewing_distance(row_of_trees: NDArray[np.int_], value: int) -> int:
w = np.where(row_of_trees >= value)[0]
if not w.size:
return len(row_of_trees)
def viewing_distance(row_of_trees: NDArray[np.int_], value: int) -> int:
w = np.where(row_of_trees >= value)[0]
return w[0] + 1
if not w.size:
return len(row_of_trees)
# answer 2
v_distances = np.zeros(trees.shape + (4,), dtype=int)
v_distances[1:-1, 1:-1, :] = [
[
[
viewing_distance(trees[i - 1 :: -1, j], trees[i, j]),
viewing_distance(trees[i, j - 1 :: -1], trees[i, j]),
viewing_distance(trees[i, j + 1 :], trees[i, j]),
viewing_distance(trees[i + 1 :, j], trees[i, j]),
]
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
return w[0] + 1
# answer 2
v_distances = np.zeros(trees.shape + (4,), dtype=int)
v_distances[1:-1, 1:-1, :] = [
[
[
viewing_distance(trees[i - 1 :: -1, j], trees[i, j]),
viewing_distance(trees[i, j - 1 :: -1], trees[i, j]),
viewing_distance(trees[i, j + 1 :], trees[i, j]),
viewing_distance(trees[i + 1 :, j], trees[i, j]),
]
yield np.prod(v_distances, axis=2).max()
for j in range(1, trees.shape[1] - 1)
]
for i in range(1, trees.shape[0] - 1)
]
answer_2 = np.prod(v_distances, axis=2).max()
print(f"answer 2 is {answer_2}")

View File

@@ -1,10 +1,7 @@
import itertools as it
from typing import Any, Iterator
import sys
import numpy as np
from ..base import BaseSolver
def move(head: tuple[int, int], command: str) -> tuple[int, int]:
h_col, h_row = head
@@ -46,14 +43,17 @@ def run(commands: list[str], n_blocks: int) -> list[tuple[int, int]]:
return visited
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
lines = [line.strip() for line in input.splitlines()]
lines = sys.stdin.read().splitlines()
# flatten the commands
commands = list(
it.chain(*(p[0] * int(p[1]) for line in lines if (p := line.split())))
)
# flatten the commands
commands: list[str] = []
for line in lines:
d, c = line.split()
commands.extend(d * int(c))
yield len(set(run(commands, n_blocks=2)))
yield len(set(run(commands, n_blocks=10)))
visited_1 = run(commands, n_blocks=2)
print(f"answer 1 is {len(set(visited_1))}")
visited_2 = run(commands, n_blocks=10)
print(f"answer 2 is {len(set(visited_2))}")

View File

@@ -83,17 +83,18 @@ class Solver(BaseSolver):
if (i, j) in loop_s and lines[i][j] in "|LJ":
cnt += 1
if self.files:
rows = [["." for _j in range(len(lines[0]))] for _i in range(len(lines))]
rows[si][sj] = "\033[91mS\033[0m"
for i, j in loop:
rows[i][j] = lines[i][j]
for i, j in inside:
rows[i][j] = "\033[92mI\033[0m"
self.files.create(
"output.txt", "\n".join("".join(row) for row in rows).encode(), True
)
if self.verbose:
for i in range(len(lines)):
s = ""
for j in range(len(lines[0])):
if (i, j) == (si, sj):
s += "\033[91mS\033[0m"
elif (i, j) in loop:
s += lines[i][j]
elif (i, j) in inside:
s += "\033[92mI\033[0m"
else:
s += "."
self.logger.info(s)
yield len(inside)

View File

@@ -84,14 +84,9 @@ class Solver(BaseSolver):
beams = propagate(layout, (0, 0), "R")
if self.files:
self.files.create(
"beams.txt",
"\n".join(
"".join("#" if col else "." for col in row) for row in beams
).encode(),
True,
)
if self.verbose:
for row in beams:
self.logger.info("".join("#" if col else "." for col in row))
# part 1
yield sum(sum(map(bool, row)) for row in beams)

View File

@@ -33,14 +33,10 @@ MAPPINGS: dict[Direction, tuple[int, int, Direction]] = {
class Solver(BaseSolver):
def print_shortest_path(
self,
name: str,
grid: list[list[int]],
target: tuple[int, int],
per_cell: dict[tuple[int, int], list[tuple[Label, int]]],
):
if not self.files:
return
assert len(per_cell[target]) == 1
label = per_cell[target][0][0]
@@ -78,9 +74,8 @@ class Solver(BaseSolver):
p_grid[0][0] = f"\033[92m{grid[0][0]}\033[0m"
self.files.create(
name, "\n".join("".join(row) for row in p_grid).encode(), True
)
for row in p_grid:
self.logger.info("".join(row))
def shortest_many_paths(self, grid: list[list[int]]) -> dict[tuple[int, int], int]:
n_rows, n_cols = len(grid), len(grid[0])
@@ -134,7 +129,6 @@ class Solver(BaseSolver):
def shortest_path(
self,
name: str,
grid: list[list[int]],
min_straight: int,
max_straight: int,
@@ -223,7 +217,8 @@ class Solver(BaseSolver):
),
)
self.print_shortest_path(f"shortest-path_{name}.txt", grid, target, per_cell)
if self.verbose:
self.print_shortest_path(grid, target, per_cell)
return per_cell[target][0][1]
@@ -232,7 +227,7 @@ class Solver(BaseSolver):
estimates = self.shortest_many_paths(data)
# part 1
yield self.shortest_path("answer_1", data, 1, 3, lower_bounds=estimates)
yield self.shortest_path(data, 1, 3, lower_bounds=estimates)
# part 2
yield self.shortest_path("answer_2", data, 4, 10, lower_bounds=estimates)
yield self.shortest_path(data, 4, 10, lower_bounds=estimates)

View File

@@ -1,3 +1,4 @@
import sys
from collections import defaultdict
from math import lcm
from typing import Any, Iterator, Literal, TypeAlias
@@ -66,7 +67,7 @@ class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
self._modules = {}
lines = input.splitlines()
lines = sys.stdin.read().splitlines()
for line in lines:
name, outputs_s = line.split(" -> ")
@@ -79,23 +80,22 @@ class Solver(BaseSolver):
outputs,
)
if self.files:
contents = "digraph G {\n"
contents += "rx [shape=circle, color=red, style=filled];\n"
for name, (type, outputs) in self._modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
contents += f"{name} [shape={shape}];\n"
for name, (type, outputs) in self._modules.items():
for output in outputs:
contents += f"{name} -> {output};\n"
contents += "}\n"
self.files.create("day20.dot", contents.encode(), False)
if self.outputs:
with open("./day20.dot", "w") as fp:
fp.write("digraph G {\n")
fp.write("rx [shape=circle, color=red, style=filled];\n")
for name, (type, outputs) in self._modules.items():
if type == "conjunction":
shape = "diamond"
elif type == "flip-flop":
shape = "box"
else:
shape = "circle"
fp.write(f"{name} [shape={shape}];\n")
for name, (type, outputs) in self._modules.items():
for output in outputs:
fp.write(f"{name} -> {output};\n")
fp.write("}\n")
# part 1
flip_flop_states: dict[str, Literal["on", "off"]] = {

View File

@@ -50,7 +50,7 @@ class Solver(BaseSolver):
values.append(len(tiles := reachable(map, tiles, cycle)))
values.append(len(tiles := reachable(map, tiles, cycle)))
if self.files:
if self.verbose:
n_rows, n_cols = len(map), len(map[0])
rows = [
@@ -66,9 +66,8 @@ class Solver(BaseSolver):
if (i // cycle) % 2 == (j // cycle) % 2:
rows[i][j] = f"\033[91m{rows[i][j]}\033[0m"
self.files.create(
"cycle.txt", "\n".join("".join(row) for row in rows).encode(), True
)
for row in rows:
self.logger.info("".join(row))
self.logger.info(f"values to fit: {values}")
@@ -102,31 +101,32 @@ class Solver(BaseSolver):
# depending on the number of cycles, either A or B will be in the center
#
# counts = [
# [
# sum(
# (i, j) in tiles
# for i in range(ci * cycle, (ci + 1) * cycle)
# for j in range(cj * cycle, (cj + 1) * cycle)
# )
# for cj in range(-2, 3)
# ]
# for ci in range(-2, 3)
# ]
counts = [
[
sum(
(i, j) in tiles
for i in range(ci * cycle, (ci + 1) * cycle)
for j in range(cj * cycle, (cj + 1) * cycle)
)
for cj in range(-2, 3)
]
for ci in range(-2, 3)
]
# radius = (26501365 - rhombus) // cycle - 1
# A = counts[2][2] if radius % 2 == 0 else counts[2][1]
# B = counts[2][2] if radius % 2 == 1 else counts[2][1]
# answer_2 = (
# (radius + 1) * A
# + radius * B
# + 2 * radius * (radius + 1) // 2 * A
# + 2 * radius * (radius - 1) // 2 * B
# + sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
# + sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
# * (radius + 1)
# + sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
# )
radius = (26501365 - rhombus) // cycle - 1
A = counts[2][2] if radius % 2 == 0 else counts[2][1]
B = counts[2][2] if radius % 2 == 1 else counts[2][1]
answer_2 = (
(radius + 1) * A
+ radius * B
+ 2 * radius * (radius + 1) // 2 * A
+ 2 * radius * (radius - 1) // 2 * B
+ sum(counts[i][j] for i, j in ((0, 2), (-1, 2), (2, 0), (2, -1)))
+ sum(counts[i][j] for i, j in ((0, 1), (0, 3), (-1, 1), (-1, 3)))
* (radius + 1)
+ sum(counts[i][j] for i, j in ((1, 1), (1, 3), (-2, 1), (-2, 3))) * radius
)
print(f"answer 2 (v1) is {answer_2}")
# version 2: fitting a polynomial
#

View File

@@ -1,5 +1,3 @@
# pyright: reportUnknownMemberType=false
from typing import Any, Iterator
import networkx as nx

View File

@@ -1,35 +1,7 @@
import itertools as it
from typing import Any, Iterator
from ..base import BaseSolver
def process(
grid: list[list[int]], current: tuple[int, int]
) -> set[tuple[tuple[int, int], ...]]:
row, col = current
value = grid[row][col] + 1
if grid[row][col] == 9:
return {((row, col),)}
return {
((row, col),) + path
for i, j in ((row - 1, col), (row, col + 1), (row + 1, col), (row, col - 1))
if 0 <= i < len(grid) and 0 <= j < len(grid[i]) and grid[i][j] == value
for path in process(grid, (i, j))
}
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
grid = [[int(col) for col in row] for row in input.splitlines()]
paths = {
(i, j): process(grid, (i, j))
for i, j in it.product(range(len(grid)), range(len(grid[0])))
if grid[i][j] == 0
}
yield sum(len({path[-1] for path in paths[head]}) for head in paths)
yield sum(len(paths_of) for paths_of in paths.values())
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,36 +1,7 @@
from functools import cache
from typing import Any, Iterator
from ..base import BaseSolver
def n_digits(n: int) -> int:
c = int(n == 0)
while n > 0:
c, n = c + 1, n // 10
return c
@cache
def blink_one_stone(stone: int, round: int) -> int:
if round == 0:
return 1
if stone == 0:
return blink_one_stone(1, round - 1)
if (n := n_digits(stone)) % 2 == 0:
p = 10 ** (n // 2)
return blink_one_stone(stone // p, round - 1) + blink_one_stone(
stone % p, round - 1
)
return blink_one_stone(stone * 2024, round - 1)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
stones = list(map(int, input.split()))
yield sum(blink_one_stone(stone, 25) for stone in stones)
yield sum(blink_one_stone(stone, 75) for stone in stones)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,101 +1,7 @@
import itertools as it
from dataclasses import dataclass
from typing import Any, Iterator, TypeAlias
from typing import Any, Iterator
from ..base import BaseSolver
Node: TypeAlias = tuple[int, int]
Edge: TypeAlias = tuple[Node, Node]
@dataclass(frozen=True)
class Region:
value: str
cells: set[tuple[int, int]]
edges: set[Edge]
sides: list[tuple[Edge, ...]]
def extract_region(grid: list[str], cell: tuple[int, int]):
n_rows, n_cols = len(grid), len(grid[0])
row, col = cell
value = grid[row][col]
cells: set[tuple[int, int]] = set()
edges: set[Edge] = set()
sides: list[tuple[Edge, ...]] = []
queue: list[tuple[int, int]] = [(row, col)]
while queue:
row, col = queue.pop(0)
if (row, col) in cells:
continue
cells.add((row, col))
for ur, uc in (
(row - 1, col),
(row, col + 1),
(row + 1, col),
(row, col - 1),
):
if 0 <= ur < n_rows and 0 <= uc < n_cols and grid[ur][uc] == value:
queue.append((ur, uc))
continue
if ((row, col), (ur, uc)) in edges:
continue
if col == uc:
mid, max = col, n_cols
def get(v: int):
return (row, v, ur, v)
else:
mid, max = row, n_rows
def get(v: int):
return (v, col, v, uc)
side: tuple[Edge, ...] = ((((row, col), (ur, uc))),)
for rng in (range(mid - 1, -1, -1), range(mid, max)):
for r2, c2, ur2, uc2 in map(get, rng):
if grid[r2][c2] != value or (
0 <= ur2 < n_rows
and 0 <= uc2 < n_cols
and grid[r2][c2] == grid[ur2][uc2]
):
break
side += ((((r2, c2), (ur2, uc2))),)
sides.append(side)
edges = edges.union(side)
return Region(value=value, cells=cells, edges=edges, sides=sides)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
grid = input.splitlines()
regions: list[Region] = []
to_visit: set[tuple[int, int]] = set(
it.product(range(len(grid)), range(len(grid[0])))
)
while to_visit:
region = extract_region(grid, next(iter(to_visit)))
self.logger.info(
f"region with {region.value}: "
f"{len(region.cells)} * {len(region.edges)} = {len(region.cells) * len(region.edges)}, "
f"{len(region.cells)} * {len(region.sides)} = {len(region.cells) * len(region.sides)}"
)
to_visit.difference_update(region.cells)
regions.append(region)
yield sum(len(region.cells) * len(region.edges) for region in regions)
yield sum(len(region.cells) * len(region.sides) for region in regions)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,79 +1,7 @@
import math
from dataclasses import dataclass
from typing import Any, Iterator
import parse # pyright: ignore[reportMissingTypeStubs]
from ..base import BaseSolver
@dataclass(frozen=True)
class Machine:
prize: tuple[int, int]
button_a: tuple[int, int]
button_b: tuple[int, int]
def read_machine(block: str) -> Machine:
ba = parse.parse( # type: ignore
"""Button A: X{bax:d}, Y{bay:d}
Button B: X{bbx:d}, Y{bby:d}
Prize: X={px:d}, Y={py:d}""",
block,
)
return Machine(
prize=(ba["px"], ba["py"]), # type: ignore
button_a=(ba["bax"], ba["bay"]), # type: ignore
button_b=(ba["bbx"], ba["bby"]), # type: ignore
)
def diophantine(a: int, b: int, c: int) -> tuple[int, int]:
q, r = divmod(a, b)
if r == 0:
return (0, c // b)
else:
u, v = diophantine(b, r, c)
return (v, u - q * v)
def solve(machine: Machine) -> int:
(ax, ay), (bx, by), (px, py) = machine.button_a, machine.button_b, machine.prize
dx, dy = math.gcd(ax, bx), math.gcd(ay, by)
if px % dx != 0 or py % dy != 0:
return 0
xa, xb = diophantine(ax, bx, px)
ya, yb = diophantine(ay, by, py)
# expr (x): xa - kx * bx / dx, xb + kx * ax / dx
# expr (y): ya - ky * by / dy, yb + ky * ay / dy
num = ay * (ya - xa) + by * (yb - xb)
den = (ax * by - ay * bx) // dx
if num % den != 0:
return 0
kx = num // den
pa, pb = xa - kx * bx // dx, xb + kx * ax // dx
return 3 * pa + pb
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
machines = [read_machine(block) for block in input.split("\n\n")]
yield sum(map(solve, machines))
shift = 10000000000000
machines = [
Machine(
prize=(shift + m.prize[0], shift + m.prize[1]),
button_a=m.button_a,
button_b=m.button_b,
)
for m in machines
]
yield sum(map(solve, machines))
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,74 +1,7 @@
import itertools as it
import operator as op
from math import prod
from typing import Any, Iterator
import numpy as np
import parse # pyright: ignore[reportMissingTypeStubs]
from ..base import BaseSolver
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
positions: list[tuple[int, int]] = []
velocities: list[tuple[int, int]] = []
for line in input.splitlines():
r = parse.parse("p={x:d},{y:d} v={vx:d},{vy:d}", line) # type: ignore
positions.append((r["y"], r["x"])) # type: ignore
velocities.append((r["vy"], r["vx"])) # type: ignore
n_rows, n_cols = 103, 101
if len(positions) < 20:
n_rows, n_cols = 7, 11
n_rounds = 100
new_positions = [
((row + v_row * n_rounds) % n_rows, (col + v_col * n_rounds) % n_cols)
for (row, col), (v_row, v_col) in zip(positions, velocities, strict=True)
]
midrow = n_rows // 2
midcol = n_cols // 2
yield prod(
(
sum(opr(row, midrow) and opc(col, midcol) for row, col in new_positions)
for opr, opc in it.product((op.gt, op.lt), repeat=2)
)
)
new_positions = positions.copy()
for rnd in self.progress.wrap(range(10000)):
new_positions = [
((row + v_row) % n_rows, (col + v_col) % n_cols)
for (row, col), (v_row, v_col) in zip(
new_positions, velocities, strict=True
)
]
m = [[False for _ in range(n_cols)] for _ in range(n_rows)]
for row, col in new_positions:
m[row][col] = True
found = False
for row in m:
if sum(row) <= 10:
continue
if any(all(row[i : i + 10]) for i in range(n_cols - 10)):
if self.files:
self.files.create(
f"result_{rnd+1}.txt",
"\n".join(
"".join("#" if m[i][j] else "." for j in range(n_cols))
for i in range(n_rows)
).encode(),
True,
)
self.files.image(f"result_{rnd+1}.png", np.array(m))
yield rnd + 1
# found = True
break
if found:
break
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,282 +1,7 @@
from typing import Any, Callable, Final, Iterator, TypeAlias
import numpy as np
from numpy.typing import NDArray
from typing import Any, Iterator
from ..base import BaseSolver
ImageGrid: TypeAlias = NDArray[np.uint8]
class Grid:
FREE: Final = 0
BLOCK: Final = 1
ROBOT: Final = 2
robot: tuple[int, int]
def __init__(self, grid_s: list[str], large: bool):
grid: list[list[int]] = []
robot: tuple[int, int] | None = None
box_counter = 4 if not large else 5
for i_row, row in enumerate(grid_s):
row_u: list[int] = []
for i_col, col in enumerate(row):
if col in ".@":
row_u.extend((Grid.FREE, Grid.FREE) if large else (Grid.FREE,))
if col == "@":
robot = (i_row, i_col * 2 if large else i_col)
elif col == "#":
row_u.extend((Grid.BLOCK, Grid.BLOCK) if large else (Grid.BLOCK,))
else:
row_u.extend(
(box_counter, -box_counter) if large else (box_counter,)
)
box_counter += 2
grid.append(row_u)
self.grid = np.array(grid)
assert robot is not None
self.robot = robot
@property
def n_rows(self):
return len(self.grid)
@property
def n_columns(self):
return len(self.grid[0])
def __len__(self):
return self.n_rows
def __iter__(self):
return iter(self.grid)
def __getitem__(self, index: tuple[int, int]):
return self.grid[*index]
def __setitem__(self, index: tuple[int, int], value: int):
self.grid[*index] = value
def is_free(self, row: int, col: int):
return self[row, col] == Grid.FREE
def is_block(self, row: int, col: int):
return self[row, col] == Grid.BLOCK
def is_box(self, row: int, col: int):
return (c := self[row, col]) >= 4 and c % 2 == 0
def is_open_or_close_box(self, row: int, col: int):
return abs(c := self[row, col]) >= 4 and c % 2 == 1
def is_open_box(self, row: int, col: int):
return (c := self[row, col]) >= 4 and c % 2 == 1
def is_close_box(self, row: int, col: int):
return self[row, col] < 0
def _to_char(self, row: int, col: int):
if self.is_free(row, col):
return "."
elif self.is_block(row, col):
return "#"
elif self.is_box(row, col):
return "O"
elif self.is_open_box(row, col):
return "["
else:
return "]"
def as_numpy(self):
arr = self.grid.copy()
arr[*self.robot] = Grid.ROBOT
return arr
def as_printable(self):
grid_s = [
[self._to_char(row, col) for col in range(self.n_columns)]
for row in range(self.n_rows)
]
grid_s[self.robot[0]][self.robot[1]] = "\033[31;1m@\033[00m"
return "\n".join("".join(row) for row in grid_s)
def __str__(self):
return self.as_printable()
class Solver(BaseSolver):
def save_grid(self, name: str, grid: Grid):
if self.files:
self.files.create(name, grid.as_printable().encode(), True)
def step_part1(self, grid: Grid, move: str):
match move:
case "^":
d_row, d_col = -1, 0
case ">":
d_row, d_col = 0, 1
case "v":
d_row, d_col = 1, 0
case "<":
d_row, d_col = 0, -1
case _:
assert False
row, col = grid.robot
if grid.is_free(row + d_row, col + d_col):
grid.robot = (row + d_row, col + d_col)
elif not grid.is_block(row + d_row, col + d_col):
n = 1
while grid.is_box(row + n * d_row, col + n * d_col):
n += 1
if grid.is_free(row + n * d_row, col + n * d_col):
grid.robot = (row + d_row, col + d_col)
for k in range(2, n + 1):
grid[row + k * d_row, col + k * d_col] = grid[
row + (k - 1) * d_row, col + (k - 1) * d_col
]
grid[row + d_row, col + d_col] = Grid.FREE
return grid
def step_part2(self, grid: Grid, move: str):
match move:
case "^":
d_row, d_col = -1, 0
case ">":
d_row, d_col = 0, 1
case "v":
d_row, d_col = 1, 0
case "<":
d_row, d_col = 0, -1
case _:
assert False
row, col = grid.robot
if grid.is_free(row + d_row, col + d_col):
grid.robot = (row + d_row, col + d_col)
elif grid.is_block(row + d_row, col + d_col):
...
elif move in "<>":
n = 1
while grid.is_open_or_close_box(row, col + n * d_col):
n += 1
if grid.is_free(row, col + n * d_col):
grid.robot = (row, col + d_col)
for k in range(n, 1, -1):
grid[row, col + k * d_col] = grid[row, col + (k - 1) * d_col]
grid[row + d_row, col + d_col] = Grid.FREE
elif move in "^v":
n = 1
boxes: list[set[int]] = [{col}]
while True:
to_move = boxes[-1]
if any(grid.is_block(row + n * d_row, c) for c in to_move):
break
if all(grid.is_free(row + n * d_row, c) for c in to_move):
break
as_move: set[int] = set()
for c in to_move:
if grid.is_close_box(row + n * d_row, c):
as_move.update({c - 1, c})
elif grid.is_open_box(row + n * d_row, c):
as_move.update({c, c + 1})
boxes.append(as_move)
n += 1
if all(grid.is_free(row + n * d_row, c) for c in boxes[-1]):
for k, to_move in zip(range(n, 1, -1), boxes[-1:0:-1], strict=True):
for c in to_move:
grid[row + k * d_row, c] = grid[row + (k - 1) * d_row, c]
grid[row + (k - 1) * d_row, c] = Grid.FREE
grid.robot = (row + d_row, col + d_col)
return grid
def run(
self,
name: str,
grid: Grid,
moves: str,
fn: Callable[[Grid, str], Grid],
generate: bool,
) -> tuple[Grid, list[ImageGrid]]:
# initialize
images: list[ImageGrid] = []
if generate:
images.append(grid.as_numpy())
self.save_grid(f"initial_grid_{name}.txt", grid)
for move in self.progress.wrap(moves):
self.logger.debug(f"Move '{move}'...")
grid = fn(grid, move)
if generate:
images.append(grid.as_numpy())
self.save_grid(f"final_grid_{name}.txt", grid)
return grid, images
def solve(self, input: str) -> Iterator[Any]:
grid_s, moves = input.split("\n\n")
moves = "".join(moves.split())
n_boxes = grid_s.count("O")
colors = np.concatenate(
[
np.array(
[[255, 255, 255], [64, 64, 64], [255, 0, 0]],
dtype=np.uint8,
),
np.random.randint(0, 256, size=(n_boxes, 3), dtype=np.uint8),
],
dtype=np.uint8,
)
grid, images = self.run(
"part1",
Grid(grid_s.splitlines(), False),
moves,
self.step_part1,
self.files is not None,
)
if self.files:
images = np.stack(images, axis=0)
images[images >= 2] = 1 + images[images >= 2] // 2
self.files.video("anim_part1.webm", colors[images])
yield sum(
100 * row + col
for row in range(grid.n_rows)
for col in range(grid.n_columns)
if grid.is_box(row, col)
)
grid, images = self.run(
"part2",
Grid(grid_s.splitlines(), True),
moves,
self.step_part2,
self.files is not None,
)
if self.files:
images = np.abs(np.stack(images, axis=0))
images[images >= 2] = 1 + images[images >= 2] // 2
self.files.video("anim_part2.webm", colors[images])
yield sum(
100 * row + col
for row in range(grid.n_rows)
for col in range(grid.n_columns)
if grid.is_open_box(row, col)
)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,62 +1,7 @@
import heapq
from collections import defaultdict
from typing import Any, Iterator, TypeAlias
from typing import Any, Iterator
from ..base import BaseSolver
Position: TypeAlias = tuple[int, int]
Direction: TypeAlias = tuple[int, int]
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
grid = [list(r) for r in input.splitlines()]
n_rows, n_cols = len(grid), len(grid[0])
rein = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "S"
)
target = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "E"
)
queue: list[tuple[int, Position, Direction, tuple[Position, ...]]] = [
(0, rein, (0, 1), (rein,))
]
max_score = n_rows * n_cols * 1000
target_score: int = max_score
scores: dict[tuple[Position, Direction], int] = defaultdict(lambda: max_score)
visited: set[Position] = set()
while queue:
score, pos, dir, path = heapq.heappop(queue)
if target_score < score:
break
if pos == target:
target_score = score
visited |= set(path)
continue
scores[pos, dir] = score
row, col = pos
d_row, d_col = dir
for cost, n_pos, n_dir in (
(1, (row + d_row, col + d_col), dir),
(1000, pos, (1, 0) if d_row == 0 else (0, 1)),
(1000, pos, (-1, 0) if d_row == 0 else (0, -1)),
):
n_row, n_col = n_pos
score_n = score + cost
if grid[n_row][n_col] != "#" and score_n < scores[n_pos, n_dir]:
heapq.heappush(
queue,
(score_n, n_pos, n_dir, path + (n_pos,)),
)
assert target_score is not None
yield target_score
yield len(visited)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -3,128 +3,5 @@ from typing import Any, Iterator
from ..base import BaseSolver
def combo(registers: dict[str, int], operand: int):
if operand < 4:
return operand
assert operand < 7
return registers["ABC"[operand - 4]]
def adv(registers: dict[str, int], operand: int) -> int | None:
registers["A"] = registers["A"] >> combo(registers, operand)
def bxl(registers: dict[str, int], operand: int) -> int | None:
registers["B"] ^= operand
def bst(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = combo(registers, operand) % 8
def jnz(registers: dict[str, int], operand: int) -> int | None:
if registers["A"] != 0:
return operand
def bxc(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = registers["B"] ^ registers["C"]
def bdv(registers: dict[str, int], operand: int) -> int | None:
registers["B"] = registers["A"] >> combo(registers, operand)
def cdv(registers: dict[str, int], operand: int) -> int | None:
registers["C"] = registers["A"] >> combo(registers, operand)
def run(registers: dict[str, int], program: list[int]):
outputs: list[int] = []
def out(registers: dict[str, int], operand: int) -> int | None:
outputs.append(combo(registers, operand) % 8)
instructions = [adv, bxl, bst, jnz, bxc, out, bdv, cdv]
index = 0
while index < len(program):
instruction, operand = instructions[program[index]], program[index + 1]
ret = instruction(registers, operand)
if ret is None:
index += 2
else:
index = ret
return outputs
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
register_s, program_s = input.split("\n\n")
registers = {
p[0][-1]: int(p[1].strip())
for line in register_s.splitlines()
if (p := line.split(":"))
}
program = [int(c) for c in program_s.split(":")[1].strip().split(",")]
self.logger.info(f"program ({len(program)}): " + ",".join(map(str, program)))
instruction_s = [
"A = A >> {}",
"B = B ^ {}",
"B = {} % 8",
"JMP {}",
"B = B ^ C",
"OUT {} % 8",
"B = A >> {}",
"C = A >> {}",
]
self.logger.info("PROGRAM:")
for index in range(0, len(program), 2):
self.logger.info(
instruction_s[program[index]].format(
""
if program[index] == 4
else (
program[index + 1]
if program[index] in (1, 3) or program[index + 1] < 4
else "ABC"[program[index + 1] - 4]
)
),
)
yield ",".join(map(str, run(registers.copy(), program)))
# last instruction is JNZ 0 (jump at the beginning), and it is the only jump
# in the program
jnz_indices = [i for i in range(0, len(program), 2) if program[i] == 3]
assert jnz_indices == [len(program) - 2] and program[-1] == 0
# previous instruction is dividing A by 8, or A = A >> 3
assert program[-4:-2] == [0, 3]
# previous instruction is a OUT B % 8, and it is the only OUT in the program
out_indices = [i for i in range(0, len(program), 2) if program[i] == 5]
assert out_indices == [len(program) - 6] and program[len(program) - 5] == 5
valid: list[int] = [0]
for p in reversed(program):
new_valid: list[int] = []
for v in valid:
a_high = v << 3
for a_low in range(0, 2**3):
registers["A"] = a_high | a_low
run(registers, program[:-6])
if registers["B"] % 8 == p:
new_valid.append(a_high | a_low)
valid = new_valid
assert run(registers | {"A": min(valid)}, program) == program
yield min(valid)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,58 +1,7 @@
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools import graphs
class Solver(BaseSolver):
def print_grid(self, grid: list[tuple[int, int]], n_rows: int, n_cols: int):
values = set(grid)
if self.files:
self.files.create(
"graph.txt",
"\n".join(
"".join(
"#" if (row, col) in values else "." for col in range(n_cols)
)
for row in range(n_rows)
).encode(),
text=True,
)
else:
for row in range(n_rows):
self.logger.info(
"".join(
"#" if (row, col) in values else "." for col in range(n_cols)
)
)
def dijkstra(self, corrupted: list[tuple[int, int]], n_rows: int, n_cols: int):
return graphs.dijkstra(
(0, 0),
(n_rows - 1, n_cols - 1),
graphs.make_neighbors_grid_fn(n_rows, n_cols, set(corrupted)),
)
def solve(self, input: str) -> Iterator[Any]:
values = [
(int(p[0]), int(p[1])) for r in input.splitlines() if (p := r.split(","))
]
_is_test = len(values) < 100
n_rows, n_cols, n_bytes_p1 = (7, 7, 12) if _is_test else (71, 71, 1024)
bytes_p1 = values[:n_bytes_p1]
self.print_grid(bytes_p1, n_rows, n_cols)
path_p1, cost_p1 = self.dijkstra(bytes_p1, n_rows, n_cols) or ((), -1)
yield cost_p1
path = path_p1
for b in range(n_bytes_p1, len(values)):
if values[b] not in path:
continue
path, _ = self.dijkstra(values[: b + 1], n_rows, n_cols) or (None, -1)
if path is None:
yield ",".join(map(str, values[b]))
break
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,42 +1,7 @@
from functools import cache
from typing import Any, Iterator
from ..base import BaseSolver
@cache
def is_valid(design: str, towels: tuple[str, ...]) -> bool:
if not design:
return True
return any(
design.startswith(towel) and is_valid(design[len(towel) :], towels)
for towel in towels
)
@cache
def count_valid(design: str, towels: tuple[str, ...]) -> int:
if not design:
return 1
return sum(
design.startswith(towel) and count_valid(design[len(towel) :], towels)
for towel in towels
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
towels_s, designs_s = input.split("\n\n")
towels = tuple(s.strip() for s in towels_s.split(","))
designs = [
design
for design in self.progress.wrap(designs_s.splitlines())
if is_valid(design, towels)
]
yield len(designs)
yield sum(count_valid(design, towels) for design in self.progress.wrap(designs))
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,95 +1,7 @@
import itertools
from collections import Counter
from typing import Any, Callable, Iterable, Iterator, Sequence, TypeAlias
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools.graphs import dijkstra, make_neighbors_grid_fn
Node: TypeAlias = tuple[int, int]
def make_neighbors_fn(grid: list[str], cheat_length: int):
n_rows, n_cols = len(grid), len(grid[0])
def _fn(node: Node):
row, col = node
return (
((row_n, col_n), abs(row_n - row) + abs(col_n - col))
for row_d in range(-cheat_length, cheat_length + 1)
for col_d in range(
-cheat_length + abs(row_d), cheat_length - abs(row_d) + 1
)
if 0 <= (row_n := row + row_d) < n_rows
and 0 <= (col_n := col + col_d) < n_cols
and grid[row_n][col_n] != "#"
)
return _fn
class Solver(BaseSolver):
def find_cheats(
self,
path: Sequence[Node],
cost: float,
costs_to_target: dict[Node, float],
neighbors_fn: Callable[[Node], Iterable[tuple[Node, float]]],
):
cheats: dict[tuple[tuple[int, int], tuple[int, int]], float] = {}
for i_node, node in enumerate(self.progress.wrap(path)):
for reach_node, reach_cost in neighbors_fn(node):
n_cost = (
i_node + reach_cost + costs_to_target.get(reach_node, float("inf"))
)
if n_cost < cost:
cheats[node, reach_node] = cost - n_cost
return cheats
def solve(self, input: str) -> Iterator[Any]:
grid = input.splitlines()
n_rows, n_cols = len(grid), len(grid[0])
start = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "S"
)
target = next(
(i, j) for i in range(n_rows) for j in range(n_cols) if grid[i][j] == "E"
)
reachable = dijkstra(
target,
None,
make_neighbors_grid_fn(
n_rows,
n_cols,
excluded=(
(i, j)
for i in range(n_rows)
for j in range(n_cols)
if grid[i][j] == "#"
),
),
)
# note: path is inverted here
path, cost = reachable[start]
costs_to_target = {k: c for k, (_, c) in reachable.items()}
self.logger.info(f"found past from start to target with cost {cost}")
for cheat_length in (2, 20):
cheats = self.find_cheats(
list(reversed(path)),
cost,
costs_to_target,
make_neighbors_fn(grid, cheat_length),
)
for saving, count in sorted(Counter(cheats.values()).items()):
self.logger.debug(
f"There are {count} cheats that save {saving} picoseconds."
)
target_saving = 100 if len(grid) > 20 else 50
yield sum(saving >= target_saving for saving in cheats.values())
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,85 +1,7 @@
import itertools
from functools import cache
from typing import Any, Iterator, Literal
from typing import Any, Iterator
from ..base import BaseSolver
NUM_PAD_P = {
v: (i, j)
for i, r in enumerate(("789", "456", "123", " 0A"))
for j, v in enumerate(r)
if v.strip()
}
MOV_PAD_P = {
v: (i, j)
for i, r in enumerate((" ^A", "<v>"))
for j, v in enumerate(r)
if v.strip()
}
def path(start: tuple[int, int], end: tuple[int, int], pad: Literal["num", "mov"]):
# a move in the grid is composed of at most two straight line: up/down and
# left/right, since doing some kind of diagonal moves would create long path for
# the robot above (since this involves going back-and-forth to the letter 'A')
#
row_s, col_s = start
row_e, col_e = end
le, de, ue, re = (
"<" * max(0, col_s - col_e),
"v" * max(0, row_e - row_s),
"^" * max(0, row_s - row_e),
">" * max(0, col_e - col_s),
)
# when the robot starts or ends on the row/column with the empty cell, there is
# only one way to move
#
if pad == "num" and (row_s, col_e) == (3, 0):
return ue + le
elif pad == "num" and (col_s, row_e) == (0, 3):
return re + de
elif pad == "mov" and col_s == 0:
return re + ue
elif pad == "mov" and col_e == 0:
return de + le
# otherwise, we need to decide if we want to go up/down first, or left/right, and
# apparently this is the best way to do it...
return le + de + ue + re
@cache
def v_clicks(clicks: str, depth: int) -> int:
if depth == 0:
return len(clicks)
n_clicks = 0
at = "A"
for _, group in itertools.groupby(clicks):
group = list(group)
n_clicks += v_clicks(
path(MOV_PAD_P[at], MOV_PAD_P[group[0]], "mov") + "A" * len(group),
depth - 1,
)
at = group[0]
return n_clicks
def path_length(code: str, depth: int):
return sum(
v_clicks(path(NUM_PAD_P[start], NUM_PAD_P[end], "num") + "A", depth)
for start, end in zip("A" + code[:-1], code, strict=True)
)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
yield sum(
path_length(code, 2) * int(code[:-1], 10) for code in input.splitlines()
)
yield sum(
path_length(code, 25) * int(code[:-1], 10) for code in input.splitlines()
)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -3,57 +3,5 @@ from typing import Any, Iterator
from ..base import BaseSolver
def mix(secret: int, value: int) -> int:
return secret ^ value
def prune(secret: int) -> int:
return secret % 16777216
def next_number(secret: int) -> int:
# Calculate the result of multiplying the secret number by 64. Then, mix this
# result into the secret number. Finally, prune the secret number.
secret = prune(mix(secret, secret * 64))
# Calculate the result of dividing the secret number by 32. Round the result down
# to the nearest integer. Then, mix this result into the secret number. Finally,
# prune the secret number.
secret = prune(mix(secret, secret // 32))
# Calculate the result of multiplying the secret number by 2048. Then, mix this
# result into the secret number. Finally, prune the secret number.
secret = prune(mix(secret, secret * 2048))
return secret
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
starts = [int(r) for r in input.splitlines()]
ends: list[int] = []
prices: list[int] = [0 for _ in range(2**16)]
for secret in self.progress.wrap(starts):
checked: list[bool] = [False] * len(prices)
hashed: int = 0
for i in range(2000):
last = secret % 10
secret = next_number(secret)
next = secret % 10
hashed = ((hashed << 4) & 0xFFFF) | ((last - next) & 0xF)
if i >= 3 and not checked[hashed]:
checked[hashed] = True
prices[hashed] += next
ends.append(secret)
for start, end in zip(starts, ends, strict=True):
self.logger.info(f"{start}: {end}")
yield sum(ends)
yield max(prices)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,36 +1,7 @@
from collections import defaultdict
from typing import Any, Iterator
from ..base import BaseSolver
from ..tools.graphs import iter_max_cliques
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
connections: dict[str, set[str]] = defaultdict(set)
for row in input.splitlines():
src, dst = row.split("-")
connections[src].add(dst)
connections[dst].add(src)
if self.files:
content = "graph G {\n"
for row in input.splitlines():
src, dst = row.split("-")
content += f"{src} -- {dst}\n"
content += "}"
self.files.create("graph.dot", content.encode(), False)
cliques: set[frozenset[str]] = set()
for node1, neighbors in connections.items():
for node2 in neighbors:
for node3 in connections[node2].intersection(neighbors):
cliques.add(frozenset({node1, node2, node3}))
self.logger.info(f"found {len(cliques)} cliques of size 3")
yield sum(any(node.startswith("t") for node in clique) for clique in cliques)
# clique = max(nx.algorithms.clique.find_cliques(G), key=len)
clique = max(iter_max_cliques(connections), key=len)
yield ",".join(sorted(clique))
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,170 +1,7 @@
from dataclasses import dataclass
from typing import Any, Iterator, Literal, TypeAlias, cast
from typing import Any, Iterator
from ..base import BaseSolver
GateType: TypeAlias = Literal["and", "or", "xor"]
@dataclass(frozen=True, eq=True)
class Gate:
type: GateType
lhs: str
rhs: str
def __call__(self, lhs: int, rhs: int) -> Any:
match self.type:
case "or":
return int(lhs or rhs)
case "and":
return int(lhs and rhs)
case "xor":
return int(lhs != rhs)
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
inputs_s, gates_s = input.split("\n\n")
wires: dict[str, int | None] = {}
for row in inputs_s.splitlines():
parts = row.split(": ")
wires[parts[0]] = int(parts[1])
gates: dict[str, Gate] = {}
for row in gates_s.splitlines():
parts = row.split()
assert parts[4] not in gates
assert parts[4] not in wires
lhs, rhs = sorted([parts[0], parts[2]])
gates[parts[4]] = Gate(cast(GateType, parts[1].lower()), lhs, rhs)
wires[parts[4]] = None
if self.files:
content = "digraph G {\n"
for wire in wires:
content += f'{wire} [label="{wire}"]\n'
for wire, gate in gates.items():
gate_n = f"G_{wire}"
content += f'{gate_n} [label="{gate.type.upper()}"]\n'
content += f"{gate.lhs} -> {gate_n}\n"
content += f"{gate.rhs} -> {gate_n}\n"
content += f"{gate_n} -> {wire}\n"
content += "}\n"
self.files.create("gates.dot", content.encode(), text=False)
wires_to_find = set(gates)
while wires_to_find:
wires_found: list[str] = []
for wire in wires_to_find:
gate = gates[wire]
lhs, rhs = wires[gate.lhs], wires[gate.rhs]
if lhs is None or rhs is None:
continue
assert wires[wire] is None
wires[wire] = gate(lhs, rhs)
wires_found.append(wire)
wires_to_find.difference_update(wires_found)
z_wires = sorted((wire for wire in wires if wire.startswith("z")))
self.logger.info(
"binary value is '{}'".format(
"".join(str(wires[w]) for w in reversed(z_wires))
)
)
yield int("".join(str(wires[w]) for w in reversed(z_wires)), base=2)
# e00 = x00 ^ y00
# z00 = e00
# r00 = x00 & y00
# e01 = x01 ^ y01
# z01 = r00 ^ e01
# a01 = x01 & y01
# b01 = r00 & e01
# r01 = a01 | (r00 & e01)
assert gates["z00"] == Gate("xor", "x00", "y00")
# normalized names -> gate name
m_gates: dict[str, str] = {}
def find_gate(type: GateType, lhs: str, rhs: str):
try:
return next(
wire
for wire, gate in gates.items()
if gate.type == type
and {gate.lhs, gate.rhs}
== {m_gates.get(lhs, lhs), m_gates.get(rhs, rhs)}
)
except StopIteration as ex:
self.logger.info(
f"gate {lhs} [{m_gates.get(lhs, lhs)}] {type} {rhs} [{m_gates.get(rhs, rhs)}] not found"
)
raise ex
# find the r00 gate (= x00 & y00)
m_gates["r00"] = find_gate("and", "x00", "y00")
swapped: list[str] = []
for i_wire, z_wire in enumerate(z_wires[1:-1], start=1):
i2d = f"{i_wire:02d}"
r0n = f"r{i_wire - 1:02d}"
m_gates[f"e{i2d}"] = find_gate("xor", f"x{i2d}", f"y{i2d}")
try:
z_gate = find_gate("xor", r0n, f"e{i2d}")
except StopIteration:
# gate xor not found -> one of the input gate has been swapped
#
# assume there is a XOR gate with the remainder, so it is the other
# input that has been swapped
assert gates[z_wire].type == "xor"
assert m_gates.get(r0n, r0n) in (gates[z_wire].lhs, gates[z_wire].rhs)
wrong_wire_1 = (
gates[z_wire].lhs
if gates[z_wire].rhs == m_gates.get(r0n, r0n)
else gates[z_wire].rhs
)
wrong_wire_2 = m_gates[f"e{i2d}"]
# we are going to fix all the gates (there is probably only 2 but
# eh...) whose wires needs to be swapped
self.logger.info(f"swapping {wrong_wire_1} <> {wrong_wire_2}")
switch = {wrong_wire_1: wrong_wire_2, wrong_wire_2: wrong_wire_1}
for wire, gate in list(gates.items()):
lhs, rhs = (
switch.get(gate.lhs, gate.lhs),
switch.get(gate.rhs, gate.rhs),
)
if lhs != gate.lhs or rhs != gate.rhs:
gates[wire] = Gate(gate.type, lhs, rhs)
swapped.extend((wrong_wire_1, wrong_wire_2))
z_gate = find_gate("xor", r0n, f"e{i2d}")
if z_gate != z_wire:
self.logger.info(f"swapping {z_gate} <> {z_wire}")
gates[z_gate], gates[z_wire] = gates[z_wire], gates[z_gate]
swapped.extend((z_gate, z_wire))
m_gates[f"a{i2d}"] = find_gate("and", f"x{i2d}", f"y{i2d}")
m_gates[f"b{i2d}"] = find_gate("and", r0n, f"e{i2d}")
m_gates[f"r{i2d}"] = find_gate("or", f"a{i2d}", f"b{i2d}")
assert len(swapped) == 8
yield ",".join(sorted(swapped))
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,40 +1,7 @@
import itertools as it
from typing import Any, Iterator
from ..base import BaseSolver
def read_locks_and_keys(input: str):
locks: list[tuple[int, ...]] = []
keys: list[tuple[int, ...]] = []
for block in map(str.splitlines, input.split("\n\n")):
n_rows, n_cols = len(block), len(block[0])
if block[0] == "#" * n_cols:
locks.append(
tuple(
next(i for i in range(n_rows) if block[i][j] == ".") - 1
for j in range(n_cols)
)
)
else:
keys.append(
tuple(
n_rows - next(i for i in range(n_rows) if block[i][j] == "#") - 1
for j in range(n_cols)
)
)
return locks, keys
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
locks, keys = read_locks_and_keys(input)
assert len(set(locks)) == len(locks)
assert len(set(keys)) == len(keys)
yield sum(
all(c1 + c2 <= 5 for c1, c2 in zip(lock, key, strict=True))
for lock, key in it.product(locks, keys)
)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -4,64 +4,4 @@ from ..base import BaseSolver
class Solver(BaseSolver):
def solve(self, input: str) -> Iterator[Any]:
blocks: list[tuple[int, int]] = []
frees: list[tuple[int, int]] = []
contents_0: list[int | None] = [None for _ in range(sum(map(int, input)))]
acc = 0
for i, c in enumerate(input):
if i % 2 == 0:
for j in range(acc, acc + int(c)):
contents_0[j] = i // 2
blocks.append((acc, int(c)))
else:
frees.append((acc, int(c)))
acc += int(c)
assert contents_0[-1] is not None
contents = contents_0.copy()
free_0 = next(i for i, c in enumerate(contents) if c is None)
next_b = len(contents) - 1
while free_0 < next_b:
contents[free_0], contents[next_b] = contents[next_b], contents[free_0]
free_0 += 1
while free_0 < len(contents) and contents[free_0] is not None:
free_0 += 1
next_b -= 1
while next_b >= 0 and contents[next_b] is None:
next_b -= 1
yield sum(i * c for i, c in enumerate(contents) if c is not None)
contents = contents_0.copy()
for block_start, block_length in self.progress.wrap(blocks[::-1]):
try:
i_free = next(
i_free
for i_free, (free_start, free_length) in enumerate(frees)
if free_start < block_start and free_length >= block_length
)
except StopIteration:
continue
free_start, free_length = frees[i_free]
contents[free_start : free_start + block_length] = contents[
block_start : block_start + block_length
]
contents[block_start : block_start + block_length] = [None] * block_length
if free_length == block_length:
del frees[i_free]
else:
frees[i_free] = (free_start + block_length, free_length - block_length)
yield sum(i * c for i, c in enumerate(contents) if c is not None)
def solve(self, input: str) -> Iterator[Any]: ...

View File

@@ -1,48 +1,114 @@
import argparse
import importlib
import json
import logging
import logging.handlers
import sys
from datetime import datetime
from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Iterable, Iterator, Literal, Sequence, TextIO, TypeVar
from tqdm import tqdm
from .base import BaseSolver
from .utils.api import FileHandlerAPI, LoggerAPIHandler, ProgressAPI, dump_answer
from .utils.files import SimpleFileHandler
from .utils.progress import ProgressNone, ProgressTQDM
_T = TypeVar("_T")
def find_input_file(folder: Path, day: int, target: Path | None):
if (path := folder.joinpath(f"day{day}.txt")).exists():
return path
def dump_api_message(
type: Literal["log", "answer", "progress-start", "progress-step", "progress-end"],
content: Any,
file: TextIO = sys.stdout,
):
print(
json.dumps(
{"type": type, "time": datetime.now().isoformat(), "content": content}
),
flush=True,
file=file,
)
if (
target is not None
and (path := folder.joinpath(f"day{day}_v{target}.txt")).exists()
class LoggerAPIHandler(logging.Handler):
def __init__(self, output: TextIO = sys.stdout):
super().__init__()
self.output = output
def emit(self, record: logging.LogRecord):
dump_api_message(
"log", {"level": record.levelname, "message": record.getMessage()}
)
class ProgressAPI:
def __init__(
self,
min_step: int = 1,
min_time: timedelta = timedelta(milliseconds=100),
output: TextIO = sys.stdout,
):
return path
super().__init__()
try:
return next(path for path in sorted(folder.glob(f"day{day}*.txt")))
except StopIteration:
...
self.counter = 0
self.output = output
self.min_step = min_step
self.min_time = min_time
return folder.joinpath(f"day{day}.txt")
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
total = total or len(values) # type: ignore
current = self.counter
self.counter += 1
dump_api_message("progress-start", {"counter": current, "total": total})
try:
percent = 0
time = datetime.now()
for i_value, value in enumerate(values):
yield value
if datetime.now() - time < self.min_time:
continue
time = datetime.now()
c_percent = round(i_value / total * 100)
if c_percent >= percent + self.min_step:
dump_api_message(
"progress-step", {"counter": current, "percent": c_percent}
)
percent = c_percent
finally:
dump_api_message(
"progress-end",
{"counter": current},
)
class ProgressTQDM:
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
return iter(tqdm(values, total=total))
class ProgressNone:
def wrap(
self, values: Sequence[_T] | Iterable[_T], total: int | None = None
) -> Iterator[_T]:
return iter(values)
def main():
parser = argparse.ArgumentParser("Holt59 Advent-Of-Code Runner")
parser.add_argument("-v", "--verbose", action="store_true", help="verbose mode")
parser.add_argument("-t", "--test", action="store_true", help="test mode")
parser.add_argument("-a", "--api", action="store_true", help="API mode")
parser.add_argument(
"-o",
"--output",
type=Path,
default=Path("files"),
help="output folder for created files",
)
parser.add_argument(
"-u", "--user", type=str, default="holt59", help="user input to use"
)
@@ -69,24 +135,20 @@ def main():
test: bool = args.test
stdin: bool = args.stdin
user: str = args.user
files_output: Path = args.output
input_path: Path | None = args.input
year: int = args.year
day: int = args.day
# TODO: change this
logging.basicConfig(
level=logging.INFO if verbose else logging.WARNING,
level=logging.INFO if verbose or api else logging.WARNING,
handlers=[LoggerAPIHandler()] if api else None,
)
if input_path is None or not input_path.exists():
input_path = find_input_file(
Path(__file__).parent.joinpath(
"inputs", "tests" if test else user, str(year)
),
day,
input_path,
if input_path is None:
input_path = Path(__file__).parent.joinpath(
"inputs", "tests" if test else user, str(year), f"day{day}.txt"
)
assert input_path.exists(), f"{input_path} missing"
@@ -104,11 +166,7 @@ def main():
else ProgressTQDM()
if verbose
else ProgressNone(), # type: ignore
files=FileHandlerAPI(files_output)
if api and verbose
else SimpleFileHandler(logging.getLogger("AOC"), files_output)
if verbose
else None,
outputs=not api,
)
data: str
@@ -121,7 +179,7 @@ def main():
start = datetime.now()
last = start
it = solver.solve(data.rstrip())
it = solver.solve(data.strip())
if it is None:
solver.logger.error(f"no implementation for {year} day {day}")
@@ -131,11 +189,14 @@ def main():
current = datetime.now()
if api:
dump_answer(
part=i_answer + 1,
answer=answer,
answer_time=current - last,
total_time=current - start,
dump_api_message(
"answer",
{
"answer": i_answer + 1,
"value": answer,
"answerTime_s": (current - last).total_seconds(),
"totalTime_s": (current - start).total_seconds(),
},
)
else:
print(

View File

@@ -1,78 +1,18 @@
from abc import abstractmethod
from logging import Logger
from pathlib import Path
from typing import (
Any,
Final,
Iterable,
Iterator,
Protocol,
Sequence,
TypeVar,
overload,
)
from numpy.typing import NDArray
from typing import Any, Final, Iterable, Iterator, Protocol, Sequence, TypeVar, overload
_T = TypeVar("_T")
class ProgressHandler(Protocol):
@overload
def wrap(self, values: Sequence[_T]) -> Iterator[_T]: ...
def wrap(self, values: Sequence[_T]) -> Iterator[_T]:
...
@overload
def wrap(self, values: Iterable[_T], total: int) -> Iterator[_T]: ...
class FileHandler:
@abstractmethod
def make_path(self, filename: str) -> Path: ...
@abstractmethod
def notify_created(self, path: Path): ...
@abstractmethod
def _create(
self, path: Path, content: bytes, text: bool = False
) -> Path | None: ...
def create(self, filename: str, content: bytes, text: bool = False):
path = self._create(self.make_path(filename), content, text)
if path is not None:
self.notify_created(path)
def image(self, filename: str, image: NDArray[Any]):
import imageio.v3 as iio
from pygifsicle import optimize # type: ignore
path = self.make_path(filename)
iio.imwrite(path, image) # type: ignore
optimize(path, options=["--no-warnings"])
self.notify_created(path)
def video(self, filename: str, video: NDArray[Any]):
import cv2
path = self.make_path(filename)
fps = 5
out = cv2.VideoWriter(
path.as_posix(),
cv2.VideoWriter_fourcc(*"vp80"), # type: ignore
fps,
(video.shape[2], video.shape[1]),
True,
)
for picture in video:
out.write(picture)
out.release()
self.notify_created(path)
def wrap(self, values: Iterable[_T], total: int) -> Iterator[_T]:
...
class BaseSolver:
@@ -83,14 +23,15 @@ class BaseSolver:
year: int,
day: int,
progress: ProgressHandler,
files: FileHandler | None = None,
outputs: bool = False,
):
self.logger: Final = logger
self.verbose: Final = verbose
self.year: Final = year
self.day: Final = day
self.progress: Final = progress
self.files: Final = files
self.outputs = outputs
@abstractmethod
def solve(self, input: str) -> Iterator[Any] | None: ...
def solve(self, input: str) -> Iterator[Any] | None:
...

View File

@@ -1,49 +0,0 @@
jio a, +19
inc a
tpl a
inc a
tpl a
inc a
tpl a
tpl a
inc a
inc a
tpl a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
jmp +23
tpl a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
inc a
tpl a
inc a
tpl a
inc a
tpl a
inc a
inc a
tpl a
inc a
inc a
tpl a
tpl a
inc a
jio a, +8
inc b
jie a, +4
tpl a
inc a
jmp +2
hlf a
jmp -7

View File

@@ -1,28 +0,0 @@
1
3
5
11
13
17
19
23
29
31
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113

View File

@@ -1 +0,0 @@
To continue, please consult the code grid in the manual. Enter the code at row 3010, column 3019.

View File

@@ -1,94 +0,0 @@
<[<<({{<{<[[([()][()()])<{[]<>}{<>}>><<<[]{}>>{<<><>>({}{})}>][<<<{}<>>([])>{<{}><()>}>]><(<{(()[]){[](
<{([({{[(<[({({}{})[()<>]}{{<>{}}[(){}]})]>({(<<<><>>{{}()}>)<<<[]><{}<>>><[{}[]]<<>[]>>>}))[{(<{([]
([<([({(<([<({()()}(<>[]))[<[]()>{<>{}}]>]<{{{{}{}}{()()})({[]}[<>{}])}>)>)}){<<{{(<<<()<>><<><>>>
[{{[<<[{([[{{[<>{}]<()<>>}[(()<>)[{}<>]]}<<[{}[]]([]<>)>{{[]{}}{()()}}>]][[{<({}{})<[]{}>>
<<{{<([(((([{<[]<>>{()<>}}(<<>[]>{(){}})]([{{}<>}<[]>](<[][]><{}()>)))))[({{{<[]{}>[()]}<<<><>>
<(<[{(<[{{{<{[[]<>]{<>()}}><[[{}()][(){}]]>}}<[<[<()()>({}<>)]><[{[]()}([][])](<(){}>[<><>])>]{
{[[<{{<<[[<<(({}<>){<><>})[[<>()][[]{})]>[[[{}[]]<<>>]{(<>[])}]>{{<<()[]>{<>{}}>[{[]<>}<[]{}>]
({[((((([{[({[{}[]]<[]()>}[({}{})<<>[]>])<[(()[])<{}()>]{[[]<>]{[]()})>](([({}<>)(()[])][<[]{}>])
{[[{[({(<<{<([{}<>])<({}<>)({}<>}>>[<[{}()]([]<>)>((<>())<[]{}>)]}<([(<>())[(){}]]{[{}<>]<[][]>}){<{<><
(<{<<[<<([[([<<><>>]<<{}()><[]<>>>)]][{(({<>{}}(()())))(<[()()]<[]()>>)}[[<<<>()><<>{}>>([{}<>][{}[]])]{<{(
<<[({{{{{[<([((){})([]())]<((){})({}[])>)[{[{}()]{[]<>}}]>([<{{}<>}><({}<>)({}[])>]<[{<>{}}
(([[{{({{{[<<{[]()}({})>{{{}()}[[]<>]}>{<([])>[[[]{}]]}](([<[]{}>]<<[]<>><{}[]>>))}}}(([[[{[<><>
<<[(<[{{<((<[<()>[<><>]][[<><>]([]())]>[({<>})<<()<>><{}[]>>])[[(<[]<>>([]())){{<>[]}(()())}]]){(<(<[]<>>
({[<<[[{<[[{{[()()]{()[]}}}]<{([{}{}]{[]()})[[()[]]<<>>]}>]>}[({((<{<><>)>{{[]()}{{}[]}}){([{}[]]<{}{}>)<
([{{<{[(<[<<[({}())({}())]>>[{[<<>[]>[<>()]]<(<>[]){()[]}>}(<<<>[]>[<>[]]>{<<>[]>{{}()}})]]{
<[{{<[((<([[{<<><>>{()}}{<{}[]><[]()]}]])<{({<()>{()[]}}(<(){}><[]<>>)){[({}[]){<>[]}]}}<<([()()]<()(
<{<{[(({(({({<[]>([])}<<()<>>{<>()}>){[[()[]]<{}()>]{({}[])[()<>]}}}<[<<{}()><[]{}>>({[][]}[()<>])}{<<[]
<[{{[<({(<[<[[()<>]({}[])]([{}[]]([]))>]{[{{<>[]}[[]{}]}(({}<>)<()[]>)]<<[()[]]>({(){}}<{}()>)>}>)}<<[[[[<<>(
{{<(<[((({(<[<[]{}>[(){}]](<{}<>>((){}))>){(({[]{}}<{}[]>){{<><>}[[]{}]}))}<([<(<>)>[<<>{}>[{}
<([({[<[(({[(({}))(<{}()><<>{}>)]<[{{}[]}{{}<>}]{[{}()]{{}()}}>})([[<(<>())({}{})>[<[]<>>[
{((<<<{<(<[[[<{}<>}]<(<><>)>]]<(([(){}]{[]()}))<({{}<>}<()<>>){<()<>>{(){}}}>>>{({({()[]}[<>
([<[[((<(<[<([{}[]])>{<(()<>)((){})>{<<>>(()<>)}}][{[(<>[])(<>[])]}[[{{}[]}[()()]]<<[]<>>{(){}}>]]><({(
[{<([[[{([{<<([]<>){<><>}>[<(){}>]><{[<>[]](()<>)}[{()()}]>}<({{{}{}}}{[{}{}]<<>()>})<(<[]<
(<({[{{[[(<[<(<>[])[[][]]>]{((<>[])({}<>))({[]<>})}>({<[()[]]]<{()[]}>})){(<(<<>[]>[<>{}])>{[({}<
(<{<(({[(({[[<<>{}>({}<>)]{({}{}){(){}}}]{(<(){}>[[][]])<{()<>}>}}[[[{[]{}}[()]]](([[]()][(){}]))])
([({<{[{<[{<({{}()}{{}()})>}]>}<<[[{{((){})<<>{}>}(({}[]){<>[]})}]]><[{{<({}<>)(()())>[{<>()}{{}()}]}{<{
<[{[({[<<[[<<{{}{}}<{}{}>>([<>][(){}])><<<{}{}>>>]]{([{[[]()][[][]]}<{[]<>}>]<<[<>[]][[]()]><<()[
[{({{{<<{[{([[()]({}[])]{[()()]})(((<>{})[[][]])<{{}{}}>)}]}>>}[((({{<([[]()][[]])}}{{<({}[])[{}
{[({<{<<{[(([<<>[]>({}{})>))]{(<{{{}<>}<<>{}>}>)}}><(<(({([]())(<>[])}{{[]()}{[][]}})<{(()[])[<>{}]}>){({
[<((<[<<(<<{<(<>)<[]{}>>[<[]{}><[]()>]}<((()[])((){}))[({}[]){[]{}}]>>([<[{}()][[]{}]>{{()[]}}][{[{}<>]<[]<
[<[({({[([{<(([]<>)({}[]))<{{}[]}[<>[]]>><[<{}[]>({}<>)]<(())>>]]([[[{[]<>}({}[])](<[]{}>{<>()
{[<<{(<[{(<[({[]{}}{[]{}}}]({<()[]><<>[]>}{<[]()>[{}{}]})>)}{[{(((<><>))(<[]<>>(()[])))[[<[]()>[{}()]](((
({[<<([[{(<<<{<>()}<{}<>>>[[[]{}){()}]><[[(){}]<[]<>>]({(){}}[[]{}])>>{[{[()<>][{}()]}][[[{}{}]<<>()
([(<((<{[[[[[{{}()}{()[]}]]<([[]<>])<[()<>][[][]]>>]][{([{()[]}(()[])]({<>{}}{[]()}))}({([[]
(({{[<<{(([{<{()()}[[]()]>{<()<>>[[]{}]}}{[<()()>[[]{}]]{([]())({}[])}}][(<{<>[]}[()()]><<()>(()())>)
[<(<{{{<{(<{(<<>[]><<>()>){<{}()><()<>>}}(<[<>{}]{<>{}}><[{}{}][<>()]>)>)}{{{(<(<><>)(<>())><{[]}([][
<<<{([[<[[[(([[]{}])<({}())(<>())>)({[<>{}]{[]()}}<<(){}>{(){}}>)]{([(()()>({}[])]((<><>)<
{{({<<<[[<(<{{{}<>}({}[])}{<{}<>><<>()>}>{({{}<>}({}()}){[[]<>]([]{})}}){{[[[][]](()())]}([<<>{}
<<[[<{{({<{[{<<>()><()()>}<[()<>]<()()>>]{(([]<>)[{}[]]){{{}<>}{[]<>})}}>{{<[<{}<>>({}())]
({[<[[{<<{{[{(<>{})}]{<[{}{}][[]()]>[[[]{}][()()]]}}[(<<{}[]>{<>[]}>{{{}<>}[(){}]}){{[<>{}]<{}{}>}{
(([<{<[[([[(((()<>))({{}[]}<()<>>))[[({}[])(())]<{(){})>]][{((()){[]()}){{()<>}{<><>}}}[{{()}{()[]}}]]]){{(({
{<[{(<[{[{{[<([]<>)<{}<>>>]}}]}]><{{<[[([{<>()}[[]{}]]({{}()}{<>{}}))]{([<[]{}>(()<>)]<[[]<>]([])
{[<<[<(<[{<<[{{}()}{<>{}}](<{}<>>({}<>))>><{<({}[])<()<>>>[[<>[]][<><>]]}[<(<><>){{}<>}>[<[]()>{[]}]]>}]{[<{<
(<({{[{<(<<<{[{}<>]({}[])}{[[]{}]<()[]>}>(<[[]()][()()]><[()[]][<>()]>)>>[(<<<{}()>{<><>}>>){<<{<><>}(
(<{[[{{<(<(<({{}<>}{{}()}){[()<>]<{}[]>}>[(<{}{}><[]()>)<({}<>){()()}>]){[[([]{}){{}[]}]<[{}{}]<[][]>>][{<()
[(<([({[[[<[[[[][]][{}{}]]([{}()]{<>{}})]{<{()()}<()<>>><{{}<>}<(){}>>}>]{{[([[][]]<()()>)
(<(<<({{(<[{{[()<>][<>{}]}[<[]<>>]}<<{[]{}}>[[{}()]{()()}]>]{[([()()]<<>>)({()<>}[<>[]])][{{[][]}(<>())}
[[((({(({{{[{{<>[]}[<>{}]}[[{}<>]([]())]][{(<><>)}]}][(<{{[][]}(<><>)}<[[]()]>>([[{}()]<[]<>>][<[][]>[()()]])
<{({(([((<[<{(()[])<[][]>}{<<><>><[]<>>}><<([]<>)([]<>)>>]{[<([]{}]{<>{}}>]}>[{[(([]{})[{}{}])[<<>{}
{(([<{(({<({{{{}{}}}[[[]]{[]()}]}{<[[]]<<>()>>(<()>[()<>])})>{{[(([]<>){{}()}){[{}]{{}<>}}]}([[([]{})]<[[](
<{[({<{[[[{{{[{}{}]}}([<[][]>[<>[]}][<<>()>{()}])}((<({}[])[<><>]>(((){})[{}()]))[[<{}[]>[(
{<[([(<((<<<<[{}[]]({}{})>((()())[(){}])><([[]{}][()<>])<<<>[]>([]<>)>>><[[((){}){[][]}}{[[]]
[{(<{<{<<({({(()<>){{}[]}}([[]()]{()<>}))(([[]<>](())))}<{({()[]}{[][]})}])>>}>(({[{[{{([]())(<><>)
<[[<([<<({[[(<[]()><<><>>)({<>})]{{<<><>>[()[]]}([()<>](()[]))}]((<{<>{}}<(){}>>))}<<[(<(){}><<>{}>)[[()[
<[{<<<{[{<{(<[<>{}][{}()]>((<>[])[<><>]))<[({}<>)<<>[]>]<(<><>)(<>{})>>}({<<[][]>([]<>)>([<>{}><<>[]>
[<<(<{((<([<({{}{}](<>[]))[[()<>]([][])]>((([])<(){}>))]){<{{<()[]>(()<>)}(<[]<>>([][]))}><[([(
{[[[{{<[[{<[<<<>[]>{<><>}>{<<>{}><[]<>>}]((<{}()>(<>[])))><<{<<>{}>{(){}}}([{}{}]<<>()>)><[{<>{}}]>>}]
((((([[(([{<({()[]}<()<>>)><<<<>()>({}{})>{{(){}}(<>[])}>}<<<{<><>}>><(((){})<[]()>){{()()}({}<>)}>
<<[<[{<[<[<{[[()[]]({}[])]{<{}<>>[{}{}]}}[([[][]])[([]())[[]<>]]]>[(<<{}()>(()<>)>{{[]{}}<{}{}>})({([
[{<(<{(<[<[[[{()<>}[[][]]][(()<>){{}[]}]](<{<>{}}[()[]]>(<[]>[{}()]))]([([<>{}]<()[]>){{<>{}}{()
<[<({<({[{({{(<>{}){[]()}}<{[]<>}[(){}]>}({[<>[]]{[]<>}}))<{([{}[]])(({}[]){(){}})}[{[[]<>]}[({}())[(){}]]]
[[[{<[((<[<{([[]<>]{<><>})<<{}[]>[[][]]>}{[[<>{}]]<<{}>([]<>)>}>{<{{<>[]}}[(<><>)[[]<>]])<{[(){}]<()()>}>}]{{
([(<({[[{<([{{<>{}}([]<>)}[[{}[]]{<>{}}]](<[{}<>]{[]()}><((){})[[][])>)){({{{}{}}{{}{}}}[<{}{}>({}<
<[{(((({[[{{({{}[]]<<>>)<{[]()}<()<>>>}((<(){}>([]{})))}{({[()()]([]<>)}<([]<>)[()()]>)<[{{}[
<[({[<<<<{[({{(){}}[{}<>}}(<<>[]>[[]()])){(<()[]><<>()>)}]}><({<[{()()}]({[]{}}<{}>)>[({[]
<<([[<{{([{<{([]{})[(){}]}{([]{})<{}[]>}><<(<>{})[<>()]>({{}<>})>}<[(<<>()><{}()>)<{()<>}<<>>
<[[[({[({<[{((<>[]]<{}<>>){<<>()>{[]()}}}<{<{}{}>[<>{}]}{{{}[]}{{}()}}>]{<{{()()}<[]<>>}((
[[({(([[(([<[([]<>){{}()}]>(<{{}{}}(()<>)>[{<><>}{{}<>}])]{{<[[]<>]>[[{}()]]}([<{}()>][([]{})<{}
<(([<{([[<[((([]<>)<<><>>){[[]()]({}{})})({{(){}}((){}]}({{}()}))]([<{<>()}<[]{}>><{[]{}}<(){}>>])>
<<[[{<<{[(<<{{[][]}[[]<>]}<<[][]><<>[]>]>([{<>}[<>[]]]{{[]()}<{}()>})>{({({}<>){[]<>}}[{<>{}}[<>[]]
((<<<<[[(({[[<()<>>[(){}]]{(<>()){<>{}}}]}{(([<>[]><<>()>)<<(){}><()()>>)[(<{}{}>((){}))[{[][]}(()<>)]]})){
[({(<{{<<<{<[{[]()}<<><>>][[()[]][<>[]]]>}>([([<[]<>>]{<<>()><()<>>})({<{}[]><()()>}[[[]()]])]<{<(()
([(<({[([{{{((()())[<>[]]){{[]<>}[{}{}]}}([{()<>}<{}()>])}}<{[({(){}}(<><>)}<(<>())>][<[(){}]{(){}}
{[[{((((([[{{[[]{}]({}{})}{[[]<>](()[])}}[{[()()]}((<>{})<(){}>)]]{(<{<>()}<(){}>>){(<{}()>{{}<>})({<>(
([[{<[<[[<<{<{()<>}[<>()]>[[[]{}]{{}{}}]}<[{{}[]}]>>{<{{<>{}}([]())}>[(<<>()>)(<{}()>[<>()])]}>{({<[()<>]
{(([{[{{(({(<[()[]][<>[]]>)<[(()<>){{}{}}]>}[(<<{}{}><{}<>>>){<[()()]<()()>>({[][]}<<><>>)}
<[{<(<<[{[({[({}<>)<<>[]>](<<>()>(<><>))})[([{<><>}<()()>])]]}]><<[<({{{<>}}<([]][<>{}]>}[<(())<<><>>>])
(<(({<[[{{[<[{<>[]}[()<>])((()()){{}[]})>]}}]]((<<<((({}{})<{}>){{{}<>}{<>}})[({{}()}{<>()}){{{}()}}]
{[<[{(([<[{{[([]{})<[][]>]{([][])[()<>]}}<<(()<>)>>}[[(({}{}){{}<>})]]]{{[(<{}{}>[{}()])({()()}
[{{((<<[[((<<{[]<>}<{}>>(<{}<>>{[]()})>({<()>([][])><[{}{}]{{}()}>))(({([]<>)([]())}<{[][]}<()>>)
({([{({[({[<({{}{}}([]()))(((){}){{}{}}>>({(()()){{}()}})]<[[{{}{}}<{}[]>]{<[][]><<>[]>}]({<<>[]>
{[({[{{[<[{([<{}{}>[(){}]](<{}<>>{{}()}))([([]()){()[]}]([{}<>]{<>{}}))}]>[{{[[{[][]}]]<((()[])([]{}))<[()
[[(({{{(([[[{[()()]([]())}((<>){{}{}])]]({<[<>]({}{})>([<>{}]{{}{}})})]))}[(<[[(([[][]]{<>{}}){{(){}}})
<(<({<{<[<(<{<()><<><>>}<<{}[]>([]<>)>>)<{<{[]{}}[{}()]>}([(()[]){[]<>}]{{<>()}{{}<>}})>}{[[{(()[]){(
[(<(<([{<[{<(<()>([]<>))[{()()}<{}<>>]><{([]())<<>()>}(<{}{}>[()[]])>}]<{<({[][]}<[]()>){{{}[
[<({<{(<<[[[<{()[]}{{}[]}>{[<><>]}]{[<()<>>({}<>)]}]][[{<[<>[]>([]())><{()()}{[]{}}>}([({}{})[[](
<<[[{{<<([[{[(()())[()]][[{}[]]{{}}]}[[({}<>){[]{}}]{{<><>}[()[]]}]]{<[(<>())]>{({{}()}(()<>))}}])
{<[{({[({{<({[{}()]([][])}([{}<>]{[]()}))[<(<><>)([]{})><{()()}(<>[])>]>{{(<[]<>>[{}])}[<{(){}}(<>
<{{(({([[<[{<(<>)([]{})>{<<>{}>{(){}}}}]{[<([]{})<{}{}>>[[<>{}]{()<>}]][{{<><>}([]())}({()<>}<()>)]}>]
{<{[{[({[(({<[{}()]({}[]}>[<()>]}{(<<>>)}))]})]{<{<{[[{(<>())[()[]]}[[{}{}][[]]]][([[]()]<{}<>>)[<[]{}>([]<>
((<{{<[[<{{([([]{})<<>()>]<(<>{})(()<>)))([{()()}(<><>)]<(<>)(<>{})>)}([<{(){}}<<>{}>>]<[([]<
[<<<{(((<<{([<()[]>({})]({<>()}(()())))({([])<<>>}((()[])[()[]]))}{<[<{}()>]<[{}{}]({}<>)>>{<<
[[[<<<<[{(<<[{{}[]}]<(<><>)(<>[])>><<<<><>][[][]]>(([]{}))>>([<[[]<>]<[]<>>><{()<>}([][])>]))}<(
<<{[[[{{{{[[(([]{}))([<>[]]<()>)][{(<>()){[]()}})]{(({<><>}{<>[]})[<<>[]>[()()]])}}}<{(<((<><>)(<>{}))<{

View File

@@ -1,10 +0,0 @@
4738615556
6744423741
2812868827
8844365624
4546674266
4518674278
7457237431
4524873247
3153341314
3721414667

View File

@@ -1,26 +0,0 @@
xq-XZ
zo-yr
CT-zo
yr-xq
yr-LD
xq-ra
np-zo
end-LD
np-LD
xq-kq
start-ra
np-kq
LO-end
start-xq
zo-ra
LO-np
XZ-start
zo-kq
LO-yr
kq-XZ
zo-LD
kq-ra
XZ-yr
LD-ws
np-end
kq-yr

View File

@@ -1,50 +0,0 @@
14567892107654348943218769016567650154541210421036
03456783298993267654309458122168743243450344323145
12567654456780154327812367433059804012769455410234
03498012349876065016901056544965418765898766708943
12345101212145076545411034545878329658981055899854
09876876705034187632110123656789421047432765988765
67878965896123298901001656743078431236598894012034
50965014387654567650012349856127340012367653213125
41234321298347656543243492347833458903458743404987
30087430178298343650156781016942167812769252985676
21196567069121243761056432679851043212890101679854
33203498451080252852347841589765654301285234521763
14512432347890161943210950432106567610106501430012
01693501036543270856102167645656788943217432567897
32789672321015389987343078938765497654998549879898
45679987410234578101256560129812321067801456734787
03478756500187665432107452121901054328982340125676
12568767891098987013898943030810167017654321010210
21079458910127698123965436945107878988901267124378
30980349821034787654876327876716901210985458095469
45671210136765693454761016329825432345671329186954
12789800345876548763876125419434501654510413277843
03543211238989439012985630308765898746701204567832
14623400141232323101234521678906567239874343236901
25710519850541014143219834567611452108965650145690
76897678769650001054301712106320143210345789036781
87678989678742112363212601235431234321276988325432
90549876349233678478004592347842389123489676710876
21632305256104569589123487656965476016512369856945
52301014107012345670149874565456365017603450747832
65490123458912396501234563432147454328214921632401
86985432167905487654341012563038901039309834521321
97876789001856778761232127678127612398712701100410
89810678012760869890103238999210543125625632234509
76701549013451987217876434785695610034534548765678
05432432174012987301987325654780123435210159854789
12980120985123673458986510783279234987346543123898
43878921976034562567603412892168765679857012010187
34565437852178901070412103601001410012768001921236
45430566543065012181543014580432321003459122876545
50121098767654327892678877698569457654219433468904
23292145678954218983019988087658768894308596567812
14587239010563007654128679112565489765107687656521
05674678323472167659436543203474321087230156785430
96983565401089898748540987654589321098543243896543
87874328992396701037621296562105465407698012565432
78765017687478632128760345673456978312789801478521
29653078596569543019656921087567889213456700329650
12532169430430156010567892193610367804765410418789
03445678321321060123456543012323458912894321001678

View File

@@ -1 +0,0 @@
2 77706 5847 9258441 0 741 883933 12

View File

@@ -1,140 +0,0 @@
QQQQQQCCCCCCCCCCCCXXXXXXXXXXXXXXUUUUUUJEEJJJJJQQQQIIISSVVVVVVVVVMMMMMMMMMMMMMMMMMMVVVVVWWWWFFFFFFFFFFFFAFZZZZZZZZZZZMMMMMMMMMMMMMMMMMMVMMQQQ
QQQQQCCCCCCCCCCCCCCCCXXXXXXXXXXUUUUUUUJJJJJJJJIIIQIIIIVVVVVVVVVVMMMMMMFMMMMMMMMMMMMVVVWWWWWFFFFFFFFFFFFFFZZZZZZZZLLZMMMMMMMMMMMMMMMMMMMMQQQQ
QQQQQQCCCCCCCCCCCCCCCCCCCXXXXXXUUUUUUJJJJJJJJJIIIIIIIIIVVVVVVVVMMMFFFFFMMMMMMMMMMMWWWWWWWWFFFFFFFFFFFFFFFZZZZZZZZLLZMMMMMMMMMMMMMMMHMQQMQQQQ
QQQQQCCCCCCCCCCCCCCCCCCCXXXXXXXUUUUUUUJJJJJJJJIIIIIIIIIIVVVVVVVVMMMMFFFMMMMMMMMMMMWWFFWWWWFFFFFFFFFFFFFFFZZZZZZZZMMMMMMMMMMMMMMMHHMHQQQQQQQQ
QQQQQQCCCCCCCCCCCCCCCCCXXZXXXXXXUUUUUUJJJJJJJYIIIIIIIIIIVVVVVVVVVVVFFFBBBMMMMMMMMFFWFFWWWWFFFFFFFFFFFFZZZZZZZZZZZLLMMMMMMMMMHMMHHHHHQQQQQQQQ
QQQQQQCCCCCCCCCCCCCCCZZZZZXXXXXXXUUUUUJJJOJJJYIIIIIIIIIVVVVVVVVVVVBFFFBBBBMMMMMMFFFFFFWZWWWWFFFFFFFFFFZZZZZZZZZZLLMMMMMMMMHHHHHRHHHHHHQQQQQQ
QQQQQQCCCCCCCCCCCCCCCZZZZTTXXXUUUUUUUUUUUOJJJJIIIIIIIIIIVVVVVVVVVVBBFBBBBBMMMMMMFFFFZDZZZWWWFFFFFFFFFFZZZZZZZZZZLLMMMMMMMMMHHHHHHHHHHHQQQQQQ
QQQQQQCCCCCCCCCCCCCCZZZZPTTTXXXXXUXXUUUUUOOJUUUUUIIIIIIIVVVVVVVVVBBBBBBBBBBBMMMFFFFFZZZZWWWAAAFFFFFFFFZZZZZZZZZZZLMMMMMMMMMMMHHHHHHHHHQQQQQQ
QIIIIIICCIWCCCCCCCCZZTTTTTTTTXXXXXXXXUUUUOXJUXUUUIIIQQQQQQQVVVVVVBBBBBBBBBBBMFFFFFFFZZZZAAAAAFFFFFFFDZZZZZZZZLLLZLLLMMMMMMMMMHHHHHHJJQQQQQQQ
IIIIIIICCIIMMQCCCCZZTTTTTTTTXXXXRRXXXUUUGXXXXXUUUIIIQQQQQQQVVVVVVBBBBBBBABMBMFFEFFFFFZZZZAAAAFFFFFFFDAZZZAAAALLLLLLMMMMMMMMMHHHHHHHJJQQQQQQQ
IIIIIIIIIIIMMMCCCCTTTTTTTTTXXXXXRTRXXXRRRXXXKKUUUUIOQQQQQQQVVVVVBBBBBBBBBBMMMFFFFFFFZZZZZAAAAFFFFAAFFAZZAAAAALLLLLLLLLLMMMMMHRHHHHHHJJJQQQQE
IMIIIIIIIIINNNNNNNNTTTTTTTTTTXRRRRRRRRRRRXXXXKKUUKOOQQQQQQQTVVVVBBBBBBBBBMMMFFFFFFFFZZZZZZZAAAAAAAABAAAAAAAAALLLLLLLLLMMMMMRRRRHHHPIJJJJBBBE
GIIIIIIIIIINNNNNNNNTTTTTTTTTTXRRRRRRRRRRXXKXXKKUUKOOQQQQQQQTVVVBBBBBUUUUMMMMFFFFFFFFFZZZZFAAAAAAAAAAAAAAAAAAIILLLLLLLLFMMMMRRRRHHIIIJJJJBBBB
GIIIIIIIIIINNNNNNNNTTTTTTTTTXXRRRRRRRRRXXXKKKKKUUKOOQQQQQQQQQBBBBBBBUUUUMMMMFFFFFFFFFZZZFFFAAAAAAAAAAAAAAAAAAATLLLLLLLFMMMMRRRRIIIIIJJBJBBBB
GIIIIIIIIIINNNNNNNNTTTTTTTTYXYRRRRRRRRRRRRPKKKKKKKOOQQQQQQQQQBBBBUUBUUUVUMMMFFFFFFFFFZZHFAAAAAAAAAAAAAAAAAAAGTTTLLLLJLLJMRRRRRIIIIIIIBBBBBBB
GGGIIIIIIIINNNNNNNNNNNNNTTCYYYRRRRRRRRRRRRPKKKKKKKKKQQQQQQQQQBBUUUUUUUUUUMMMMFFSFFFFFFFFFAAAAAAAAAAAAAAAAAAAATTTLLLLJJLJRRRRRRIIIIIIIBBBBBBB
GGGIIBIIIIINNNNNNNNNNNNNTTCYYYYYRRRRRRRRRRKKKKKKKKKVQQQQQQQTUBBUVUUUUUUUUUUMMMFFFFFFFFFFFAAAAAAAAAAAAAAAAAAATTTTTTTJJJJJRRRRRRRPIIIIIBBBBBBB
GGGGGGIIIKINNNNNNNNNNNNNTTCYYYYYRRRRRRRRRKKKKKKKKKKKQQQQQQQFFFFFFFFFFUUUUJUFFFFFFXXFFFFFFAAAAAAAAAAAAAVAEACATTTTTTTTTJJRRRRRRRRPIIZZIBBBBBBB
GGGGGGIIKKKNNNNNNNNNNNNNTTTYYYYYRRRRRRRRHKKKKKKKKKKKQQQQQQQFFFFFFFFFFUQUUUGGPGFFFFXFFFAFAAAAAAAAAAAAAAAAERCTTTTTTTTTVVVNNNRRRRRPIIZLLPBWBBBB
GGGGGGGKKKKKPPNNNNNNNNNNPPPPPPYYRRRRRRRHHHKKKKKKKKKKTTTTTTTFFFFFFFFFFUUUUHGGGGFXFXXFFFAAAAAAAAAAAAAAAAAARRRTTTSVTTTVVVVNNNNNRRRRNILLLLWWBBBB
GGGGGGKKKKPPPPNNNNNNNNNNPFPPPPPPRRRRRRRRRRKKKKKKKKIIITTTTTTFFFFFFFFFFOUUHHGGGGFXXXXXFFFAAAAAAAAAAAAAAAARRRRTTAVVVVVVVBVVVNNNNVVLLLLLLLWBBBBB
GGGGGIIIKKKKPPNNNNNNNNNNPPPPPPPPPJJJIRRIIIKKKKKKKIIIITTTTTTFFFFFFFFFFODUHHGGGGGXXXXXXRFAAAAAAAAAAAAAAARRRRROTTVVVVVVVVVHVNNVVVVVVLVVLBBBBBBB
GGGGGGIIIKIKPPNNNNNNNNNNPPPPPPPPPJJIIIIIIIIIGIIIKIIIIITTTTFFFFFFFFFFFYDYHGGGGGXXXXXXXXCAAAAAAAAAAAAAAARRRRRRRRRRVVVVVVVHVVVVVVVVVLVVRRBBBBBB
GGGGIIIIIIIKPPNNNNNNNNNNPPPPPPPPPPJIIIIIIIIIIJIIIIIIIIPTTTFFFFFFFFFFFYYYHGGGGGGGXGXXXXCAAAAAAAAAAAAAARRRRRRRRRRVVVVVVVVHYVVVVVVVVVVVRRBBBBBB
GGGHIIIIIIIIPPNNNNNNNNNNPPPPPPPPPPIIIPPPPPPIIJIIIIIIIIIIGTFFFFFFFFFFFYYBBBBGGGGGGGGGCCCCCACAAAAAAAAAARRRRRRRRRRVRRVVVVVHYYVVVVVVVVVVVRRBBBGB
GGGGFFIIIIIIZZNNNNNNNNZPPPPPPPPPPIIPIPPPPPPIIIIIIIIIIIIIITFFFFFFFFFFFYYBBBBGGBGGGGCCCCCCCCCAAAAAAAARRXRRRRRRRRRRRRVVVVVVWYVVVVVVVVVVRRRBBGGG
TGGGIIIIIIIIZYNNNNNNNNZPPPPPPPPPPIIPPPPPPPPIIIIIIIIIIIIIDDFFFFFFFFFFFHHBBBBJGBGGGGCCCCCCCCAAACCCADDRRRRRRRRRRRRRRRRVLYYYYYYYVVVVVVVVRRGGHGGG
GGGIIIIIIIIIIINNNNNNNNPPPPPPPPPPPIIPPPPPPPPIIIIIIIIIIIICCDFFFFFFDDHHHHHBBBBBBBGGGGGGCCCCCCCCCCICDDDRRRRRRRRRRRRRRRXVLLYYYYYYVVVVVVVVVGGGHGGG
GGGIIIDIDIIIIYNNNNNNNNPPPPPPPPPPPPIIIIPPPPPIIIIIIIIIICCCCCFFFFFFDDHHHHBBBBBBBBBGGGGGCCCCCCCJJCCDDDDRRRRRRRRRRRUUUUYYYYYYYYYYYMMVVVVVZZGGGGGG
DGGGDDDDDIIIYYYYYYPPPPPPPPPIPPPPPPPIIIPPXXPPPXIIIIIIIICCCCFFFFFFDDDHHBBBBBBBBBBGGGGGCCCCCJJJJCDDHHHJHNNRRQRRRSSUUUUSYYYYYYYYYYYAVVVVVZGGGGGG
DDDDDDDDDDDYYYYYYYYYPPPPPPPIIPPPIIIIIIXXXXXPXXIIIIICCCCCCVFFFFFFDDDDHBBBBBBBBBBBAAGGCAADDDDDDDDDHHHJHNHHRRRMMSSUUUSSYYYYYYYYYYYQVVXXGGGEGGGG
DDDDDDDDDDYYYYYYYYYPPPIPPIIIIIIIIIIIIIIIXXXPXXXBBXCCCCCCFTFFFFFFDDDDHDBBBBBBBBBAAAAAXAAAAAADDDHHHHHHHHHHHMMMSSSUSSSSYYYYYYYYYYYQQVQQQGGGGGGG
DDDDDDDDYYYYYYYYYYYPPPIIIIIIIIIIIIIIIXXXXXXPXXXXXXCJCCCFFFFFFFDDDDDDDDDBBBBBBBBAAAAAAAAAAAADDDDHHHHHHHHHHMMHDSSSSSSSYYYYYYYYYUYYQQQGGGGGGGGG
DDDDDEDDYYYSYYYYYYYYTYIIIIIIIIIIIIIIIXXXXXXXXXXXXCCJCCCCFFFFFFDDDDDDBBBBBBBBBBBAAAAAAAAAAAAAAHHHHHHHHHHHHHMHHSSSSSSSYYYYYYYYYYYLQQQGGGGGGGGG
DDDDEEDDYYYYYYYYYYYYTYIYIYIIIIIIIIIIIIXXXXXXXXXXYJCJCCFFFFFFFFFDDDDDZZBBBBBBBBBAAAAAAAAAAAAAAHHHHHHHHHHHHHHHJJIBSSSSSYYYCYYQQQFQQQQNGGGGGGGG
DDDEEEEEEEYWYYYYYYYYYYIYYYIIIIIIIIIIXXXXXXXXXXXXJJJJJJFFFFFFFFFDDDDDZZBBBBBBBBAAAAAAAAAAAAANHHHHHHHHHHIIHHHJJIIBSSQYYYYYYQYQXXQQQQAKKGKGGGGG
EEEEEEEEEEEWWYYYYYYYYYYYYYYYIIIIXIXXXXXXXXXXXXXXXJJJJFFFFFFFFFFDDDDDDZZBBBBBBBAAAAAAAAAAAAAATHHHHHHHHHIIIIIIIIIIIQQQQYYYYQQQXXXQQQKAKKKKKKGK
EEEEEEEEEEEWWYWYYYYYYYYYYYYYYYIIXXXXXXXXXXXXXXXXJJJJFFFFFFFFFFFDDDDZZZZZBBBBBBBBAAAAAAAAAAAAAAHHHHHHHIIIIIIIIIIIIIQQQQQYYQQQQXQQQQKKKKKKKKKK
EEEEEEEEEEWWWWWYYDYYYYYYYYYYYYYIIXXXXXXXXXXXKKKJJJJJFFFFFFFFFFFFDDDDDZZZZZZZBBBBAAAAAAAAAAAAAEMHHHHHHIIIIIIIIIIIIIQQQQQQQQQQQQQQQQQQKKKKKKKK
EEEEEEEWWWWWWWWWWYYYYYYYYYYYYYYYIXNNNNXXXXXXXXJJJJJJJFFFFFFFFFFFFDDTZZZZZZBBBBBBAAJAAAAAAAAMMLLLLLLLLIIIXIIIIIIIIIQQQQQQQQQQQQQQQQQQKKKKKKKK
EEEEEEKKWWWWWWWWWYYYYYYYYYYYYYYVAZXXXXXXXXXXXXJJJJJJJFFFFFFFFFFFWDDDZZZZZZBBBBBBAPJJAAAAAAAAMLLLLLLLLIIIIIIIIIIIIIIQQQQQQQQQQQQQQQKKKKKKKKKK
EEEEKKKKKKKKWWWWTJYTYYYYYYYAYYAAAAFFVVVXXXXXXXXXJJJJJJFFFFFJFFBFGGGGDDZZZBBBBBBNPPPAARRRRMAMLLLLLLLLLIIIIIIIIIIIIIQQQQQQQQQQQQQQQQMMMKMBKKKB
EEEKKKKKKKKKWWWTTTTTTTYYYAYAAAAAAAAAVVVXXXXXXXJJJJJJJJJFFFFJJFBBGGGGGGGGGGZBBBBPPPPPARRRRMMMLLLLLLLLIIIIIKKKKKKKKKKKKQQQQQPQQQMQMQIMMKMBBBBB
GKKKKKKKKKKWWTTTTTTTTTYAYAAABAAAAAAAVVVVVXXVVBBJJJCCCJJJFFJJJMBBGGGGGGGGGGZBBBBPPPPPPRRRRMMMLLLLLLLLIIWIVKKKKKKKKKKKKQQQQPPQQQMQMMMMMMMBBBBB
GKKKKKKKKKKWWTTTTTTRTTYAAAAAAAAAAAAAVVVVVVVVVVJJJCCCCCJJJJJJJMMMGGGGGGGGGGBBBBBPPPPPJRRRRLRRRRRRRRLLMMIIIKKKKKKKKKKKKQQPQPNNNQMMMMMMMMMCBBBB
KKKKKKKKKKKKKETTTTTTTTAAAAAAAAAAAAAAAVVVVVVVVNCLJCCCCCJJJJJJJMMMGGGGGGGGGGBBBPBPPPPPJRRRRMRRRRRRRRLLVMMMVKKKKKKKKKKICCCPPPNNNQMMMMMMWWMMMMBB
KKKKKKKKKKKKKEETTTXXTAAAAAAAAAAAAAAAAVVVVVVVVLCCCCCCCJJJJJJJJJMGGGGGGGGGGGBBBPPPPPPPPRRRRRRRRRRRRRLLVVVVVKKKKKKKKKKCCCPPPPPNNNMMMMMMMMMMMMBB
KKKKKKKKKKKKKEEEEMXXXAAAAAAAAAAAAAAMAVVVVVVVLLLLLCCCCJJJJJJJJJMGGGGGGGGGGBBBBPPPPPPPPRRRRRRRRRRRRRLLVVVVVKKKKKKKKKKCCCPPPPPPNUMMMMMMMMMBBBBB
KKKKKKKKKKKKEEEEMMMMXXAAAAAAAAAAAAAAVVVVVVVVLLLCCCCCCJJJJJJJJJJGGGGGGGGGGBBBBPPPPPPPPRRRRRRRRRRRRRLVVVVVVKKKKKKKKKKCCPPPPPPPCMMMMMMMMMMMBBBB
KKKKKKKKYKKKKKKKKMMMMXAAQAAAAAAAAAAAVVVVVVVVLLGGCCCCCJJJJJJJJJJGGGGGGGGGGBBBBBPPPPPPPRRRRJRRRRRRRRLVVVVVVKKKKKKKKKKCCPPPPPMMMMMMMMMMMMMMBBBB
KKKKKKKKKKKKKKKKMMMMKMMQQQAAAAAAAAAAAVVVVVVVVVCCCCCCCJJJJJJJJJJGGGGGGGGGGUBBBPPPPPPPPRRRRJJJMLLLLLLVVVVVVKKKKKKKKKKPPPPPPPPPMMMMMMMMMMMMBBBB
ZKKKTTKKMMKKMMMMMMMMMMMMQQQAQAAAAAAAVVVVVVVVVVCCCCCJJJJJJJJJJJJGGGGGGGGGGUBBBBPPPPPAPPJJJJJJJJVVVZVVVVVVVKKKKKKKKKKKKKKKPPPPPMMMMMMMMMMMMBBB
ZZZTTTKKMMMMMMMMMMMMMMMMMQQQQAAAAAAVVVVVVVVVVCCCCCCJJJJJJJJJJJYGGGGGGGGGGUUBPPPPPPPPEJJJJJJJJJVZZZVVVVVVVVWWKKKKKKKKKKKKPPPPPAAMMMMMMMBMMBBB
ZZZTTTTMMMMMMMMTTTTMMMMQQQQQQAAAAOAAVVVVVVVVVXCKCCCCJJJJJJJJJJYGGGGGGGGGGBBBPPPPPJJJJJJJJJJJJZZZZZZVVVVVVVWWKKKKKKKKKKKKPPPQPAAMMMCMMMBMBBBB
ZZZTZTTMMMMMMMMTTTTMQQMQQRRQQQQAOOOOVVVVVVVVVXVVCCCCCJJJJJJJJJUUUUUUUUUUUBBBBBBBBBBJJJJJJJJJJZZZZZZVVZZZZWWWKKKKKKCCCCPMPPPAPPAAMMCMBMBBBBBB
ZZZZZZTMMMMMMMMTTTTTQQQQQRRQQQQOOOOOOOVOVVVVVVVVGGCCJJJJJJJJJJUUUUUUUUUUUBBBBBBBBBJJJJJJJJJJZZZZZZZZVZZZZZWWKKKKKKBCCCCPPPLAAAAAAABBBBBBBBBB
ZZZZZZZCCMMMMMMTTTTTQQQQQRRQROOOOOOOOOVOVVIIIVRVGGJJJJJJJJJUUVUUUUUUUUUUUUUBBBBBBBBBJDDJJJJJJZZZZZZZZZZZZZZWKKKKKKBBBCPPPPAAAAAAABBBBBBBBBBB
ZZZZZZCCCMMMMMTTTTTTQQQQQRQQRRROOOOOOOOOVVIIIVIGGJJJJJJJJJUUUUUUUUUUUUUUUBBBBBBBBBBJJJJJJJKKJJZZZZZZZZZZZZZWKKKKKKBBBKPKNKAAAAAAABBBBBBBBBBB
ZZZAZZCCCCMMMDTTTTTQQQQQQQRRRRROOOOOOOOOOIIIIIIGGGJJJJJJJJJUUUUUUUUUUUUUVVVVVVVVVBRJJJJJJJKIIIIIIIIIZZZZZWWWKKKKKKBBFKKKKKAAAAAAAABBAABBBBBB
ZZZAZZCCCCCMMDDKTTTQQQQQRRRRRROOOOOOOOOOOOIIIIIGAAJJJJJJJJJUUUUUUUUUVVYVVVVVVVVVVBRRJJJJJUUIIIIIIIIIZZZZZZWWKKKKKKBBBKKKIIIAAAAAAAAAAAAABBBB
ZAAAZZCCCMMMMDTTTTTQQQQQRRRRRRSOOOOOOOOOGOIIIIIAAAAJJJJJJJJMMMUUJUUXVVVVVVVVVVVVVBRRJJJZIIIIIIIIIIIIZZZZZZWWKKKKKKBBKKIIIIHHHZAAAAAAAAAABBBB
AAAROZOMMMMDDDGGTTTTQQRRRRRKRMOOOOOOOOOOOOIIAAAPAAAAAAAJJJJMVVVVVUUUVVVVVVVVVVVVVVRRRPJZIIIIIIIIIIIIZZZZZZWWWWWWWBBBKKKIHHHHHZAAAAAAAAAAAABB
AAOOOOOOMMDDDDDTTTTTQQRTRYRKROOOOOOOOOOOOOIIIAAAAAAAAAJJJJJVVVVVCCCCCVVVVVVVVVVVVVRRPPJZIIIIIIIIIIIIZZZZZWWWWWTWWWWBAAAHHHHHHHHHHAAAAAAAAABB
AAOOOOOODDDDDDQQTTTQQQRYYYRRYYOOOOOOOOOOOIIIIIAAAAAAAAAJJJVVVVVCCCCCCVVVVVVVVVVVVVVVVVWUIIIIIIIIIIIIZZZZZWWWWWTTWWWBBAAHHHHHHHHHMARAAAAOAAOC
AAAOOOOODDDDDDDQQTTQQQQYYYYYYYYOOOOOOOZOOIIIIAAAAAAAAAJJJJJVVVVCVCCCCVVVVVVVVVVVVVVVPUWUIIIIIIIIIIIIZZZZZWWWWZZZZZZZZHAHHHHHHHHHHAAOOOOOOOOC
AAAAAOJJDJDDDDDQQQQQQQQQYYOYYYYYYOOOOZZOZIIIIAAAAAAAAAJJJJJVVVVVVCCCCVVVVVVVVVVVVVVVNUUUIIIIIIIIIUGGZZZZWWWWWZZZZZZZZHHHHHHHHHHHMCOOOOOOOOOO
AAAAAAAJJJJDDDQQQQQQQQQQQYOYYYYYYYDOOZZOZIIIIAAAAAAAAAJJJJJJJVVVVVCCCCVVVVVVVVVVVVVVNNFUIIIIIIIIIUZZZZZZZTTWWZZZZZZZZHHHHHHHHHHHHCOOOOOOOOOO
AAAAAAAAJJDDDDDQQQQQQQQQQOOOWOOOODDOZZZZZZIIAAAAAAAAAAJJJJJJJVJVVDDDCCCVVVVVVVVVVVVNNNNUIIIIIIIIIUUUZZZZZPTTWTTTTWWHHHHHHHHHHHHHCCCCOOOOOOOO
AAAAAAAAAJJJDDQQQQQQQQQQOOOOOOODDDDZZZZZZZIIAAAAAAAAAAAJJJJJJJJJVDDDCCCCDKVVVVVVVVNNNNUUUUIIIIIIIUUUUZZZZTTTTITTTTWHHHHHHHHHHHHHCCCCCCCOOOOO
AAAAAAAAAAJBBQQBBBQQQQQOOOOOOOODZDDDZZZZZZIIAAAAAAAAAAAAJJJJJJJJDDDDDDDDDDDDVVVVVNNNNNNUUUIIIIIIIUUUUUZZZTTTTTTTTTHHHHHHHHHHHHHHCCCCCCCCOOOO
AAAAAAAAAAJBBBBBEBBBQQQOOOOOOOODZZZZZZZZZZZAAAAAAAAAAAAJJJJJJJJDDDDDDDDDDDDVVVVVNNNNNNNUUUIIIIIIIUUUUUUZTTTTTTTTTTTTHHRRHHHHHHHCCCCCCCOOOOOO
AAAAAAAAAAJBBBBBBBBBBOOOOOOOOOOOOOZZZZOZAAAAAAAAAAAAAAAAAJJJJJDDDDDDDDDDDDDVVVVVNNNNNNNNNNIIIIIIIUUUPPPKKKKTTTTTTTTTTHRRRHCCCHCCCCCCCCOOOOOO
AAAAAAAAAABBBBBBBBBBBOOOOOOOOOOOOOZZZZOZAOOAAAAAAAAGGGJJAJJJJJDDDDDDDDDDDDVVVVVVVVNNNNNNNNIIIIIIIUUPPPPKKKKTTTTTTTTTTTTRTTCCCFCCCCCCCCCOOOOO
AAAAPAAAAABBBBBBBBBBBYYOOOOOOOOOPOOOZOOOOOOOAAAAAAGGGGJJJJJJJDDDDDDDDDDDDDVVVVVVVVNNNNNXXNNNNNNNPPPPPPPKKKKTTTTTTTTTTTTTTCCCCCCCCCCCCCCCOOOO
AAAAPAAAAABBBABBBBBBBBYOOOOOOOOOOOOOOOOOOOAAAALALAGGGGGJJJJJDDDDDDDDDDDDDDDVVVVOOVVVXXXXXNNNNNNNPZZZZZZZZZZKTKTTKSTTNLLTTNCCCCCCCCCCCCCCCOOO
AAAAPPPAABBBBABBBBBBBBBBOOOOOOLLOOGGGOOOAAAAAALLLLLGGJJJJJJJDDDDDDDDDDDDDDDDVVOOOVVVWXXXXNNNNNNNPZZZZZZZZZZKKKKYYYYYYYYYYNNCCCCCCCCCCCCCCOOO
AAAAPPAAABBBBABBBBBBBBBBOOOOOOLOOOGGGOOOOAAAAAAALLLLJJJJJJJJJLLLDDDDDDDDDDDDDVOOOOVOWXXXXNNNNNPPPZZZZZZZZZZZZKKYYYYYYYYYYNNCCCCCCCCCBBCCOOOO
AAAPPPAPAAAABABBBBBBBBBPOXOOOOLOOOGGGOOOOOOAAAAALLLLLLJJJJJJJLLLLDDDDDDDDDOOOOOOOOOOWXXXXNNNNNNNPZZZZZZZZZZZZKAYYYYYYYYYYYYCCCCCCCXCBBCYOOOO
APPPPPPPPAAAAABBBBBBBBFZZXZZKKOOOOGGGOOOOOOAAAAALLLLZLJJJLJJJJLLLDDDDDDDDUUOOOOOOOOOOORRRRONOOPPPZZZZZZZZZZZZKAYYYYYYYYYYYYNCCUCCCCVBBCCPOHO
PPPPPPPPPAAAAAABBBBBBBBZZZZMOOOOOGGGGGOOOOOAAALLLLLLLLJJLLLLLLLLLLDDDDDDOOOOOOOOOOSOOOORDDOOOOPPMMMPPPPZZZZZZAAYYYYYYYYYYYYJMCCCCVVVBVPPPVVV
PPPPPPPPPAAAAAABBBBBBZBZZZZMMGGGGGGGGGGGGOOAZALLLLLLLLLLLLLLLLLLLLDDDDDOOOOOOOOOOOOOOOORDOOOOOPPMMMPPPPZZZZZZAAYYYYYYYYYYYYJMMMCCCVVVVVVVVVV
PPPPPPPPPAAAAAABBBBBBZZZZZZMMGGGGGGGGGGGGAAAZALLLZLLLLLLLLLLLLLLLLLDDDOOOOOOOOOOOOOOOOOOOOOOOOOPMMMPPPPPZZZZZAAYYYYYYYYYYYYJMJMMVVVVVVVVVVVV
XPPPPPPPAAAAAABBBTBBYZZZZZZZZYGGGGGGGGGGGGAAZZZLZZZLLLLBBBBLLLLLLLDDDDDOOOOOOOOOOOOOOOOOOOOOMMMMMMMPPPPPZZZZZAOYYYYYYYYYYYJJJJVVVVVVVVVVVVVV
XPPPPPPPAAJJAABAACBBYYZZZZYZYYGGGGGGGGGGGGAAZZZZZZLLBBBBBBBLLLLLBBBBBOOOOOOOOOOOOOOOOOOOOOOMMMMMMMMJJJPLZZZZZAZYYYYYYYYYYYJJJJJJBJVVVVVVVVVV
XPPPPPPPJJJJAAAACCYBYYZYYYYYYYYGGGGGGGGGGGAAZZZZZZZZBBBBBBBLLLLLBBBBBBBBOOOOOOOOOOOOOOOOOOOMMMMMMMMMJJZZZZZZZZZYYYYYYYYYYYJJJJJJJJBVVVVVVVVV
XPPXPPPPJJJJAAACCCYYYYZYHYHYYYHGGGGGGGGGGGAAAZZZZZZZBBBBBBBBBLLBBBBBBBBBOOOOOOOXOOOOOOOOOOOMMMMMMMMMJJZZZZZZZZZZOOOOJJJYYYJJJJJJVJBVVVVVVVVV
XXXPPPPJJJJJJAACCYYHYYYHHHHHHHHGGGGGGGGGGGEAEZZZZZZZBBUBBBBBBBBBIIIBBBBOOOOOOOOOOOOOOOOOOOOOMMMMMMMMJJZZZZZZZZZOOOOOOJJYYYJJJJJJJJVVVVVVVVVV
XXXPPPPPPJJJJPACCCHHHYHHHHHHHHHGGGGGGGGGGEEEEZZZZZZZZUUUUBBBUUBBBIIIBIBBBOOOOOOOOOOOOOOOOOOOMMMMMZZZZZZZZKKZZZZZOOOOCCYYYYYYJJJJJJVVVVVVVVVV
XXXXPPPPPJJJPPAAAAHHHHHHHHHHHHYYYGGGGGEEEEEEZZZZZZZZZZUUUUUUUBBBIIIIIIIBBBOOOOMMMOOOOOOOOOYOMMMMMZZZZZZZZKKZZZZZZZOCCCYYYYYYJJJJJJVVQQVQQVVV
XXXPPPPJJQJJPPPAAHHOHHHHHHHHHHYYYYEEWEEEEEEEEZZZZZZZZUUUUUUUUUUIIIIIIIIIBOOOOOMMMMOMOOSOOOOOOMMMMZZZZZZZZKKZZZZZZZCCCCYYYYYYJJJJJJJJOQQQVVVV
XXXXXPPJJJJPPPPRROOOHHHHHHHHYYYYYYYEEEEEEEEEEEEZZZZUUUUUUUUUUUIIIIIIIIIIMMOOOMMMMMOMNNNOOOONNNNJEZZZZZZZZKKZZZZZZZCCCCYYYYYYJJJJJJJXQQQQQQQQ
XXJXXJJJJJJPPPRRRROOHHHHHHHHYYYYEEEEEEEEEEEEEEEZZZZZUUUUUUIIIIIIIIIIIIBBMMOOMMMMMMMMNNNCNNNNNNJJFZZZZZZZZKKKZZZCCCCCCCYYYYYYJJJJJJJQQQQUQQQQ
XXJJJJJJJJJPPYPVRJJHHPHHHHHHYYYYEEEEEEEEEEEEEEZZZZZZUUUUUTTIIIIIIINIIBBIMMMMMMMMMMMMNNNNNNNNNNFFFKKKKKKKKKKKZZZCCCCCCCYYYYYYJJJJJJCQQQQQQQQQ
XXJJJJJJJJPPJPPPPPJJJPPPHHHHHYYYEEEEEEEEEEEEXPZZZZZZZZUUUTTINNNNINNKIBIIMMMMMMMMMMMMMNNNNNNNNFFFFFKKKKKKKKKKZZZCCCCCCCYYYYYYJJJJJQQQQQQQQQQQ
XJJJJJJJPPPPPPPPPPJJJHHHHHHDHDYYYYYEEEEEEEEXXXZGGZZZZZUUUNNNNNNNNNNIIIIIMMMMMMMMMMMMNNNNNNNNNFFFFKKKKKKKKKKKKKKCCCCCCCYYYYYYYYYZZQQQQQQQQQQQ
JJJJJJJPPPPPPPPPPJJJJJJJJHHDDDDYYYYYEEEEEEEXXGGGGEEZZZUUDNANNNNNNNAIIIIIMMMMMQMMMMMMNNNNNNNNFFFFFKKKKKKKKKKKKKKCCCCCCCYYYYYYYYYZQQQQQQQQQQQQ
JJJJJJJJPPPPPPPPPJJJJJJJJJDDDDDYYYYEEEEEEXXXXXGGGGEEEZEUDNNNNNNNNAAAIIIIMMMMQQQQMMNNNNNNNNNNFFFFFCKKKKKKKKKKKKKKWCCCCIYYYYYYYYYZZZXQXQQQQQQQ
JJJJJJPPPPPPPPPPPJJJJJJJJJDDDDDDDYYEEEEEEXXXXGGSEEEEEEEENNNNNNNNNVVAAIIMMMMQQQQQMMNNNNNNNNNNOFFFFFKKKKKKKKKKKUUKKUCCCCCCCZYYYYYZZZXXXXQQQQQQ
HJJJJJPPPPPPPPPPPPPJJJJJJJJDDDDDDYYYEEEEEXXXSSSSEEEEEEEENNNNNNNNNNVAAAVVMQQQQQQQMMNNNNNNNHNNNFFFFFKKKKKKKKKKKUUUUUCCUUUUCCYYYYYXXXXXXXQQQQQQ
HJJJJNPPPPPPPPPPFPPJJJJJJJJDDDDYYYYXXNNEXXXSSSSSEEEEEEENNNNNNNNNNVVVVAVVQQQQQQQQMNNNHHNNNHNNNFFFFFKKKKKKKKKKKUUUUUUUUUUUUUUUHZZZXXXXXQQQQQQQ
HHJVJRPPPPPPPPPPPPPPLJJJJJJDDDLLLLXXXXXEXXXXXXXSUUUUNNNNNNNNNNNNNVVVVVVVQQQQQQQQMMMNHHHNNHHHHHHHHFHHHKKKKKKKKUUUUUUUUUUUUUHHHHHXXXXXXXQQQQQQ
HRRRRRRPRPUPPPPPPPPLLLLJJJDDDLLLLUUUXXXXXXXXXXXXXXUUUUNNNNNNNNNNNVVVVVVVQQQQQQQQMMMMHHHHHHHHHHHHHHHHHKHHHKKKKUUUUUUUUUUUUHHHHHHHHXXXXXXXQQQQ
HHHHRRRRRRRRRRPPPPWLLLLLLLLLDLLLLUUUVVVXXXCCCXXXXXXXKNNNNNNNNNNNNVVFVVVTTQQQQQQTMMMHHHHHHHHHHHHHHHHHHHHHHHKKUUUUUUUUUUUUUUHHHHHXXXXXHQHXQQQQ
HRRRRRRRRRRRRRRPPBGLLLLLJLLLLLLLLULUVVVXXCCCCCXXXXXXKKNNNNNNNNNNVVVVTTTTTTTTQQQTTTMLLHHHHHHHHHHHHHQQQHHHHUKUUUUUUUUUUUUQUUHHHXXXXXXXHHHHQHAH
RRRRRRRRRRRRRRRRPPGLLLJJJLJLLLLLLLLUVVVXCCCCCCXXXXXKKKNNNNNNNNNNVVVVTTTTTTTTTTTTTMMLLHLHHHHHHHHHHHQQQQHHHUUUUUUUUUUUUUUQUQHSXXXXXXXXXXHHHHHH
RRRRRRRRRRRRRRRRRGGGLJJJJJJLLLLLLLVVVVVECCCCMMMMMMKKKKKKNNNNNNNNNVVTTTTTTTTTTTTTULLLLLLHHHHHHHHHQQQQQHHHUUUUUUUUUUUUUQQQQQQSXXXXXXXXXXXHHHHH
RRRRRRRRRRRRRRRRRGGGGJJJJJJLLLLLLJVVVVVVGCCCMMMMMMKKKKKNNSSNNNNNNVTTTTTTTTTTTTTULLLLLLHHHHGGGGGHHQQQHHHHHUUUUUUUUUUUUQQQQQQSSXXXXXXXXXHHHHHH
VRRRRRRRRRRRRRRRRGGGJJJJJJJLLLLLLJVVVVVVGCCCMMMMMMKKKKNNGSGNNNNNYYTTTTTTTTTTTTLLLLLLLLLHHHGGGGQQQQQQHQHHHUUUUUUUUUUUUQQQQQQQSXXXAXXXXXHHHHHH
VVVRTRRRRRRRRRRRJGGGGQJJJJJJJLLLGVVVVVVGGCCCMMMMMMKKGKGGGGGGGGYYYYDTDTTTTTTTTTLLLLLLLLLHHHGGGGQQQQQQQQHHOOOOUUOOUUUUUQQQQQQQQXUAAXXMHHHHHHHH
VRRRTTTTRFFRRJRRGGGGQQJUJJJJJJGLLGGGGVGGGGGCMMMMMMKKGGGGGGGFFFYYDDDDDDDDTTTTTTTLLLLLLLLLHHGGGGQQQQQQQQQOOOOOUUOOUOUZUQQQQPQQUUUTTTTTHHHHHHHH
VVRAAATTYTFRYDDFGDGGQQJJJJJJGGGGGGGGGGGGGTTTTTTTMMKZGGGGFGGFFFYYDDDDDDDCTTTTTTTLLLLLLLLHHGGGGGGQQQQQQQOOOOOOOUOOOOOUGUUQQQQQUUUTTWTTKKNNHHNN
VVUUATTTTTDDDDDDMDGGQQJJJJJJGDGGGGGGGGGGGTTTTTTTKKZZGIIIFFFFFFYDDDDDDDDDDDTTTTTLLLLLLLLGGGGGGGGQQQQQQQOOOOOOOOOOOOWUUUUUUUUUUUUUUUKKKKKNHNNN
UUUUTTTTTQDDDDDDMDDDQQQQJJJJGDGGGGGGGGGGGTTTTTTTKKZZZIIIIFFFFDDDDDDDDDDHHHHTTTHLLLLLLLLIIGGGGGGQQQQQQOOOOOOOOOOOOOWKWWUUUUUUUUUUUUNNNNNNNNNN
UUUUTTTTTTDDDDDDDDDDDQQJJJCCDDGGGGGGGGTTTTTTTTTTCZZZIIIIIIFFFFDDDDDDDEDHHHHTHHHHLLLLLLLLLGGGGGGQQQQOQOOOOOOOOWOOOWWWWUUUUUUUUUUUUGNNNNNNNNNN
UUUUUTBTTTDDDDDDDDDDDDQJJJCCDDDGGDGGDGTTTTTTTTTTZZTZZIFFIFFFFFFDDDDDDDHHHHHHHHHLLLLLLLLLLGGGGGGQQQQOOOOOOOOOOWWWWWWWWUUUUUUUUUUUUNNNNNNNNNNN
UUUUUUUTTTTDDDDDDDDDDQQQQDDDDDDGDDDDDDTTTTTTTTTTNZZZZIIFFFFFFFFFDDDDDDDHHHHHHHHHHHLLLLLGGGGGGGGGGGOOOOOOOOOOOWWWWWWWWUUUUUUUUUUUUUNNNNNNNNNN
UUUUUUUTUUUDDDDDDDDDQQQQQQDDDDDDDDDDDDTTTTTTTTTTZZZZZFFFFFFFFFFFDFDDDZZZHHHHHHHHHHHHGGGGGGGGGGGGGOOOOOOOOOOOOOWWWWWWWWWWUUUUUUUUUNMNNNNNNNNN
UUUUUUUUUUDQDDDDDDDDQQQQQQDDDDDDDDDDDDTTTTTTTTTTZZZZZZZFFFFFFFFFFFDDDDZZHHHHHHHHHHGGGGGGGGGGGGGGGOOOOOOOOOOOOWWWWWWWWWWUUUUUUUUUUNNNNNNNNNNN
UUUUUUUUUDDDDDDDDDQQQQQQQDDDDDDDDDDDAZTTTTTTTTTTNZZZZFFFFFFFFFFFDDDDJJZZZHHHHFFFFFGGGGGGGGGGGGGGGOOOOOOOOOOOOOWWWWWWWWWUUUUUUUUUUUNNNNNNNNNN
UUUUUUUDDDDDDDDDDDQQQQQQQDDDDDDDDDDDDETTTTTTTTTTNPZZZFFFFFFFFFFFFIIZZZZZZZZFFFFFFFXGGGGGGGGLGGGGGGGOOOAAOOOOOOWWWWWWWWWUUUUUUUUUDUDNNNNNNNNN
UUUUUUUDDDDDDDDDDQQQQQQQQQDDDDDDDDDDDEEEVVVVVVVNNPZZZFFFFFFFFFFFDIDZZZZZZZZIIIIIIFXXXXGGGGGLLGGGGGOOOOOAOOOOOOOWWWWWWWUUUUUUUUDDDDDNNNNNNNNN
UUUUUUUDDDDDDDDQQQQQQQQQQVVVDDDDDDDDEEEEVVVVHHPNPPPZZZZFFFFFFFWWDDDZZZZZZZZZIIIIIIJXXJJGJJLLLLGGLGGOWWFAOAOOAOWWWWWWWWWWUUUUUUDDDDDDNNNNNNNN
UUUUUUUUDIDDDDDQQQQQQQQQQQVDDDDDDDDDDDEEEEVVVHPPPPPZZZZFZZZZZZWWDDDDDZZZZZZZIIIIIIJJJJJJJJLLLLLGLGGOWWFFFAAAAAWWWWWWWWWWUUZZUUUDDDDDDNNCNNNH
UUUUUUUUPDDDDDJJQQQQQQQVVVVDDDDDDDDDDEEEEEEVGPPPPPPZPZZFZZZZZWNWWWDDDDZZZZZZIIIIIIIJJIIILLLLLLLLLGLOWFFFFAAAAAWWWWWWWWWWWUZZUDDDDDDDDDNNNNNN
UUUUUUUUUDDDDDJJJQQQQQQQQQQQDTDDDDDDDDEEEEEPPPPPPPPPPPZZZZZZZWWWWWDDDDDZZZZZZNIIIIIIIIICCLLLLLLLLLLBFFFFFFFAAEWWWWWWWWWZZZZZZDDDDDDDDDDNNNNN
UUUUGGUUEEDDDDJJJJJJJQQQQQQQQDDDQDDDDEEEEEEEKPPPPPPPPPPZZZZWWWWPWDDDDDDZZZZZZNNIIIIIIILLLLLLLLLLLLLLFFFFFFFFFEWWWWWWWWWZZZZZDDDDDDDDDDDNNNNN
UUGUGGGEEEDJJJJJJJJJJJQQQQQQQDDDQQDDEEEEEEEEPPPPPPPPPPPZZWWWWWWWWDWDDDDZZZZZNNNNNIIIIILLLLLLLLLLLLLLLGFFFFFFEEEEEEWWWWZZQZZZDDDDDDDNNDNNNNNN
UGGGGGGGEEEJJJJJJJJJJJQQQQQQQQDQQQEEEEEEEEEEPPPPPPPPPPZZZWWWWWWWWWWWDDDZZZZINNNIIIIIIILLLLLLLLLLLLMGGGFEEEEEEEEEEWWWWWWZZZZZZDDDDNNNNNNNNNNN
UGGGGGGGGEJJJJJJJJQJQQQQQQQQQQQQQEEEEEEEEPPPPPPPPPPPPZZZZWWWWWWWWWWWDDZZNNNINNIIIIIIIILLGHLLLLLLLLLGGEEEEEEEEEEEEWWWWWZZZZZZZDDDDNNNNNNNNNNN
UGGGGGGGGGQJJJJJJJQQQQQQQQQQQQQQQQEEYEEYYYOPPPPPPPPPZZZWWWWWWWWWWWWWDDDNNNNNNNNIIINIIIIAGLLLLLLLLLLLGEEEEEEEEEEECPPPZZZZZZZZZDDNNNNNNNNNNNNN
SGGGGGGGGGJJJJJJJJQGQQQQQQQQQQQQQQQYYYYYYYYPYPPPBPZZZZZZWWWWWWWWWWWWNNNNNNNNNNNNNINIIIIGGLGGLLLLLLGGGGEEEEEEEEEECCPPPPPPZZZOZDNNNNNNNNNNNNNN
GGGGGGGGGGAJJJJJJJJQQQQQQQQQQQQQQQQYYYYYYYYYYPPPPZZZZZZZZZWWWWWWWWWRRRNNNNNNNNNNNNNIGIIIGGGLLLLGGGGGGEEEEEEEEEMMPCPPPPPPPPZZPPPPNNNNNNNNNNNN
GGGGGGGGGGGGJLJJJJJJDQQQTTTQQQQQQQQYYYYYYYYYYPYPYZZZZZZZZZZZWWWWWWWRRRNNNNNNNNNVVGGGGGGGGGGGLLGGGGGGGRNEEEEEEEMMPPPQPPPPPPPPPPPUNNNNNNNNNNNN
GGGGGGGGGGGGLLJJJJJTTDTQTTTQQQQQQEEEEEYYYYYYYYYYYYZZZZJZZWWWWWWWWWWRRRNNNNNNNNNNNRLLGGGGGGGGGGGGGGRRRRRREKKEEEMMPPPPPPPPPPPPPPPPZZZZZNNNNNNN
GGGGGGGGGGGGLYPPJJTTTTTTTQQQQQQQQEEEEEYYYYYYYYYYYYZZJJJJJJMWWWWWWWWWRRRRRNNNNRRRRRLLLGLGGGGGGGGGGGGRRRREEKKKKKKKUUPBPPPPPPPPZZZZZZZZNNNNNNNN
GGGGGGGGGGGGYYPPJJTTTTTTTTTTQQQQQEEEEEYPYYYYYYYYYZZZJJJJJJMMMWWWWWWWRRRRRRRRRRRRRLLLLLLGGGGGGGGGGGGRRRRRERKKKKKKKUPBBPPPPPPPZZZZZZZZZNNNNNNN
GGGGGGGGGGGYYYYYJJTTTTTTTTTQQQQQEOEEEEEYYYYYYYYYYZZZQJJJJJJJMWWWWWWWRRRRRRRRRRRRRLPLLLLLGGGGGGGGGGGRRERRRRRKKKKKKPPPPPPPPPPPZZZZZPZPPPPPNNNN
GGGGGGGGGGGYYYYYYJPTTTTTTTTTQQQQEEEEEEEYYYYYYYYYYYZJJJJJJJJJWWWWWRRWRRRRRRRRRRRRRLLLLLLLLGGGGGGGGGGGGRRRRRRRTKKKKPPPPPPPPPPPZZZZPPPPPPPPNNPP
GGGGGGGGGGYYYYYYYTTTTTTTTTTQQQQQEQEEEEEYYYYYYYYYYYZJJJJJJJJJJJWWRRRRRRRRRRRRRRRRRRRRLLLLLGGGGGGGGGGRRRRRRRRTTTTKTTPRPPPPPPPPZZFZPPPPPPPPNPPP
GGGGGGGGGGKKKKKKKKTTTTTTTTQQQQQQQQEYEEHHHHHHYYYYYYJJJJJJJJJJJJJRRRRRRRRRRRRRRRRRRRRRLLLLGGGGGGGGGGGGGRRRRRRRTTTTTTTPPPPPPPPRZZFZPPPPPPPPPPPP

File diff suppressed because it is too large Load Diff

View File

@@ -1,500 +0,0 @@
p=99,12 v=19,18
p=90,98 v=47,-52
p=86,3 v=82,-13
p=13,8 v=-67,-47
p=36,45 v=28,65
p=71,35 v=-8,-62
p=75,8 v=-30,-21
p=3,46 v=-38,-96
p=1,89 v=78,18
p=47,59 v=-63,99
p=92,78 v=68,48
p=42,31 v=78,94
p=75,29 v=9,83
p=46,12 v=-29,48
p=80,16 v=-70,33
p=18,66 v=57,-97
p=60,12 v=89,-90
p=21,36 v=-41,-78
p=75,53 v=52,-62
p=18,79 v=45,51
p=20,29 v=63,-97
p=22,68 v=23,1
p=6,67 v=-24,-44
p=44,35 v=-54,29
p=33,80 v=28,-56
p=48,78 v=55,-22
p=88,79 v=99,69
p=12,96 v=-50,-59
p=6,57 v=80,61
p=98,31 v=-77,14
p=91,65 v=-13,20
p=52,53 v=-85,41
p=94,94 v=-15,5
p=69,75 v=-41,-11
p=98,77 v=71,-54
p=23,47 v=-61,-27
p=32,74 v=-11,96
p=22,87 v=-5,-75
p=65,22 v=26,71
p=1,67 v=13,69
p=32,96 v=-90,-94
p=17,17 v=-5,71
p=57,85 v=-92,28
p=52,32 v=-41,69
p=13,85 v=-43,-83
p=51,39 v=-38,32
p=64,17 v=91,82
p=97,86 v=-69,-70
p=98,94 v=46,-21
p=43,31 v=61,-24
p=42,58 v=-51,-42
p=5,46 v=-4,91
p=65,52 v=10,50
p=23,6 v=-42,29
p=54,25 v=4,44
p=5,19 v=-77,-74
p=44,77 v=-23,-26
p=10,70 v=6,-72
p=38,101 v=-50,-36
p=9,49 v=35,72
p=64,14 v=77,-78
p=21,2 v=-67,-6
p=34,97 v=-73,-37
p=77,13 v=-30,60
p=50,40 v=83,-58
p=99,85 v=-59,-87
p=65,0 v=-76,-48
p=44,94 v=-45,34
p=5,59 v=92,35
p=73,100 v=93,-71
p=50,20 v=-74,-97
p=9,33 v=-10,-89
p=54,49 v=-46,99
p=99,100 v=92,51
p=84,94 v=-53,-45
p=92,13 v=-61,69
p=19,52 v=56,-12
p=20,52 v=-38,-90
p=98,12 v=99,-22
p=46,23 v=95,-32
p=84,100 v=-70,70
p=19,69 v=58,-52
p=77,67 v=-51,31
p=11,6 v=18,-67
p=11,22 v=-50,-82
p=73,43 v=25,79
p=60,16 v=-58,-36
p=86,18 v=-88,71
p=21,50 v=-50,-88
p=17,20 v=-65,-54
p=38,26 v=67,71
p=22,60 v=-46,15
p=81,46 v=-39,16
p=25,98 v=22,-41
p=9,72 v=-94,8
p=82,59 v=-46,-34
p=71,41 v=-23,45
p=74,1 v=-70,32
p=96,17 v=-37,95
p=39,45 v=-6,-23
p=46,4 v=61,55
p=41,100 v=-35,-10
p=65,75 v=-1,-26
p=8,21 v=7,-32
p=43,71 v=-12,73
p=85,67 v=58,-41
p=73,7 v=31,-89
p=85,71 v=-93,-72
p=54,83 v=-46,-75
p=13,66 v=-24,-98
p=67,13 v=21,-21
p=1,33 v=24,-66
p=71,27 v=54,-78
p=69,86 v=42,35
p=17,28 v=-83,94
p=92,19 v=25,-68
p=92,84 v=-31,16
p=32,26 v=-6,54
p=20,97 v=-16,36
p=1,102 v=13,9
p=59,26 v=-68,91
p=92,44 v=-20,30
p=16,45 v=-83,34
p=30,69 v=-75,-46
p=51,64 v=-73,68
p=53,29 v=-57,-61
p=14,100 v=-15,86
p=80,41 v=-20,-81
p=5,92 v=-60,1
p=91,10 v=-49,98
p=0,62 v=-79,9
p=40,1 v=3,-70
p=81,32 v=-53,41
p=53,18 v=-46,94
p=69,96 v=-95,-82
p=32,92 v=-69,-30
p=73,83 v=-59,-65
p=74,67 v=-8,-99
p=71,45 v=-58,60
p=35,29 v=-51,-92
p=68,15 v=-92,-55
p=74,3 v=26,30
p=67,25 v=-58,22
p=31,46 v=-73,-92
p=29,69 v=45,23
p=48,78 v=-23,-29
p=41,13 v=-45,-78
p=57,8 v=-3,26
p=45,53 v=45,4
p=37,23 v=-62,41
p=41,90 v=-35,55
p=88,96 v=53,-71
p=38,15 v=-90,71
p=62,20 v=4,-88
p=64,19 v=15,-85
p=96,61 v=10,81
p=19,81 v=57,-45
p=53,11 v=67,44
p=51,83 v=66,85
p=29,76 v=-84,-26
p=63,23 v=-13,14
p=23,51 v=-18,-52
p=23,41 v=73,-55
p=99,75 v=-32,-14
p=68,20 v=79,45
p=27,74 v=45,42
p=55,96 v=47,-73
p=87,29 v=-93,22
p=20,76 v=-49,88
p=11,78 v=-67,-41
p=31,78 v=-12,-99
p=21,49 v=64,9
p=56,45 v=10,-4
p=67,97 v=-59,92
p=96,58 v=-49,96
p=36,51 v=-68,8
p=18,10 v=-79,-60
p=25,7 v=47,-55
p=12,101 v=40,-52
p=83,57 v=-42,-38
p=62,89 v=77,20
p=8,49 v=51,-54
p=12,98 v=-20,53
p=47,89 v=35,68
p=46,16 v=89,6
p=72,34 v=37,45
p=61,31 v=49,76
p=42,98 v=64,17
p=27,41 v=71,27
p=50,8 v=-1,-63
p=97,5 v=-56,9
p=41,58 v=5,-38
p=66,101 v=-64,13
p=67,95 v=-40,18
p=94,41 v=-37,73
p=89,102 v=-4,2
p=44,51 v=-84,65
p=9,89 v=29,89
p=28,29 v=5,29
p=76,4 v=-89,8
p=75,93 v=-75,89
p=38,6 v=-73,-2
p=19,1 v=-95,-6
p=61,76 v=-69,23
p=6,27 v=64,-24
p=97,76 v=47,28
p=62,86 v=50,-61
p=85,50 v=-93,-92
p=10,76 v=-83,31
p=58,42 v=52,-81
p=47,42 v=16,38
p=3,17 v=-66,52
p=58,84 v=-59,-36
p=91,76 v=20,-68
p=9,62 v=-10,-23
p=45,99 v=-85,-2
p=0,8 v=-77,17
p=53,70 v=-41,-23
p=32,96 v=6,89
p=67,33 v=26,37
p=94,86 v=47,47
p=26,74 v=-39,12
p=19,15 v=-55,16
p=60,76 v=93,-98
p=44,71 v=-49,-38
p=35,77 v=-1,-7
p=68,98 v=32,89
p=10,54 v=-23,-24
p=63,10 v=-77,50
p=75,61 v=71,80
p=35,78 v=-5,-55
p=74,23 v=15,-45
p=10,68 v=52,-34
p=45,43 v=8,-67
p=12,76 v=24,-75
p=62,73 v=-86,77
p=9,82 v=-38,-64
p=1,95 v=25,-64
p=67,30 v=-69,-20
p=92,25 v=-79,75
p=42,19 v=-46,-78
p=3,98 v=35,-83
p=89,102 v=53,90
p=25,10 v=-5,37
p=46,0 v=-74,29
p=12,40 v=-79,92
p=13,21 v=-56,-44
p=63,49 v=77,-27
p=3,12 v=83,-67
p=48,42 v=72,-62
p=37,74 v=-46,16
p=25,75 v=51,-26
p=84,35 v=81,-43
p=38,40 v=-63,19
p=77,13 v=-64,-48
p=95,13 v=-82,-44
p=81,41 v=-19,-81
p=33,81 v=-64,41
p=69,75 v=65,35
p=30,76 v=45,39
p=48,72 v=-29,39
p=74,10 v=78,-61
p=70,17 v=9,52
p=11,67 v=46,-87
p=35,72 v=-11,-46
p=86,37 v=-82,60
p=99,24 v=-91,56
p=92,46 v=-54,-23
p=93,12 v=76,-9
p=92,43 v=-97,-75
p=3,72 v=10,-79
p=13,83 v=13,8
p=78,80 v=3,-60
p=81,41 v=84,-73
p=93,9 v=-25,36
p=78,96 v=20,-37
p=40,50 v=-78,59
p=66,21 v=85,78
p=37,67 v=56,53
p=49,62 v=-91,-63
p=59,54 v=60,-69
p=57,81 v=77,39
p=51,79 v=-19,-11
p=65,27 v=74,95
p=33,56 v=44,-27
p=7,43 v=80,38
p=11,19 v=36,-88
p=27,15 v=-95,44
p=2,76 v=-15,-53
p=90,40 v=-14,56
p=93,52 v=30,-92
p=31,42 v=56,-16
p=86,64 v=-25,-51
p=97,81 v=-76,-76
p=11,36 v=35,-77
p=9,94 v=-10,-48
p=35,3 v=68,-6
p=10,84 v=69,58
p=12,17 v=18,71
p=61,62 v=77,-4
p=6,93 v=29,-82
p=91,71 v=-49,62
p=84,5 v=26,-17
p=100,1 v=-22,-38
p=90,27 v=-34,-39
p=84,21 v=-68,-62
p=72,10 v=-70,63
p=83,20 v=42,-74
p=51,99 v=-57,51
p=13,56 v=-78,76
p=21,88 v=80,81
p=40,97 v=76,85
p=61,92 v=-97,-15
p=29,58 v=56,-88
p=90,0 v=-34,-2
p=35,46 v=-23,-35
p=88,49 v=82,-67
p=83,23 v=98,-1
p=19,80 v=-5,-98
p=21,45 v=-90,45
p=79,3 v=-14,-86
p=49,37 v=27,-54
p=95,0 v=-93,36
p=55,46 v=-63,26
p=38,78 v=-61,-97
p=91,61 v=-60,-92
p=44,15 v=-51,75
p=82,86 v=20,-72
p=93,69 v=8,-95
p=93,59 v=-37,50
p=73,50 v=-84,22
p=8,7 v=-50,25
p=97,46 v=-14,22
p=43,2 v=-96,44
p=29,32 v=-33,34
p=30,64 v=-56,-95
p=12,65 v=-38,54
p=64,54 v=-12,-54
p=32,29 v=66,-4
p=80,84 v=-24,34
p=2,93 v=53,-87
p=77,14 v=59,-82
p=12,25 v=-77,78
p=65,74 v=76,-61
p=93,89 v=-26,59
p=1,35 v=25,-12
p=100,26 v=1,48
p=28,79 v=-96,16
p=18,1 v=-16,2
p=42,38 v=-39,-31
p=35,76 v=-76,-93
p=28,6 v=78,24
p=36,33 v=-34,-5
p=26,73 v=-95,-95
p=96,22 v=-83,-25
p=82,74 v=-30,-76
p=9,98 v=46,-52
p=80,3 v=13,-65
p=65,11 v=68,-58
p=68,57 v=-13,57
p=91,2 v=27,-94
p=2,96 v=-16,-29
p=65,67 v=-6,-55
p=79,63 v=88,-19
p=17,12 v=-27,52
p=10,6 v=52,-86
p=3,74 v=-37,-61
p=90,47 v=14,68
p=77,87 v=-59,20
p=80,63 v=-98,8
p=20,27 v=-64,10
p=93,60 v=-54,-38
p=93,14 v=52,95
p=53,79 v=-63,-87
p=12,21 v=-10,-70
p=71,62 v=76,-19
p=77,13 v=-3,-48
p=51,99 v=-46,-36
p=58,50 v=77,-31
p=59,62 v=54,43
p=66,66 v=-86,12
p=34,87 v=-93,-88
p=93,64 v=-47,71
p=11,5 v=1,-67
p=54,11 v=-80,-13
p=74,31 v=-30,-85
p=25,60 v=6,-34
p=94,77 v=81,73
p=62,70 v=-41,54
p=44,70 v=-68,80
p=25,78 v=42,71
p=46,0 v=-29,82
p=6,4 v=9,76
p=34,40 v=-52,3
p=62,23 v=2,50
p=85,72 v=31,27
p=85,67 v=1,1
p=3,37 v=-15,-96
p=99,29 v=-65,15
p=65,67 v=-22,-99
p=72,65 v=55,6
p=38,97 v=56,-52
p=16,13 v=35,82
p=0,7 v=-8,-86
p=47,4 v=33,-14
p=50,34 v=-26,59
p=27,61 v=60,81
p=100,11 v=13,-93
p=94,33 v=-26,-35
p=9,43 v=52,68
p=23,73 v=-1,-50
p=76,88 v=62,-78
p=62,28 v=43,3
p=95,22 v=-80,79
p=43,81 v=-84,40
p=19,10 v=85,2
p=40,31 v=-45,-81
p=33,59 v=11,-80
p=53,66 v=27,12
p=52,94 v=5,24
p=3,96 v=-71,-33
p=18,48 v=28,-27
p=76,18 v=34,-7
p=75,73 v=93,-53
p=48,9 v=-12,48
p=65,51 v=-69,-66
p=78,10 v=-14,-40
p=44,32 v=-52,7
p=36,20 v=-68,48
p=4,58 v=63,61
p=12,62 v=-39,-53
p=31,36 v=56,-85
p=14,58 v=-51,-61
p=86,11 v=-76,-17
p=45,38 v=-79,-1
p=60,41 v=29,18
p=28,8 v=-22,-59
p=66,47 v=-13,72
p=91,15 v=-31,-55
p=69,73 v=15,-87
p=52,49 v=71,-76
p=73,69 v=-47,-49
p=87,7 v=-20,-94
p=1,0 v=-76,40
p=96,48 v=-14,88
p=52,36 v=-46,26
p=94,48 v=3,-39
p=36,38 v=-71,-93
p=64,8 v=55,-47
p=75,63 v=59,-38
p=64,97 v=15,-94
p=63,102 v=4,-40
p=41,78 v=16,-87
p=63,82 v=58,50
p=32,24 v=48,42
p=57,69 v=-35,31
p=73,26 v=-2,-28
p=31,89 v=28,32
p=82,93 v=-14,62
p=61,87 v=-12,-26
p=58,36 v=-72,-13
p=80,49 v=-59,15
p=34,10 v=72,40
p=4,82 v=41,16
p=46,12 v=5,82
p=81,17 v=75,-36
p=69,12 v=99,90
p=98,16 v=-55,-24
p=49,39 v=38,-89
p=91,1 v=92,-32
p=91,99 v=-48,-33
p=16,44 v=-60,53
p=26,60 v=-56,-31
p=31,32 v=28,-16
p=36,40 v=33,-47
p=60,18 v=-97,-51
p=5,2 v=36,-21
p=83,8 v=20,-47
p=32,40 v=-16,-39
p=65,11 v=-84,11
p=58,31 v=-80,-5
p=96,38 v=-42,-65
p=40,23 v=14,87
p=36,81 v=67,77
p=13,74 v=35,96
p=6,58 v=-36,-64
p=73,23 v=-53,-5
p=22,18 v=45,-58
p=67,29 v=-81,-52
p=14,18 v=-33,-17
p=51,28 v=43,-55
p=98,11 v=-72,95
p=80,17 v=-53,10
p=76,54 v=65,-77
p=76,98 v=-74,66
p=12,50 v=97,64
p=53,27 v=67,26
p=22,89 v=57,-60
p=23,34 v=40,-43
p=35,85 v=17,-6

View File

@@ -1,71 +0,0 @@
##################################################
##.OO.O.O#........#..O.......O......O..O..O.O...O#
#O.O#.O......#.#O......O....O.O.....#.#.......#..#
#.##O.O..#OO...O..O.O..O#.#.O.............O..OO..#
#.OO#......OOO.OO.OO.O...O.O.................O.O.#
#.#....#O.......O.#OO.#..O#.O...O.O...O....O.O#O.#
#O..O...#O.O..#OO#O....O...#....OOO...O.###.#.OO.#
#.....O.....OO..O......O......O..........OOO..OO##
#.O#..O...O.......O.....OO...O#...O..OO...O......#
#O....O...#O......O..O.OO....O..O.OO....#......O##
##.O..O..#.OO#....#..O.#......O....#.....O..O#..##
#..#....OO.##.......O..O..#.#..O.O...OO#..O#....O#
##O.O....O.O.O....OO...O.......O#..........O..O..#
#.##.O.OO..................#.##O.O...#OO.......OO#
#O....#O.....OOOO.O.#.OOO#O.....OO...OO..O....#..#
#.#O.O.......OO..OO.O..O..#.O.O......O.O..#O.O...#
##..OO.O...#.....O#O.O..O.OO#.O.OOO...O....#O.#.O#
#....O.....O#O..O.O..O...............OO.O.O.O.OO.#
#.OO.O...O..O..OO#O..#....OO...O...O.O#.O.#......#
#..OO.....O...O..#O........O..O.O.O..#...O...#...#
#O......OO.O.........O#OOO.O..O...OO..........#O.#
#.O.....#.......#O......O........#.O.O...OO.O..OO#
#.#OO...#.#.O...OO.O.....#OO.O...O.....O.O#.O.O..#
#.O........#.O..O.O..#.#O#.OOO.....O..#.....#....#
#..O.O..#O#....OO#OO.#O#@.O..O.O.#...#.O.........#
#O....O.....O...O.#........O.OO.O..#...O....OO...#
#..OO.....O#.........O#........OOO...OO...#O#O..O#
#O....O...#O.O......O..OOO....OO#O..OO...........#
#O#.O..O...OO..........O.O...O.......OOO.........#
#...O.....O...O..#OOOO..O......#....#.O....O.....#
#..O..O.OOOO.O.......O.....O...#....O...O..OO.O.O#
#..OOO..O..OO.OO..O......O...#O...#.....O.....O..#
#..OO.O..O..#O....OO.....OO..O#O..#..O.#..#....O.#
#.O.#.#..##O.....O.....#OO...#......O.OO.O..OOOO.#
#..OO.O..O#.....#....O#......#......#.O..#..O..O.#
#O#...O.O..#....O.OO#.O.#....O.....#O......O..O.##
#......##O.OO.O#.O...O..OO#.O..###........O.OOO..#
#...O..#..O....O.#..#......O..O..#O...O...O......#
#.OO.OOOO.OO..#...OO......O.O.....O...O....#..O#O#
#O..#OOOO..#.O.O.......O...O.OO...O.........OO...#
#.O.....OO..O.....O.O#..OO...O#......O.....O....O#
#O.O..O.O...OO.O.....##...O..O....#O...OOO...O.#.#
##.O..O.O.O..##O#......O.OOO.#.....O.....O..#....#
#....#...O#...#..##.O.............O..#O..O..#.O..#
#...O..O#O....O...O...#.....O#OO...O.....#.O.....#
#.#O...O.O.O..O.#.O....O..O#..O.OOO..O....OO.....#
#......O..........O..#.#.....O...O..OO..O.O.##..##
#.O..O..OO.OOO..O...O.....O....O.......OOOOOO.O..#
#...#.O.#O#....#.O....OO..O.##....O.O.#.....#..O.#
##################################################
>vv^v>^^<>vv>v>^^<<^^>>^><^v<v<^>>v^><><<<<vv<^vv<^<>>><<v<^>>>>^^>>>v^v>^<v>>^^<>>^>^v><vv>v<^<^>><<v>^v^^v<^><<<<^><^v>^<>>^^vv<<<v^^><>vv<<<^<^v<>v<<<>>>v>v^>><v<>>^v^<v^v><<v<<^>^^<<^v>^v>vv^<><v^<v<^>v^<>^><<<^>>>^v^>>^^^^<<v<^>vv<^<><<>vvv<><vv><><v><^<v^^^v><<<<<vvv<>^<^>>vv^^^>v^>^v^^^v>^^><<<>^^v>^<^<>vv>>v^v<^^<<v><>>><^^v^<^<^v<^><^vv>vvvvv><>v<^^v<^v<<v>>>v<v<<>>^<v^>vv^>v<<^^<^<>v<><^v>vv>>^>><v<v<>^^<^><>v<v<>^^<v^vvv>>><v>><vvv><>v^v^<^<<v<v^^v<^^v^>^vv>^^<>v^^^^>vv<v^^^<^^v^^<>^><v><>v>^<v^vvv^<<^>>^^>^<>vv>v>v<^><v^v^<>^<^^><>^<v>vv<>v>^>>v^^^^>>v<v<^v<<v<>v<>^<>vv<>><<>v<vv^^<v<v^<^><v>^^^<^>vvv<^<<vv<v>^^^^<^>>><>>>v>>v><^<vv^<v^<^vv>><>v^<v<>>>><<v><v^>v^v^^<v<v<^v>^><<>>>v<v^<<>^^^^^v^^^<<v^<v>>>v<^vvv^>>^v^<^vv^v>^vvv>>^^^>v^>>^><^>^^<^<<^v><^<^<<>^^<<^<vv>>v^vvvvvv><v<^^v><^><><>^<<>v^><<>v<v>><<v^^vv^^v<>^>>>>>^>>^>><<v>v<v<>^>v<v^v^^<^<vv^^>>v>v<<<>^v^<<<^>^>^vv^^>v>>>^^>><v><>^<><^>><v>>v^<<<<^v^>v^>^v^v<>v^>v<^v><<>^^<>>v<>^<>vv^>v>^v<^><v>v><^><<<^>>v^<<>>^v
<>>>^v<<>^<<v<>^<>>><^v<<<>^<^<<vvv>^<v><>^vv^<<>v^vvv<<^v><>^v>^v><v<>>>^vv^v<vvv>^<>^<v<^^<>vvv<<^>v^^^v^>>^vv>^vv>^^>>>^<v<^v<vv>^>v>v<v<>><vv<^v>^^^vvv^^vv<>^<v><^>^<^>>v>><>><^v>^>^>^^<<vv>v>v>>^<^><<^<v<<<^<v><<^v^><^><v^^<^^<<<><>>^v><^^<<>>v^^<^v><^<v>v><>><>v<>^v^<<>>v^<>><<^<<v>^<^>v<v<vv<<v><<^<<>>v>>^>v<v^><^>^><<<><v<<<^^>vv<v^^vv^>>><v^<>v>^v<<><^<^<<>>>^vv^>^^<<<<vv>v>^^<><><^>>v>v>v>v<><vvv^>>^<>v^<^v^>v^<<><vv^>^^vvv<<<<v>^<vv<<>>>v^v^v^<><<v^<^<>><^^vv^v><v^vv<<^^<v^<>v><^><v^<>^^>^<<>vv<^><>^vv>><v>v><><<vv<v>>^><<^^><^>^vv>^v^><>v>v<>^<<v<<>^>><>v^vv>vvv>v>v>v^v^>^<vv>^<<v>^>v<^vvvv<<^^v<^^<>v<>v^>>v^v^<^v>v>><<<^v>v><vvvv<v>^<^<<<><>v>v<<^>><^vvv><<>^<>>vv>^>^<v>>>vv^<v^>><><^vv>v>v<^^><<<<<<v>^v>v>^^<v>v><<v^^v^vv>>><^v<<<v^v<<>><>^v<>>^<^v^^vv>>>^>v>^vv<<vv>^><^<>>vv>>^^<^><^^>><v^vv^<v^>vv<v<vvv>>vv^v<<>v^>><<vv>><^<>v>vv>^<v>^^>>v><<><^<>><><>^^^^v><^>^^<v^<>v>^^<^<v<vv^^^<>>v^vv^>>^^^vv<<>^^>>^v>>>>^><^^<^<v<>>><v<^<^>vv^v>^^^v^>><>vv><v<>^>>^<<v^v^v^^vv^<v>^<
><<vv<v^^^<>>>^>v>^<^^^<v<vv<^^<>><^<>><^>><<>v<^>v^><<^><>><<v^>^<<v><^>v>><vv<^v>><>v<<^^v>v><>>><^>v>>^v>>^v<>v>><v^<v<<>>>>^v><<v>^<>>v^^v><>^v<v>>v><^^<vv<<<v><^><><<><^><v^^>v^>>^<<>^v<<^^^v^<<<><^^<><vv<>>^>^>^^>>^><>>v>v><v^>><<v^v<>^v>^^^^<^>>>>vvv>v^v>v>^<>v>v<v>>>^vv<>^><v>^<^<v<<<<>vv^v<v<v^<>^>^^^><>v^^^>v^<>>^vvv^^<>>>^<<<vv>>^v<><^>vv>v^^^<v^>>v>^v>v^>vv>vv>>>vv^vv>>v<>v^vv<v<^><^v^><^vvv^vv<vv^>vvvv<vvv><><>><^<<<^>vv^>>>v<<>v><<^>v^<<<><v<<^^<><<<><<^><>v<><<>v<^v<^^v^^>>><<^vvv<<>>^>><<vv<v<^<<^<^<<<>><<v>^v<>^^^>>>^^<^^^v^^v<<^^v^>v^<<^<>^><>^v>>>^^vvvv>v^<v^<^<v<>><v^^>>v^v^^v^^><v^^^^^^v^v><^<><><<^<vvv^><vv^<<^<v<v<^^^^><>^vvv<v>>>v<v<<v^>v>vv<>^>><<v<v<v^^^>v<<>v<><v>v>><><<v><<^^^v>^vvv>^<^>^v<<>>^><>>v><><^v<v<<^v^<<v^v>v^^<^v>>^v^v>^^^<<<<>v^>>vv<vv<<><>>^^^v^v^^^><><v<><v<<v><<v>vvv>>^^<v>v^^>^><<v<v>>>vv<>^<>^>>v>>^>v>^v>^v>>vv<^<>v>>vv<<v><>^^>><>vv<<><<^>v>>^>><>><<>v><<v>><v^<>v<>>>>v<<v>>v^>^<^>>^<>^v<<vv^<<^v>>v<>v>^>v>>^<>^<vv><^v><>^<<v>^v^^^v>^>v>^^v
<v^<^^vvv^v<<^<v^<^vv^v>><>><<><>^v^^v^^^<v>v<^v<v^><v<>vv^<vv<^>^>^^>v<>vv^v^^><^^>>><vv<>><v><^>vv>>><^>v>v<^<<><<<v>v<v<>^>>>>v<^><^v^<>^>^><v>^vv<<^>>^v>^^^>^>v^v<>>^<>vv^^v^^<^<vv>v>^v>>>vv^>><v>vv<>><^<><v><v>^v>>>>^<^^<<>v<^vv><<^^<<v<v<v<<v>v>^vv>>vv<<>><^<^<v<>v<>^<^<<>v^vv>v<>^vvv>^<vv><v>^^vvv^^^>^v<^v^v^<<>^vvv>^>^vv>v^>^><vv^^v>vv<<v^><v>v<>>>>>^^>vv>vvv<vv<<^v<^<^v>^<^><v>^><<^<^<v<vv<><<v>^v><<v>>v^vv<^<<v<^>^>v<vv<^v><v^>^<v<>>v<>>^v^v^><^<<^v<vv><v^^^v<>>><>v<vvv><>^vv<>^><v>^><<<^v>>v^^>^^<^v>><^^>v<^<<>^v>><<v<^>>v<><>vv>vv>^^<v<^^<^<<^^<^^><v^>v>><<^^>v<<<^<v^><<^vv><>>v<><>^>v<^<<^>^>v><>v>^vvv<<<^>^^vv^>v<<v>^^^v<<>v^>v>><>>^v<^^><>><>v<v<vv>v<<>^>>^v^^<vv<^>^^>vvv^>v^>><><^<<>^<^<>v^>>^^^<^^v<vv>^<<<<<^vvv<><>^>>><^v<>^^^^v<^>>v>^v<<>>v^v<^>vvv<v^vvv><^^<>^v>^v>>>>^^<^^<<v><<>>>>>^v><>^><^v<>v>v<^^v^vv^^^<^>v^>^^<<v>^>>>^>^^vv<v<^v^<>v<vv^^vv^<^>v>v<<>>>^><<<^v>v<<vv^<>><v<><<>v^<^vv<>v><<^<>^><vvvv>v><<><^^<>v>>^<>vvvvv<<^^^>><v^<v>><>v><><^>><>^>>^><^<^^^^v^^vv
>v^v^^v^>v>^vv<>^<^^vvvv<>^vvv^<^<><v<vv^^>v^^^>^vv>>^^<^<^v^>v^v<^>>v^>^^v>v^<v<^>^>v>^^^<v^v^<v>><v^^^v^>vv^v<>^>>^^<v><^^<><<<v^v><v^v<><^>v^<^<<>>^v><>^^>^^<v^<<><>v<>v<><^<>v<>vv<<^><vv>v>^<>^v^v<v<^^>>^><<v>^<vv^v^^v<^^^v>v<v<vv>>v^>v<^>>^<v<^^>^vv<v^<><>vv><>v<><<>v><v>>>><<<vv>^<<><^>>^vv^>v<^<>v<^^v<v>vv^>v><<v<^^><>><v^<^v^^>>>>>>>v^<v>^>^^<^><^v>^^<<>^^>>^><v>^<vv<^^<<^v>v<^>>vv<^^>vvvv>^^>v>>>^^<<<^<^<^^<^<^v>>^>vv^<v<v^v^<v<><<>v^v^<><<vv>><^<^^v<<vvvv<<<<>>^v><>v^v^<^<^<v^<>vvv^v^>^vv^>^<^><><^v>^v<v>>^v<v^^^v^v^v><v<<v^><<>v<^>^<>v><><>><>v<>v^<v^><v^^<>^^<>v><v>^^>^^v^>v>v<^^<>^>^>v^vvv<>vvv<<^vv<v^^^vvvv^^<<vvvvvv>v<^>>^^vv<^^><<<>v<^^<v><v^>v<^^v><v^<><^<><><^^<<><><<vvv^<<^^><>>v^^<v^^v^>v>vv>^v<^><>vv^^>v<>^v<^^><>^^^><^<<v>v^<<<v<>vv>vv<><^<^<^<^<v>v<v>^v^vv<v<><>v<<^v^^>^>>v>^>v^>^v^<^^^<<<^<<<>^<^v<>v<<vvv<>><<<v^<<>^v<<><vv^<>^vv<^^<<>v<<<^^^<v<v<>v^<^^vvv<<^^^>><^<>v><v<><v<><v^<<vv^^v>>v<v<v><vv<^v><v>v>>v^v^^v><^v><>^v^v^^v^<^^v>><<<vv><^<v^^v>><>^^<v^>^>>><^
^v^vv>><^><^>>>v>>>>v<>><<vv<vvv^<><>^^>v<<><><^^>>^><^><><^^^^v<^^<><>>>^^<<<^v>>>><<^^^<>v<v>><<v<v^^v^<^>v<^<v>><>v^>v>>^><vvv^^>^v<><><vv>^<<<^vv^<^vv<v>v>v>^<>>^<<v^^^v^>v^<<<v<^^^^v^v<v>>><<<>v>v^><>^vvv<v<v<<<><>><^v^>>^<><<v^v^>vvv^v>^^^><<^v>^>v>^<<^^v>v>>^<v^^<vvv>^>vv^^><<><v<^^<v><>>>^<>><v<<<^^v^v>v^>v<<<^<^<^<^v^>^^v<^<v<>><<>>v<vv^<^>v<^vvv<^>v><>>>^>vv^^>><^>^<v<><v<v^v<<>^^<^^><>^v>^^v^^vv^<>v><^v<>^v<v^v>><v^^<v^<vv<<<<^><^^^^vvv>^v^>^<><v<^>>v><<v><^^>v<^v<v>>><v><<^v^<v^><<<v<>vv>vv<^^vv^^^v<>vv^<v<vv>^v><v<vv>v<<>^^vv>v^<<^<^^v><>vv<>v<v>vv^<v<^><<<v><^v<><<<v^<>>vv>v<v>^v^>v<<<>v^v<^>^^^^^<v<<<v^<^^^<vv>^><>>>v>v<^<v^^>^><<<^^><><v<v<^v>vv^^^<^<>>>^>^v<>v^><>><v^^v>vv<>^<^vv^<<>><>>v^<>>v>>>>^^<v^v<^<v^v^^>v><>v<v^^v^>v^<^^>^^^vv^v<>vvv>^>^^<v^v<^^v>^^v^<>v<^<vvvvvv>>^v<^^v>^<^^<><<v<>>>vv^v<<^<vv>^^><<<<<>^<^v<<v^v<<<<<vvvv<v<>v><^^<>^<<>^v<>^v><>v<v>><^<>><v<><v^>>^<>vv^<v^v<^vv^<><<<v^<>><^>v>v^>v>v^>>^^^>>^>v<<^<>v<>^^v>>>>>v^>v<<^^^^<^^^v<>^>^^v^<<><>><>^<v>v
v>v^^^^><v^v<vv>v>vv^v>v><>^>v<^><^>>v<>v<<<<v^v^^^^<<<<v^>^<v<v>><v>><^>v><<v><v>^vv^<vvv^^<<<>^<^<v^v>^^<^>v>>vv^vvv<v^><^^v><v<<^<^^<<^^><>>^vvv^<^<>v^>>^v><v<^^<v^<v>v^>^^<<v^<>^<<^<vv^^v<<^v<^vv><^^^v>^vv^v>v>^><^>^^^^<>^^^>v>>v<^v^v>>v>^<<>^<^^<>v^<><<^>^v^v^v^>v<<^vvvv^<<^^<^<^vv>^v>v<^<><v>^><^<><v<<<>>v^<<^<^^^^v>v^<^>v^>>^v^<>v>^v<>>>v>^>^^>>v>>>^^^^><^v<^>vv^>v<>>>v^v^vv^<>^><><^<>^<><vv<v^v>v<^v><>^<<v>>vv<><vvvv>vvvv<^v<<<>vv^<^<^v^<>v^v<v^<<>^v^<vv>>v>><vvv<^>>v^^v>vv^vv<v^<v^v>^^>vv^^>^<>^<^><><<>^>^^<<<>^v>v^<>v^>>><<>>^<>v<<v<^v<v>vvvvv><<<v<^<<>>v^>v^^<^v><^>vv^>vv^<><<>vv>vv^<>^^v^v<vv<>v>^<><^<<>^v<v<^^<>^<>>^<<>^^^<<v>^>><v<^^<><v><><v<v>^>v^<vv<<>>^v<>>^>v^v^>^vvv^><<v<<v<^<v<<><^^^^<<^^<<^<v>^>^>^<>>>^^>v<<^<>v<^<^<>><>v^>v>>>^^^v<^^><^><>v<v>>v^^vv>^v<v<^<^<^>^v>>^<^vv>^^<^^^<^>^<^<v^^<><v^><v^v<v<<^v^<>v>v^^v>^vvv^<^^v<^<>vv<v<v<^v<><^v<>v^><<^vv<v^<<<v<<v<vv<^v<>>^^<v<v>^v<<>v<^^<>v<^^^^<vv^^v<^><<v^>>^<<^<<<<><>>^v<<<>^><<^>vvv^v<^v<v^vv<vv^<>^^<^^^<<^<^<><<v
>vv^>^vv^<>^>>>^<^<vv<v><>>v>^>>v^<><<<^vv^<v^^v^vvv><<^>>v<^v>><^><vvv^>^v^<><<v<^>>^<>^v><v>^<>><><<<^>^<v^<<v<>><^^v><>^<><<<<v<^>>>v>v>v^v<^<^v>^>^><vv<>>><><^v>^v>>v^^>^<v<><^>>>vv>^v>^<>>v><^>^>^v>v<>^>vvv<>>^>vv>^v<><<<<v>>>v<<v^v^<v^vvv>><>^^<vv<^>v>vv<<^^<>^^v^>vv^>>v><><v><^><><v><<^><<^v^>><><><><^^^vv>vvv>v<>>v<><>^<><vv^v<^^>v>><>^>^>^^^v^>v>><><v^vv^>^^<^vvvvv^^<vv^<<v^v<<^^^<<v^^><^v<^>>>^v>v<<<^^><<v<>^vvv^<>^^<^^^v^<^v<<>>^v<<^^^vvv<v><vv><<vvvvv^^vv>><<^><<vv^><<v^v^>^^<>>v^<<>vv>v^v>><^<^>^^<><<v>^^^v<^<<^v>>^>vv^<<>>^v<>v^><<v^vvvv^^<<vv^<><^^^<>v>>^><<^vv><^><<v><<<<v>v^v<^^<v^v^>>><^v<^><<v^vv^^>v>v><>v^<v^<^<<v^^<<^^<>><v^<>^><<>><<>v>><<>^>>^v<^<^>vv<<<^<v>^v<^<v^^>v>>v<v^<<<v^<^v>v^v<^><vv^v<<<<^v>^<>^<<^>v<vv<<^><v<>^>^>v^<<^^v<<^>^>>>v^^^>>v><vvv<^vvv<><^>^>^v^<<^<^v>v^^<><vv^^><^v<<vv^^^<v^vv<<>><<<^<>><v<v<v<<^<<v>>><^vv^v><v^v<<<>v^^><>^<v<vv^^<<^<>v>v<^<vv>^>^v><v>^<^<<^<^^v<v^^v<^><v<<vv>vv<vv<<<vvvv><>^^v>vv>^<<^vvv>vvv<^^<^<<>v^v<v<>^vv><<>^>v>>^<vvv^>
vvvv^v^^>^>v^<>><<>>^>>>v<><>v<v>v>v><<<^^<>^^v^^^<>vv<v^^<<^v>>^vv^><^^>>>>^^^<<^<<>^>>vv^<>^^^>>vv<>>>^v>v^^<>>>>^^vv>^><^^vvv<^>^^>v>^<<^^><><>>v<>>^<v>>><^<<v>vv>v><^v^^v<<vv>^<v><<>vvv^>^>^<<^>>>^v^><>^^^v<<^v^>>v>v><>vv^v><vvv>vv^<<v<<^^<v<vv<<v>v<^^>>v>>v><>><>v><>v>vv<^^v><v<vv^v<>v<v<<v><<<<<>><>>v^>^^<^<<v<^^^>>^>>v>>>^v>v>^><<<^^>v>^<v^><v>v<>>^<<>^<>v<<^^<<<^<>><^<>v<>vvv<v<<><v^<v<>^><^^<^<^>>>v^>v^>v<v<v<^><>v<>v>^v>v<>><^<^<<><<^<<<>vvv>>>^^^<<vvv>^>^<v<>v^v<<^vvv><>>v>v><vv^vv^^<>^<>v>>^^<<>>><^>><v^<vvvv^>v<^v<<<><>vv^v^>^v>>>^v^<<v<>^>>^>>v>^vvv^v^^<<^^<>vvvvvv>>>v^>>>^vv>^v<<><><v<<^<>vv^^v^<^vv<<<><^v^vvv>v<>>vv>>vv<v<^^<vv<v^<<>vv^v^<<>><^v^^^>^v<<^><>^>><>v>^^<v^><v^>vvv^<>vv<<^^>><^<v<v<>vv>v<v^v<><vv^<<<>v><v>^>^>^<^v>^<^v<^>^^<v^<<<>^<^^v><>v<<^vv><<><vv<v<vv>v^v^v>>v>v>>^^><v<^v^<v>v<>vv^<<v><>><vv>>v<>^>^vv><>^^>v<<^v<v<v>>vv^>><<<v^<><<<^^><<^v^v^<^^<>v^>>>><>^<vv<v>^<v<<^>v^>vv<<<<v><v<v^>>^>v<vv^>vv<^^>^v>>^^^v>>^^v>>^>^<v<^<<<^<v><^>^^<v^>^>><>>>^v>>^<^<^
>><>>>v^><^>>>^<^>v^<^^<><^<^>v<><^><^>v^<><<v>>>>>^>vvv<^><>^>vv>>^^<v<<v^^>>>>^<>><v^>>^v^^^^^>>><<<<>>v<^^v><>>vv^>>vv^v^v<^<^<>>v><>v^^>v><>v>^^<^v<^>>>>>vv<v^vv^<><^^^v^vv>v><<^<v<vv^v>vv^^<^vv<v<v<<<>v<>>vv<><<>v><^<<vv^^v^^<v^v<vv>><^<><^>v<^<><><<^<><^v^<^^v<^<vv^>^<^vv^v>^<^<^<>v^v^<v<v^><><>v>>v<><v<^v^^<<<^>^^^<v><>><><>>>v^>>^>vv>>^vvv^^><^<<<>^^v^v^>v>^v><>^^vvv<^<^^><v^>^>>>^vv^><v<<<<^><<>v>><v<>>v<>^^^>><<<<v^<>^>^v^^<<v^>^^<v<>^v^<>^^<>><<^v<<^>^v>>^><^^<^>^^<<^^<<v<v^<vv^v>^>v^><>>^^^vv><^>>>>>^^v>^<>^<<^^v^^>>v^<<><^v<^v^v>v>v<><^vv<vv>v^^^<v<^^<^<^<^<>^^^<vv^<>v<><<><<v<v<<>v^>>v<>^<^^^^^><<<^>v<v><><>><^<<^^>^>>vvv^><>>><^>>vvv^^>><>^>>vv>v><^>^<v<v<^v^>vv>>v^v>vvvv^^^>vv<<<v>><v<v<>^>v<v^v<><v<>vv^^<vv><^^^v>^v>>v>^v><v<^<<v>vv>vv><<>>>><^v<<^>v>>^<vv^<v<^<v>v>vv^v^v>>>v><<^v^v^v>vvv<>>>>v>v^<<<<^^>^^>v^vv><v^v<vv<^<^^>>v^v><<><v><vv<<vv<v>^<>v^>>v^v>>>>^<>><>v^<^>v^<^<>>^vv<><v<<^v><>^>^<^v>><v^<>v><^v^>^^>v^>^vvv^<<>v^^^>>^<<<v<^v^^><^v^>vv>^vv^v^<>^>vv>vv>>>^>v
^^^^^>>><<^v><v>>v^>^<^>>>>v^>v>vv<>><^^^v^>^^^v<<><^v^^<^<<^<v<v<v>>v^><v^>^^^^><><<<^vv><<v^^>^v^<>v>^>^>>v>v^v^<>^v^>v^<v><>^<v>v><v^^>^><v^v<>^<v><>^>><vv>^v<>><v^v^v>vv^^<vv>^<^>><^v^^^vv>v>v<<^v>>>^^>v^>^<><^^>^<<v<v>^<<><v><>^^<<>vv>^>vv^vvv>><>>v<>>^vvv><>^^<vvv<<>>><^<v<v<<^>><<<>v^>^<v<>^^<^^<>vvv^v<^^vv<^^^>vv>>v<>v^v<<<>v>>^>v><vv>v^<vv><><>v>>vvvv^>v^v^vv>vv>^>^^<v^^>vv^^v>>^><>>>v<<<>^>^vvv^v^v><>v^^^>^>>v^><><v<^v>v>v>v>vv><<<><<^<>^vvv<<^<><v>vv>^^<<><^v>v>v>v>^vvv<>^v<v^<^^^>>vv^>v<^<<>^<>vv<v<^<vv><v^>^<^>^vv>^^>^>>>>>^vvv>^<<<v^v^v<<>v>^>>>^^<^>vvv>^v>^<v>v>>v><<^<>><^<^^^<>^<v^<><v^vv>^^><^^^<>><v<^>><v^^^v<<>><>><>><>>^^v<>>v><<v^<^^<vv^v^v<v^<v^v><<^v^>v>><v^><v<><^v>^<v^<<^>>^>vv>>v<><>v<v<<>><vvv><^>vv><v^v^^^<>v>v<^v^v<v>v<v>^^>v><><<v>>^>v<vv<>>^v>><^v^>><<>^>>v^v<>vv>^^^>^^vv^<^>v^^^>^<<vv<<^>^>^><>vv<^vv<^^<v<v<><<^v><^>>><^>^v>^v<<^^<<>^<v^v>^v<>>>^>v>v<vv^<v^vv<>>>^vv>><vv>^<vv^^>^^>>>vv>v>v^v>^vv<><>^<>>v<^^<>>v^>>>v>^>>^>v<<<>v^<^vvvv>v>^<v>^<^vv>>><vv^v
<^><>v><><>^vv^^v^<^<>>^>>v<><<<^>>^<vvvv<>vvv><>v>^>^<^^v<>^<<v^v>vv<v>v<<^v^<>>v>v>^>v>^^v^v^^<^v>^v<<><^v<<<<><<^><^>^v^^vv><>^^vvv<vvv>^>v^v^<>vv>v>^^^v>v>^<<vv^v<>^<^<vvvv^<>v><v^<<<>>vvv^>^^>>v<<v>^^<^v<<v>>v<>><>>^><v<v>>^><^<v^vvv^^>>>>>^>>>vv<v>^>v>>^<<>>v^v^^vv^>v<<><^><v><>^^<>^vvv^v<<^<^v<<><><v>v>>^>v><v>^>v<v^<v>><vv><><><v^v^^>^v<v>>>vv<^><<<v<^v^><<v><<v<^^v>>>vvv^>vv^<v^^><v^<<>v<v>^<>vvv<<^><<>^<^><^><><>>v><>>^vv<^^^^vvv<^v>>v>^<>>>^vv<>^^v<^v<<^><v^^^v<vvvvv><<vvv>v<<v><v<<v<vvv<<^>v^^v^>>^v^<^<vv^v<vvv^<<<><>>^>v>^v<^<>vv>>^><v^>^<<><^>^>><^<><^>v>^^^><v^<><v<v>^<><>>^^>^vv<v^>><>^>>><><>^<<<<v^<<^<v^>^<v<v^^<v<<<v>v<><v^<<^>^^>^>^><^vv>v>>v><v^v<^^v>>v<<>v<^^>v>vv^<v^^<v><v^^<vv<^<v><<vv^v>>^><vv<<><^>^>>v^vv><><^^<<>^^^<>^>>>^v^<>v<<v><vvv<^>v>^<>v^^<^^<v<^^<^v^<><<^<^^<vv^<<<v^><v><<><>><<<v>>v^>><vv<vv^<^>v>v>vvv><^<^v^^<>^<<>>><<^>>vv>v<v<v>vv>>>v^v><<v<>vv^>v<>>v^^<v^v^><^^^<^<>^><<<v^>^>^<>v>vv<<>^v>^<<><^^vv<v>>vvv>>^<<^>^vv<^>>>vv^<^<vv>v<v<<^>vv^<^v>>v>v^
^<^><v<<>v>v<<^<>^>>v^>>>vv<>v^^<vvv><<v^<<<v>>>vvvv><v<^<<^<>^vv<v^vv>>^^^v^<vv<<v^<>vv^<^vv<<>^^><v<vvvv<<>>v<^<<>^><<><<v<><<v>^><^v^v>v>v<>^vv^v<>>>^v^^>v^>v^v<vv^^>v^><^^^^>>v<vv<^>v>>^^><^<^>>v><v<><<<<v^<>^>><v>>>v^>>v>v^>v<vvv<^^>v<>^<^<^v^^v><^>>v<<v<<<<>v<^^vv>^vv>^^v<>^><>v<<v^<>v>><<^^<v>>^^<<<^v<v<<v^<<v<^v><>^<vv<<>><<v^^^<v>>^<v<^>^>v^>^>vv<v>^v<<>vv<^vv^<<<vv<<><v^^v>^^vvv^v>^<vv>><><<<<v^v^<v^v^>^vvv^v^<<>^>^<<<<^><><>>vv<>^v^<>>vv<>^^><>vv>v>vv><><^<<^<^vv>>v>>^<^^v<v>^^<v<^v<v<vvv>^><>v>v^v>>>vv^<^^^v^<^^>vv>^vvv^v^^v<vv^^<^^v><^v<<<^>v>vv^>^^<^<>vv>^<v^>vvv>^<>>>>vvvvv^^^<^v^>>>v<v>>>v^>^^<<><<v><v^>>^<^vv>^<<v^v^v>v>v<vv<<^<^^^<><^^><>v>^>v<^<^^^^^<^^^>^vv<>>>v><><>v<<<>v>vv><v><><^>^<<v^<^vv<>v^><^vv^^<<>v<<<>v><<>^<^>^^^><<v^>><<<vv^^v>^^<^^vv<<<vvvv^><v>>>v<<<<>^^<<<<>v^<<>^<v^v^>v><v<v><><<>>^^<>^v>^v>>vv^<<<v<><<^v>><v>><<>>^>vv>v>v>>v<>>^><><<><<<><>v<>>^^vv<>^<<<^^><>><v^<v<^>^<v<^^<<<>v>><^<<>v<v^>>^^>^^vv^<^>^^^v^^<v<<<^<vv^<<>>vv>vvv>^>v^vv<><^><>v^^<>vv<
^v^v>v^><^<<vv^<>^vv^v>>^>v>v^vvv>^>^v<<<<>^<v>>>v^vv>v>>^vv^<><<^><>v>>>v>v>^>v^vvv>^>^^<<<<^<vv^<v<<><>^^v^>vvv>>>^<>>^v<>^^>>>^<<>^>v>>>v<<><v>><<v<<<vv^<><v<^v>>>^vv>>>^>^^<>v^vvv<>vv<v<^<^vv<^^>>>v>v^^^v><^>>vv>>v<<vv^>v>^><<v>^vv^v<><v>^v>vvv^<<<^^>>>>^^v^vv><<<<<<<><^^v^^<v^v^>^^v^^v<>><v^>>v>>v<^^vv>^<^<<v>^<v<<v<>>vv<^<vvv<^v^<v><^<><<<^>>>><>^^v>v<^v<^<vvvv^^<v<^<v<^<>vvv>><<<vv^<vv><vv^v<><<>^v^<^<<v>^>>><^>^^>^<^>^vv^^<>v<^>v^^^^^><<<vv><>v<^v^<>v^>^><>v<<^v>>>^v<^v<^<^vvv>vv<>^v^>>^v^v>vv<v>>v>v^v^>>v>><><v^v<^>vv<<vvv^^<<vv^^<^v^<>v>^<<^>^<<<>v><^<<v>><^vv>^>>vv^vv^<^^^<^v>vvv<v<^v^<>^>>>^v<<<>v^^<^v<>^^^<^v^<>>>v<^<<^vv<>v>^^<v^><<vv<^v<<^v<v<v^<v<<^<<v<^>>>v><>^<><<^^^<^>^>vv<^vvv^><v^v>^^<v^<>^<^<^<<<^v>^^<v<vv>vvvv^<<<>^<^>v^^>^>>vv>^v^><>>^<<^^v>>v<^v>v>^^^>v^^>^>>>>><^^>>v^>^v<>><<vv^^v<^>v^v^vv><<>v^><<>v^>^^^vvvvv^^^>^^>v<>>>^><^v^<^>v><>>>>>vv^^<^v<<<<<<v^^^<^>v<^><><<^v^^<v><<<v>>^^<<v<>v<<>>v>v<<>v^v>vv<>>^><^<>v<v<<^>v^<v<^^^v>^<<v>>vv>>v^<<><<<<<^<<>vv^><^^>>
<><>^v^^^<vv><<^>^><^<><<v>^<v<>><v><<v>>vv^<^^^<v<^v>^^<^>v<v>v^v^<^><>>^>^^^v>^v^>>><v>^^^^vv<>v>>>^v<<<v<<v<^<v^v>>^>>>>vv><><^^<><vv<^v<vv<v<vv<vv>v<>v<^v>>^>v<><v>^^v^^>^^<<^><<v<<<<v<v><^^v^<^<<<>v>v^<^v<>>^>vv<^>^<>v>v^<^vv^<>>^^v>><vv^<>v>^<<<><^<>v<<v<<>^>><vv>^>v^><<v^>>vvv^v>>>^^<v<<v<v<^>^vv^v>>^^v^>vv>^>>v<>v<>v>><^<v^v>^<^^v<<>v<vv><vv^^>>v>v>v<><^v^v<<>^v>>>><v<>vv^><<>v<v^>>v^^v><<^<vvv^><<^><v<^^v^>^>v<>^<<^><^<>><>>v^<>^v^^<^<>>>><<<v>^^^vvv<<vv>v^<vv^^<^<v><v<vvvvvv>>vvvv^<v<^^>v<>><^<v^>^<^<^<>v<>^>v<>^^>v^^>vv>><v>^>^v^<>vv>>>^>vvv>^<>^<^<>^>v^v^<vv<>vv^<>^<v>><>^^>>vv^<><vv^^v><^>^^vv<>^<<<<vv<<vv^<v<v>^vv><^<<><v<vv^<<v<><>^>v<^^vvv^<^v>v^>>>^<v><^v<<v>^v<vvv>^^<^^vv>>v^^>v<<^>v>><^<v><v^>^>v^^<<v^vv^^vv>^^^<<<v><<<^<^v<v<^>v<^>>v^<<^<^>^v><<<>>>>>><>v^v^><>v^><^^^v>>v^v<<^v^<vv<>>^^<v^vv>v<^<v>>^<<<>><^<>^v>>><>>>^>>^v<<vvv^<<^<v>>^v>vvv<^^^^vv>v<>><>^<<><<vvv>^<^<^v>><>v<^>v^>v>v<<<>vv<>^v^^>>>>^<<>v><>>>^v^>^><<<>v<>><^>>^^<vv^^>^<^vv>>v<v>vv<<><^><<^v<>^v<<v<
v>^><v^^vvv>>>^<<<>v<v^v>>v>^<^>v^<<^>>^^<^vv>>>><>^><^^^vv><v<^^<<^<<>v^><<v<<v><>v>v<>^>>v^<<^>^<<v>^><^^v<<^>>vv>^^^^^v<^>>>v^v<^v>>>^^>v^<><<vvvv<^<v^>^<><^v^vvvvv^^<<>><<>>v^vv<^v<>>^<<vv<vv>^<<v>^^>v>>^<>><v>>v^v>v>^><<<>>>><<<<<v>^v>>>>^vv<<<^>^>vv><v^v^^vv^v^<v^<^>v><><v>><^^<^>>v^^<^><^<<v<<v>^v>vv^<^><<>v^>><>>v<^>^><vvv<>vv<<vv>^v>v<<^>^<v><<<<>^<^^v<vv<>>><^vv^v<<<>^^v<<><v^v^v>^<v>v^<<v^><v<<^v^^>v^^^^<>^<<>v<>>^>vvv<^^v><^><<vv<<^<<vvv^<>^^<<>v^<^^<<<>^v^<^<><v>v<^v>v<^v>^^<<^^><<<v<^<v>^<<^^><^>><^^<v>v<^^<vv<<>>^v^>^<^<^>v>>^<^>v>vv^<v>vv>vv<<<<<<<<v^<^<v<^<^v<>^<v>^v>^>vv<<^^<v><v<^<v<^>vv>v>^^v^v<>>^^>>>v<^^>><>>vvv^v^<>>vv^<>v^v^v<^>>^>><^><^<v^^vv<<><<<v<^v^vv<<<>vvv>^v^<>><v<v<<<^^^^v^>^><>^v^v>vv^v><^>^<vv^>vv<^<^>>vv<^^^><v^v^>^>v>><<v^v>vvvv^<>v<^>^vv^^^v^<^^v>v>^v>v>>^<v^>v>>>v^^<^v><<<>v<v^v<v^v<vv<<>vv^^<>vvv<><>^<v^>^v<^<^>v>^vv><>vvv^<>><<^v<>^^^<<<vvv^^>^vv<<^>><^v><>vv>vv<^<vv<^v><^>vvv<<^>^^<<^<^>v<^><^^v^^<v<<v>^v<^v>^^<<^^<>v^v^v^<^v^>>><>v^v^v^<<^<><v
<vv>^<v<<^<v>^^v><>vvvvvvvvv<vv<^v<>v<v><v>^><v<^^v^<^^v^v><v^^^<<<vvv<v^^^><><<<>><^><^vv<<><<^vv<>^v^<>>v>^vv^>v>v<^vvv^><<vv<vvv<v^^>v^v>v>v><v^><v^<^v<v^>>^<>v<>>^<^<^^><vv^^^>>v^^><<>^<^v^^vv^<<vv^<>><v^v^<^^v^v^>>^^<>v<^v>v>v<vvv>^^v<><>>vv>v<v>><^v>^>^>v<^<>^v<<vvv^v>^v>^^>>>vv<>v><vv>>>>^>>v^<<v^v<>v><><^^v>v<v^<vv^>>><<>>>vvv<>^<<v<<<<vv<>>>vv><^vv>><<v>><^v>^<<^v^vvv^v^>^>^v<v^<>v>><v<^v^>><>>>vv^>^>v<^><^^>>><^^v^<>v^^<^>>^<vv^>>v><^^>^^>^^v^>>v^<>^^<<<>><><>>^>^<>^><^><<^>><v>>vvvv^^^vv<><<>>^v<<<<>^^v><^v<<v>vv>>v<><>^^^>^<>v>>v^v<v<>^<<^>v^vv>^^v>v<>^>vvv^^v>^^v<^<>^v><<v^v^<>^^><^vv<<>>>^>v^>^>>><<<v^<<v<<<^v><^^>^v^^>v^^v<^v<>^>^<v<>><^>>>^>><<v^^<<<^><<<v><^>><^>>><v<>^><^vv<^>v>vvv^<^><^v<<<^v^^vv<^<v<>^vvv<>v>^<^><>>>^v^v^^>^^<<>>>^<>>^>^><><><^^<^^^<>>^<^>^><<vv>^<v><^>^^v><>>^>^>v^v<<<v<>v^<><^>v>v>v<>^^>vv^><v>>^v^<>^^>v<><><^<>><^><^v<<<<v^vv><^^v<<^v<v<<<v^<vv^<<<vv>v<<<>vvv<^^<<vv^>^<^vvv^^v^<>v>v^>><>^v>><v^^^><^^<<>^<>^<v>v^<<vv>><<^>><>^v>>>^v^vvv<v^vv^>^>v<
^>v^^<>^>v^^<>^<<v<><v^>^><<^<>^vv^vvv>>v^vv<<^^>^v<v^<vv>>^^^^vvv>>^^<>^v><<^^>>^><^<^>^v>^v<>^v<<v<<v>^><<v<v^vvv>v<v<<^^>>>^vv^vvv>vv<>^>v<vvv<^^vv>^v^><v^>vv><>><^>^^>^v^^<<^vvvv<v^v>>^>><^>>^<<v^>v>^v><v<<<v>>v<^<>^^^^vv>v>><>><v><><vv<<v<<^<^<^<^v<v^^>>>^<^<v^>>^v<><^<>^<vv<^<v<v^>>vv^>>>v<v^<^v^v^^>v><>^^v<<^^><^^>v^>v^^>>v^^<vv<v^>>^v>><>v>>>^v<<>^vv<^^>>>><v<>^>vvv>^v^>v^>^^<^>>>>>v^^<<>v>v<<>>>><>v<<>>>v^v<><>><<>^vvv<^^^>^v<^<v<^<><<<><^^<<>>v^^<v>^vv<^^v^^^>v^<><<^^v^^v<<<>v>^^^<>v<v<^>>>v^^>^v^^v>^^^v<>^^^>>v^^>>^v^<v<<>>><>><^>^><^v<<<^<<vvv^>>vv<v<vv^><>>^>^^v>v<^v>^^><>>v>>v>v>^^<>^vv<^v^vv^>vv>v<^v>><^v>vv^^>^vv<v<^>v<^v<<<^>^^>^<>>^<v<^>^<^>>v<vv^^<^<>^v<^v^<>>^^v^vv^>v<v^<<vv^<><^v><><^^<v^v<v^><<<>><><<^<^^^vv^v<v<><vvvv<>v<>vv^v^v>v<^v><^>v<<v>><^v<v<<^v<><^^^^v>v^v>v<^^^v^>v<vv>v<<vvv^<^v^<^>><<v<^v<><v<<vv^<>v<v<<>>v>v>>v^^v<<^v>><^<<<><>^^v^^<v<><>^<vv<>v<^<><>>v>v<^<^>><v<<><<>>>^v>^<v>><^>^v^vv<<^>^^v<^v<^^<<>^^vvv<>v<v<>>><v^^v^^v^^>^^<^^>v>^^<<>^>^^^><v>v>v>
v>v^vvvv^<<<>v<v>v><<<vv<>^>>v<><<<vvv>v>v^^<<<v<^v<<v<>v>v<^v>v^^><^<^^>><^^><^^^><^^v^v^<>>^<^v^^^>^<>^>v<<<vvv^<<^>><<>^<><<v^^<<<vvv><^v>vv<^>v>v>^vv>^<vvv<<v>v<<<>v<>vvv<v^^v<><v<v^v>>v^<<^v>^v^^>>v<>^<<>v>><^^^><^<<><v>><>^^>>^vv^<^^<v^^><<^v^^v<>v<>vv>v^>^>^>^<><><^^<^v>^><^^v^>v>>>^<^^^>vv^^>^>^^<vv><^><><^<<>^v<^<v^<^<v<v<^v<<<>vvv^>^^<><^^<<v>><^>v<^^^>v<v^><v>>>>^v<v>><^v<>v><^^vv^^<v<v<v<v>^<^v>vv><v>^<^<v^v>^<<><^<^v<>vv<<v>v>^<v<<^v<<^<<>^<<v<^>vvv^>^>v<>>^<v^^<^<>v>>v<>^v>>v<v^<>^>>^<^<v^vv>v>>v>>>v>^<<><^<>><><><vv>^<<<<v<<<v^^>^<^<vv>v<>^^>v^^<>v>><^>><vv<vv>>v<vv^v><<<<^>^<<<>><v>>^^^>^>^^v>>>^<<v^v><<^v><>v>^>>>>v^^^<^v>v^>>>^<>^<vv<>v^<><>>>^>^>^^^^<<<>>v><^^<<^><>vv>^<>^<><^vv<^>>vv^^>v^vv<v^<^^^^vv>vv>vv^vv^^^vvv^<>^v^<vv<><^^<<><>v^<^^^<v^<<>>^><<v<^v^><<^>v>>v^<v>^<>>>^v>^<<<v^^v<^>vv^^v<^v^vv>><>><^>^^>v>^^v^<^^v^^><>v<<<v>^>vv^><>v^v^><<>^^<v^<><v><v><>^v><>v><^^v^<v>^><<v>v<v>>>^v><<>^>^^>>v<v<v<vv<<<^>><^<vv<^v>^vvv>>v>>^<<>><v<^>vvv^v^^v><v<><<v<v>v^v^v<<v^
>>^v<v^v><>^^>v<>>v<v^^<vv>^v^>v<v^>>^>><^v>^^>^<^v<>v>>^>v<v>v><vvv^><vv^^^<v>>>>^<><v<^<>v>^v<^v^vv<>^<v>^vvv^>^><v<^v^<<<^^^>>>^<<^v^vv^>>^v^v^^<^v><<v<>^v<v>vv<v^vvv^<<>vvvv<^^v<^<vv<><v<^<>v^^<<>v<<>v^^<<><<<<>v^>^v<^^^<^^<^<^^><>>^<v>^^<^vv<>v>>^^^<>><^<^^v<vv><v^<><<^v><><<^v^>^>^^^<^^><vvv>^>v^<^v>v^>v<v<v^>><<v^^><^v^<<vvv^<>vv>^v<><v>>><>^v<v>^<<<v<>v>v>^<<<^^v<>>v<>v<>v<>v>^<^v><^^v<<^^>v><<<<>^^<vvv>>^^><<v<>><<v><^v^^vv><vv^>^^><v<>^v>^>vv>^<^><>^<v>v>><<^><>>>v^v>>^>v^><^<v<<><<>^vvv<v<<^>vv>v^<><<v^^<v<^<<><v<<>>^><v><>^^^^<v^v<^><>^<^<^<v><<v>v<^v>v<>><>>vv<v^>>v<^<<^^>^<<^^^^<v<v>^v^<^^v^vvv><<v>>>v<<v^><<^>>v>>v<<^^>>v^v><<<^>^^<vv<^^^<<vv>>^vv>>^<vv><<v>vvvv<<<<>vv>^<>>v<^<v>^<v^>><^<^>^vv^<vv><<<<<<<<>v>>>^v<>>^>^<^^><v>vv^v>^<^^<<<v^>^>^^v><vv^^<><v>><<^<<>v<vv^v<vvv<<v<^<^^v>^v<^^<v^>vv<>vv>>^>v<<>^vv^<>>^>vvv<>^^^v^<v^><>>vv^vv^^>>v^v<^^<>>v<>v>>>^<vv>^<><<>v<><>vv^v^v>^<<v^<^>><vv^v>vv>v>>>>^^^vv<^>v>vv^<<><>^^><^<<^>vv^>^^<<>><<><>^>^^<>>v^v<v^v^vvv><^v^^v<>vvv

View File

@@ -1,141 +0,0 @@
#############################################################################################################################################
#.................#.................#.............#.......#...................#.......#.............................#...#.......#.........#E#
#.#.###############.#####.#####.###.#.#########.###.#.###.#.#################.#.#####.#.#.#####.#################.#.###.#.###.#.#.#.#.###.#.#
#.#.#.....#.........#...#.#...#.#.#.#.........#.....#.#...#.....#...#.........#.#.......#.#.....#.....#.#.........#...#.......#.#.#.#...#.#.#
###.#.###.#.#########.#.###.#.#.#.#.###.#############.#.###.###.#.###.#########.#.#####.#.#######.###.#.#.#######.###.#######.#.#.#.#.#.#.#.#
#...#...#...#...#...#.#.#...#...#.....#.#...#.........#...#...#.#.#...#.......#.#...#.....#.......#...#.#.#.#.......#.#...#...#.#.#.#.#...#.#
#.#####.#####.###.#.#.#.#.###.#######.###.#.#.###########.#####.#.#.###.#####.#.###.#.#.###.#######.###.#.#.#.###.###.#.#.#.#.#.#.#.#####.#.#
#.......#...#...#.#.#.#...#...#...#.................................#...#...#...#...#.#.#.....#.............#...#.....#.#...#.#...#.....#...#
#.#######.#.#.#.#.#.#.#######.#.#.#.###.###.#.#.#.#####.###.#.###.#.#.#####.###.#.###.#.#.###.#.#.#.#.###.#####.#.#####.#####.###.#####.#.###
#.#.....#.....#.#.#...#.....#.#.#.#.....#.#.#.#.....#.#...#...#...#.#.....#.....#...#...#.#.....#...#.....#...#.......#.#...#...#.....#.....#
#.#.###.#####.#.#.#####.###.#.#.#.#######.#.#.#####.#.#.#######.#.#.#.###.#####.###.###.#.#.#.#############.#.###.###.#.###.#.#.#####.###.#.#
#.#...#.....#.#.#.#.....#...#.#.#.....#.....#...#.#...#...#.............#.....#...#...#...#.#.#.....#.....#.#.....#...#...#...#...#...#.....#
#.###.#####.###.#.#.#####.#####.#####.#.#####.#.#.#.#####.#.###########.#####.###.###.#####.#.#.###.#.###.#.#####.#.#####.#.#.###.###.#.#.###
#.....#.....#...#.#.#.....#.....#.....#.....#.#.#...#.....#.#.........#.....#...#...#.....#.......#.....#...#...#.#.......#.....#...#.#.....#
#######.#####.#.#.#.#.#####.#.###.#########.#.#.#.###.###.#.#####.###.#########.#######.#####.#########.#.###.#.#.#########.#.#.###.#######.#
#.....#.#.....#.#...#.......#...#.......#.#.#.#.#.#.#.#...#.#...#.#.......#.....#...#...#.....#.......#.#.....#...#.....#.....#...#...#.....#
#.###.#.#.###.#.###.#########.#.#####.#.#.#.###.#.#.#.#.###.#.#.#.#######.#.#####.#.#.###.###.#.#####.#.#.###########.#.#.###.#.#.###.#.###.#
#.#...#.#.#...#.#.............#.#.......#.#.....#.#.#.#...#...#.#...#.....#.#.....#.#...#.#...#...#...#.#.#.....#.....#.#...#...#...#.......#
#.#.###.###.###.###.#########.###.#######.#####.#.#.#.#########.#.#.#.#####.#.#####.#.#.#.#.#####.###.#.#.#.#.###.#.###.#####.#.#####.#.#.#.#
#.#.#...#...#.#...#.#.......#...#.#.............#...#.........#.#.#.#.#...#.......#...#.#.#.....#...#.....#.#.#...#...#.......#.#.......#...#
#.#.#.###.###.###.#.#####.#####.#.#.#.#############.#########.#.###.#.###.#.#######.#.#.#.#####.###.#########.#.#####.###########.#####.###.#
#.#...............#...#...#.....#...#.......#.......#.......#.....#.#...#...#.....#.#...#.#...#...#.........#...#...#.........#.............#
#.#.#.#.###.#.#######.#.#.#.###.###.#.#####.#.###########.#######.#.###.#####.###.#######.###.###.#.#######.#.#####.#########.#.###.#####.#.#
#.#...#...#.#.#.....#...#.#.#.....#.#...#.#.......#.......#...#.#...#.#.....#.#...#.......#.....#.#.......#.#.....#.......#...#...#...#.#.#.#
#.#######.#.#.#.###.#######.#.#####.###.#.#######.#.###.###.#.#.#####.#####.#.#.#.#.#######.#.###.#######.#.#####.#.###.#.#.#####.###.#.#.#.#
#.#.......#.#.#...#.......#.#.#.#...#.....#...#.#...#...#...#.#...........#.#.#...#.#...#...#.#...#...#...#.#...#.#.#...#.......#.#.....#.#.#
#.#####.###.#.###.#######.#.#.#.#.#########.#.#.#####.###.###.#.###.#.#.#.#.#.#.###.#.#.#.#.###.###.#.#.###.#.#.#.#.#.###.###.###.#.#####.###
#.......#.........#.....#...#...#.....#.....#.........#.......#...#...#.#.....#...#.#.#...#.....#...#.#...#.#.#...#.#.#...#...#...#.#...#...#
#########.#.#########.#.#.#####.#####.#.#####.#.###.###.###.#####.#####.#########.#.#.#.#.#########.#.#.###.#.#####.#.#.###.#.#.#####.#.###.#
#.#.......#...#.......#...#...#.#...#...#...#.#.......#.#.#.....#.#...#...#.......#.#...............#.#.#...#...#.#.#.#.#...#.#.......#.....#
#.#.#.#########.#.#########.#.#.#.#######.#.#.#####.###.#.#####.#.#.#####.#.#######.#.###############.#.#.#####.#.#.#.#.#.#.###.###########.#
#...#.......#...#.....#.....#...#.......#.#.#.#.........#.#.....#...#.....#.........#...#...........#.#.#.#...#.#.#.#.....#...#.#.......#...#
#.#########.#.#######.#.#############.#.#.#.#.#.#########.#.#####.###.#######.#########.#.#########.#.###.#.###.#.#.#.###.###.#.#.#####.###.#
#...#.....#...#.#.....#...#...#.....#.#.#.#.#...#.........#.....#.#...#.......#...#.....#.#.#.......#.....#...#.#...#.#.#...#.#.#.#...#...#.#
###.###.#######.#.###.###.#.#.#.#.#.#.#.#.#.#####.#######.#####.#.#.###.#####.#.#.#.#####.#.#.###.#########.#.#.#####.#.###.#.#.#.###.###.###
#.#...#.#.......#.#.#.#...#.#...#.#.#.#...#.....#...#.#...#...#.#.#.....#.#.....#.#.#...#...#.#.#.#.............#.....#.....#...#...#...#...#
#.###.#.#.#####.#.#.#.#.#########.#.###.#####.#####.#.#.#.#.#.#.#.#######.#.#####.#.#.#####.#.#.#.#.#.#####.#.###.###.#############.#.#####.#
#.....#.....#...#.#...#...........#.........#...#.....#.#...#.#.#.........#.#.#...#.........#.#...#.#.....#.#.....#...#.............#.#.....#
#.#########.#.###.#########################.###.#.#####.#####.#.#########.#.#.#.#####.#.#####.#.###.###.#.#.#######.###.#############.#.#####
#.......#.#.#...#.............#.......#.......#.#.#...#.#.......#.....#...#...#...#...#.#.....#...#.....#.#...#...#.#...#...#.........#.....#
#######.#.#.###.###########.#.#.#.###.#.#.###.#.#.#.#.#.#.#####.#.###.#######.###.#####.#.#####.#####.###.###.#.###.#.###.#.#.#.#####.#####.#
#...#...#.#...#.#.......#...#.#.#.#...#.#.#...#...#.#.#.#...#...#.#.#.#.....#.#.#.....#.#.#.....#.......#...#.#.....#.....#.#.#.#.#...#...#.#
#.#.#.###.###.#.#.#.###.#.#####.#.#####.#.#.###.###.#.#.###.#####.#.#.#.###.#.#.#####.#.#.#.#####.#.###.###.#.#.###########.###.#.#.#####.#.#
#.#.#.#.#.....#...#...#.#.......#.......#...#...#...#.#...#.....#.#.#...#...#.#...#...#.#.#.#...#.#...#...#.#.#.#.#.......#.................#
#.###.#.#.###########.#.#######################.#.###.#.#.#####.#.#.#####.#.#.#.###.###.#.#.#.#.#.###.###.#.#.#.#.#.###.#.#######.#####.#.#.#
#...#.#...#...#.....#.#.#.............#.......#.#.#.....#.....#.#...........#...#...#...#.#...#.#...#.#...#.#.#.....#.#.#.#.....#.....#.#.#.#
###.#.#####.#.#.#.#.#.#.#######.#####.#.#####.###.#########.#.#.#.###.#####.#.###.###.###.#.#.###.###.#####.#.#####.#.#.###.#.###.#.###.#.#.#
#...#.......#.....#.#.#...#.....#...#.#.#...#...#...#.....#...#...#.........#.#...#.....#...#.#...#...#.....#.........#.#...#.....#...#...#.#
#.#.#######.#####.#.#.###.#.#######.#.#.###.###.#.#.#.###.#.#######.###.#####.#.###.#######.###.###.###.#####.#########.#.#########.#.###.#.#
#.#...#.#.........#...#.#.....#...#.#.#...#.#...#.#.....#.....#.....#...#.....#.#.....#...#.......#.........#.......#...#.#.................#
#.###.#.#.#.#####.#####.#.#.#.#.#.#.#.#.#.#.#.#######.###.###.#.###.#####.#####.#.#####.#.###########.#####.#.#####.#.#.#.###.#.###.#######.#
#.#.....#...#.#...#.....#.#.#.#.#...#.#.#.#.#.......#.#...#...#.....#.....#...#...#.....#...........#.#...#.#.#...#.#.#.#.................#.#
#.###.#.###.#.#.#.#.#.#.#.###.#.###.#.###.#.#####.#.#.#.###.###.#.###.#.###.#######.#####.###.#####.###.#.###.#.#.#.#.#############.#.###.#.#
#.....#...#...#.#.#.#.#.......#...#.#.....#.......#.#.#...#.#...#.#...#...........#.#.....#.......#.....#.....#.#.....#...........#.#.#...#.#
#.###.###.#.#.#.###.#.#.#######.#.#########.#####.#.#####.#.#.#.###.###.#######.#.#.#######.#####.###.#.#####.#########.#.#####.###.#.#.###.#
#.#...#...#.#.#.....#.#.#.......#.#...........#...#.....#.#.#...#...#.#...#...#.#.#.#.......#...#.#.#...#...#.#.........#.....#.#...#.#...#.#
###.#.#.###.#.#######.###.#######.#.###.###.#.#.#######.#.###.#.#.###.#.###.#.#.#.#.#.#####.#.###.#.#####.#.#.#.#########.#.#.#.#.#.#####.#.#
#...#.#.....#.#.....#.#...#.#.....#.#.#.....#.#.#...#...#...#.#.#.#.....#...#.#.#.#.#.#.........#.#.......#.#.....#.....#.#.#.#.#.#.......#.#
#.###.#####.#.#.#####.#.###.#.#####.#.#######.###.#.#.#####.#.#.#.###.###.###.#.#.#.#.#########.#.#######.#.#.###.###.#.#.###.#.#.#.#.###.#.#
#.#.........#.#...#...#.....#.....#.#.......#.....#.........#.#.#...#.#...#.#...#.#...#.........#.......#.#.#.#.#...#.#.#...#.#.#.....#...#.#
#.#########.#.###.#.#######.#####.#.#######.#######.#########.#.###.#.#.###.#####.#.#.#.#######.#######.#.#.#.#.###.###.###.#.#.###.###.###.#
#...#.........#...#.....#...#...#...#.....#...#.........#.....#.#...#.#.#...#.....#.#...#...#.#.......#.#.#...#...#.#...#...#.#.....#.....#.#
#.#.#.#####.###.#.###.###.#####.#####.###.#.###.#######.#.#.#####.#####.#.#.#.#####.#####.#.#.#######.#.#####.###.#.#.###.###.###.#.#.#####.#
#.#...#.........#.#.....#.#.......#...#...#.#...#.........#.#.....#.....#.#.......#...#...#...#...#...#.#...#.....#...#...#.......#...#.#...#
#.#######.#.#####.#.###.#.#.#.###.#.#####.#.#.#####.#######.#.#####.#####.#######.###.#.#.###.#.#.#.###.#.#.#####.###.#.#######.###.###.#.#.#
#.........#.....#.#...#...#.#.#.#.#.....#.#.#.#...#.#.......#.#.....#.......#...#...#...#.#...#.#.....#...#.#...#...#.#.......#.#.......#.#.#
###########.###.#.#.#########.#.#.#####.#.#.#.#.#.###.#.###.#.###.###.#######.#.###.#####.#####.#####.#####.#.#.#####.#.#.###.###.#######.#.#
#.....#.....#.#...#...........#.........#.#.#...#.....#.#...#...#.#.#.#.....#.#.#...#...#.#...#.#...........#.#.......#.#.#.#.....#.......#.#
#.###.#.###.#.#######.###################.#.###########.#.#.#.#.#.#.#.#.###.#.#.#####.#.#.#.#.#.#.#.#######.#.#########.#.#.#.#####.###.###.#
#.#...#.#.#...........#.....#...#...#.........#.......#...#...#.#.#.#.#...#...#.......#.#...#...#.#.#.......#...#...#...#.#.......#.......#.#
###.###.#.#.#####.#####.###.#.#.#.#.#########.#####.#.#######.#.#.#.#.###.#############.#.#######.#.#.#.###.###.#.###.###.#.#####.#######.#.#
#.................#...#.#.#.#...#.#.......#.#.#.....#.....#...#...#...#.#...#.........#.#.#.#.....#.#.#.......#.#...#.....#.....#.......#.#.#
#.#.#.###.###.###.#.#.#.#.#.#.#.#.#######.#.#.#.###########.#.#.#.#####.###.###.#.#####.#.#.#.#######.#.#.###.#.###.###########.#########.#.#
#.#.#...#...#...#.#.#...#.#...#...#.....#...#.#...#.........#.#.#.#...#...#...#.#.#.....#.#.#.........#...#.#...#.........#.....#...........#
#.#.###.###.###.###.#####.#########.###.#.#.#.###.#.#.#.#######.#.#.#.###.#.#.#.###.#####.#.###############.#####.#######.#.#.#.#.#####.#.###
#.#...#...#...#.#...#.......#.......#...#.#...#...#.#.#...#.....#...#...#.#.#.#.....#.............#...................#.....#.....#.....#...#
#.#.#.###.#####.#.###.#.#####.#######.#.#.#.###.###.###.#.#.#########.#.#.#.#.#.#####.#########.#.#.###.###.#####.###.#######.###.#.###.###.#
#...#...#...#...#...#.#.......#.#.....#.#.#...#.#...#...#...#...#.....#.#.#.#.#.....#.#.......#.#...#...#.#.....#.#...#.....#...#.#...#.#.#.#
#.#.#######.#.#.###.#######.###.#.#######.###.#.#.###.#######.#.#.#####.#.###.#####.###.#####.#.#####.###.#####.#.#.#.#.###.###.#####.#.#.#.#
#.#.......#.#.#...#.......#.#...#.......#...#...#.#...#.......#.#.#.....#.....#...#.....#...#.#.......#.....#...#.#.#.#.#.....#...#...#...#.#
#.#.#####.#.#.###.#######.#.###.#######.###.#####.#.#######.###.#.#.###########.#.#########.#.#########.###.#.#####.#.#.#####.###.#.#######.#
#.#.....#...#.#.........#.#...#.......#...#.......#.......#.#.....#...#.......#.#.#.........#...#.......#.....#.....#.......#...#...#.......#
#.#.#.#######.###.#######.###.#.#####.###.#######.#######.#.#########.#####.#.#.#.#.#.#.#######.#.#######.###.#.###########.###.#####.#######
#.#.#.#...................#.#...#.....#...#.....#.#...#...#...#.#.....#...#.#.#.#...#.#.#.......#.......#...#.#...#.....#...#.#.......#.....#
#.#.#.#.#######.#.#######.#.#####.#####.#.#####.#.###.#.###.#.#.#.#####.#.#.###.#####.#.#.#################.#.#.#.#.#.###.#.#.#########.#.#.#
#...#.#.#...#...#.#.#...........#.#.....#.......#...#.#.#...#.#...#.....#...#.....#...#.#.................#...#.#...#...#.#.#.....#.....#.#.#
###.#.#.#.#.#.#.#.#.#.#######.###.#.#####.#########.#.#.#.###.#.###.###.###.#.###.#.###.#################.#.#######.###.#.#.#.#.#.#####.#.#.#
#...#.....#.#.#.#.#.#.#.....#.....#.....#.#.......#...#.#...#.#...#...#...#.#.#...#...#.#...#...........#.#.#.......#...#.#.#.#.#.........#.#
#.###########.###.#.#.#.###.###.#######.#.#.#####.###.#.#.#.#.###.#######.###.#.#.###.#.#.#.#.#######.#.#.#.#.#####.#.###.#.#.#.#####.#.#.#.#
#.#...............#.#.#.#.#.........#.#...#.#...#.....#.#.#...#.#.......#.....#.#...#.#.#.#...#.#.....#.#.#...#.......#...#...#...#.#.....#.#
#.#.#.#########.###.#.#.#.#####.#.#.#.###.#.#.#.#######.#.#####.#######.#.#######.#.#.#.#.#####.#.#######.###########.#.#####.###.#.#.#.###.#
#.#.#.....#...#.#...#...#.....#...#...#.#...#.#.......#...#...........#.#.........#...#.......#.#.......#...........#.#.#...#...#.#...#...#.#
#.#######.#.#.#.#.#######.###.#######.#.#####.###.#######.###.#########.#.#.###.###.###.#####.#.#######.#.#.#######.#.#.#.#.#.#.#.#####.#.###
#...#.....#.#.#.#.........#...#.....#.....#.....#.............#.........#.......#...#.......#.....#.#...#.#...#...#.#.#...#...#.#.#.....#...#
###.#.#####.#.#.###.#####.#####.###.#####.###############.###.#.#######.#####.#.#.###############.#.#.###.#.#.###.#.###########.#.#.###.###.#
#.#...#...#.#.#.........#.........#.....#...#...#...#.....#...#.#...#...#.....#.#.............#...#.#.....#.#.#...#.#...........#...#.....#.#
#.###.#.#.#.#.#########.#.#.#######.###.###.#.#.#.#.#.#######.#.#.#.#.###.#####.###########.#.#.###.###.###.#.#.###.#.#####.#.###.###.#.#.#.#
#.....#.#...#.....#.....#.#.....#...#.....#...#.#.#...#.....#.#.#.#...#...#.....#...........#.#...#.......#.#.#...#.#.#...#.#.#.............#
#######.###.#####.#.#####.#####.#.#############.#.#####.###.###.#.#####.#####.#.#.#####.#####.###.#.#####.###.#.#.#.#.#.###.#.#.###.###.#####
#.....#.........#...#.........#.#.............#.#.#.....#.#.....#.....#.#.....#.#.#.#.......#.#...#.#...#.#...#.#...#.#...#.#.#...#.#...#...#
#.###.#.###.###.#####.#####.#.#.#########.###.#.#.#.#.###.#####.###.#.#.#.#######.#.#.#.#####.#.###.###.#.#.###.#####.#.#.#.#.###.#.#.###.#.#
#...............#...#.#...#.#.#.....#.#...#...#...#.........#.....#.#.....#.......#...#.......#.#...#...#...#.#.......#.#.#...#.....#.#...#.#
#.#.#.#.#.#.#####.###.#.#.###.#####.#.#.#########.###.#####.#.###.#########.#######.###########.###.#.#.#####.#########.#.###.#######.#.###.#
#.#.....#.#...#.......#.#...#.....#.#.#.......#...#.#.....#...#.#...........#.....#.#.........#.....#.#.#.....#...#.....#...........#...#...#
#.#####.#.#.#.#.#######.###.#.###.#.#.###.#.#.#.###.#.###.#####.###############.#.#.#.#.#.#.#########.#.###.#.#.#.###########.#####.#.###.#.#
#.............#.....#...#...#...#.#...#.#.........#.....#.....#.........#.......#.#.#.#.#.#...........#.....#...#...#.......#.#.....#...#...#
#.#.#.#.#.#.#########.###.###.#.#.###.#.#########.###########.#.###.#####.###.#####.#.#.###.###.###################.#.#####.#.#.#####.###.#.#
#.#.#.#.#...#.........#.#.#...#.#...#.....#.#...#.........#.......#.....#.#.#.......#.#.......#...#.....#.........#.#.#...#.#.#.#.......#.#.#
#.#.#.#.###.#.#####.###.#.#.###.###.#####.#.#.#.#########.#.#.###.#####.#.#.###############.#####.###.#.###.#.#.#.#.#.#.#.#.#.#.#####.#.###.#
#.#...#.....#.#.....#...#.#.#.#...#.#...#.#.#.#...#.....#.#.#...#.....#.........#.........#.#.....#...#...#.#.#...#...#.#.#...#.......#.....#
#.#####.###.#.#.###.#.###.#.#.###.###.#.#.#.#.###.###.#.#.#.###.#####.#.#######.#####.###.#.#.#####.#####.###.#.#######.#.#####.#####.###.#.#
#.#.....#.#.#.#.......#...#.....#.#...#.#...#.#.#...#.#.#.#...........#.#.....#.....#.#...#.#...#...#...#.....#.........#.#.........#...#...#
#.###.#.#.#.#.###.#.###.#####.#.#.#.###.###.#.#.###.#.###.###.###.#####.#.#.#######.#.#.#######.###.#.#.#################.###.#.###.#.#.###.#
#.....#.#.........#.#...#...#.#...#...#.....#...#...#...........#.#.....#.#.....#...#.#.........#...#.#.....#.....#.....#...#...#...#.#...#.#
#######.#.#.#.#.###.#.###.#.#.#.###.#.###.#####.#.###.#########.###.###.#.###.###.###.###########.#####.#####.#.###.###.###.###.#.###.#.#.#.#
#.....#.#.#.....#...#...#.#.#.#.....#...#...#.........#.....#.#.........#...#.......#...#...#.........#.......#.....#...#.........#...#.....#
#.#.#.#.#.#############.#.#.#########.#.#####.###.###.#.###.#.#######.#.###.###.###.###.#.#.#.#######.#.###.#########.###.#####.###.###.#.###
#...#.#...#...#.........#.#.........#.#.#.....#.#...#.#.#.#.#...........#...#.#.........#.#.#...#...#.#.........#...#.............#...#.....#
###.###.#.###.#.#######.#.#####.###.#.#.#.#####.###.###.#.#.###########.#.###.#######.#####.###.#.#.#.#########.###.#######.#####.###.#.#.###
#...#.........#.#.#.....#.......#...#.#...........#.....#.#...#.....#...#.........#...#...#.....#.#.#...#.....#...........#.#.....#...#.#...#
#.###.#.#######.#.#.#####.#.#.###.###.#####.#.#########.#.###.#.###.#############.#.#.#.#.#.#####.#.###.###.#########.#####.#.#####.###.#.#.#
#.....#.........#.......#.#.#...#...#...#...#.....#...........#...#.........#.....#.#...#.#.......#...#...#.....#.....#.....#.....#.........#
#.#####.#########.###.###.#.###.###.###.#.#######.#.#.#.###.#.###.#.#####.###.#.#########.#####.#########.#.###.#.#####.#########.#.###.###.#
#.....#...#.........#...#.#.#.#...#...#.#.......#.....#.#...#...#.....#...#...#...........#.#...#.............#.........#.......#.#...#...#.#
#####.###.#.#######.#.#.#.#.#.#.#.#.#.#.#####.#########.#.###########.#.###.#####.#########.#.###.###########.#########.#.#.###.#.###.#.#.#.#
#...#...#.#.#.....#.#.#...#...#.#.#.#.#...#...#.....#...#.......#.....#.....#.....#.......#.#...#.#.......#...#.#.......#.#.................#
#.###.#.#.#.#.###.#.#.#########.###.#####.###.#.###.#.#########.#.###########.#.###.#####.#.###.#.#####.#.#.###.#.###########.###.###.#.###.#
#.......#.#.#...........#.....#...#.....#...#.#.#...#.........#.#.#...#.....#.#...#.#...#.#.#...#.....#.#.#.....#.#.........#.#...#...#.....#
#.#.#####.#.###.#.#####.#.###.#.#.#####.###.###.#.#######.#####.#.#.###.###.#.###.#.#.#.#.#.#.#####.#.#.#.#####.#.#####.###.#.#.#.#.###.#.###
#...#.#.......#.#...#...#.#...#.#.....#...#.....#.....#...#...#...#.....#.#...#.#.#...#.#...#...#...#.#.......#.#.......#...#.#.#.#.....#.#.#
#.#.#.#.#.#####.###.#.###.#.###.###.#.###.###########.#.###.#.#.#.#.#####.###.#.#.#####.#######.#.#.#.#.###.###.#########.###.#.#######.#.#.#
#.......#.#.....#.#...#...#.#.#.#.#.#.#.#...#.....#.............................#.#...#.......#.#.#.#.#.#.#.#.....#.......#...#.........#...#
#####.#.#.#.#####.#######.#.#.#.#.#.#.#.###.#.###.#.#########.#####.#.#########.#.#.#.#.###.###.###.#.#.#.#.#.#####.#######.#.#######.#.###.#
#.....#...........................#.#.#...#.#.#.#.#.........#...#...#...#.....#.#...#.#.#...#...#...#.#...#...#.#...#.......#.....#...#...#.#
#.#####.#.#.#####.#.#.###.#.#.###.#.#.#.###.#.#.#.#########.#.###.#.#.#.#####.#.#####.#.#.#.#.###.#.#.###.#####.#.#####.#.#######.#.###.#.#.#
#.#.....#.#.#...#.#...#.....#.....#.#.#.#...#.#.#...................#.......#.#.#.....#.#.#.#...#.#...#.....#...#.....#.#.....#.#.#...#...#.#
###.#####.#.#.#.#.#####.#.#######.#.#.#.#.###.#.###.###.###########.###.###.#.#.#.#.###.#.#####.#.#.#######.#.#######.#######.#.#.###.#.###.#
#...#.....#...#.#...#...#.......#.#.#.#...........................#.........#...#.#.#...#.....#.#.#...#...#...#.....#...#.....#...#.#.#...#.#
#.#############.###.#.###.###.#.###.#.#.#########.#.#.#####.#####.#.###.#########.#.#.#####.###.#.###.#.#.#####.#.#####.#.#####.###.#.#####.#
#S..................#.........#.....#.............#.........#.....................#.......#.........#...#.......#.........#.........#.......#
#############################################################################################################################################

View File

@@ -1,5 +0,0 @@
Register A: 53437164
Register B: 0
Register C: 0
Program: 2,4,1,7,7,5,4,1,1,4,5,5,0,3,3,0

File diff suppressed because it is too large Load Diff

View File

@@ -1,402 +0,0 @@
ggrru, ugu, gwgg, bwrw, bww, brg, brwu, ruugb, grggr, wrgbuug, bbbrbr, rgrrbrbw, gbwg, wuruug, gbgwbg, rgw, buu, ggbgb, rwg, gr, ggurggr, wruuwgrr, wbgg, gggrb, rgwuu, uuwww, bgrw, uuguubw, bbbrwu, ugurb, uwbggg, rurg, ubb, wrr, rbbbbg, gguuug, gbur, wb, bubbu, gbwru, bgg, ugg, bbrrg, wubr, bgwgbwgg, rguurb, bugu, wuww, urugr, bwb, wug, brr, u, rru, wwgbw, gwu, bw, ugrwggr, rgubuw, bbg, bwru, uwgbwu, gbrugg, rgub, rgbbuwwg, wwr, grw, rwggwwrw, bbbu, wr, wbwu, wwrbuu, rbbgwru, gur, buurr, ggbrg, gwg, wrg, urw, uubub, gwrgb, bbw, rrw, ugrurw, rubrw, bgb, bwgbwbw, guw, ur, wgrbu, bgu, rrrrbrw, uww, uuu, wuugbw, wwbugw, rwbr, ruwbr, uwu, wgrb, b, rrwugru, gwb, burw, rurb, rbrrbgu, uwgw, brubr, bwu, rbw, ugbu, gww, wwrb, wbgbrww, brrwgrg, rugug, grgrrb, wuubbgu, brub, rrwwwb, ugr, wbw, ruwgguu, wgw, rrwrg, bwbbrwbg, rggg, gbgrguw, rwgw, rbbgwbr, gub, rgrrg, wbgggu, bbbgww, ugb, rbbgr, wru, rubbuu, bggrbu, gbg, bgrgbb, wwrwugbg, rrgu, wrrubwu, wrbuu, rgug, bbu, wrww, wbb, wgrwu, bbrurru, wgrugwu, uuw, uggwg, rrbuwu, gruw, ubr, urgug, www, wgrwrrw, rruw, rbg, bbwu, brww, rbwbw, grgr, bgr, wgwwu, wur, gubu, rrubgg, wbrurbb, ugub, wrrr, gbbr, wwubu, uwwbuw, wuu, rgb, bbr, rbrbuwg, urwb, gg, grug, br, wwguuwb, wu, ruu, guuwrw, wgb, gbr, wgggug, rw, brggww, wrgrw, guggub, gbbrug, gbbrb, bugrg, bwr, gwwg, wwbbrggw, urwu, rgwr, rwb, rrub, ggb, wbwrrbw, wrub, wwg, ww, ggg, brugwrr, wbur, ubbbrw, uwugrg, buw, grg, rrr, bgwu, rbggg, rgr, wuwub, rg, guuwu, rrwwwrbr, rrg, gurwg, wburrwug, rwr, wbg, grwbr, bgwbwug, bwg, bru, rbwuug, gggg, gurb, bbb, ubwu, gugbr, buru, gbbg, brb, wgr, guwg, gurgrbug, wgwugwwu, uw, wrbbr, wgwugurr, uwww, urr, bgubug, bbgu, bbuugb, rwug, gurbb, bguw, ubbbub, bbwb, gugbgwb, bb, wrrg, ggr, wrbub, uu, wwbw, ub, uggw, ugbggrw, bur, uuuguru, bgwuu, gwr, uurrrw, rb, buwugrr, brwrrrgb, guu, bgur, wggur, wub, gbb, rr, wubw, uuwgww, bwurwur, gubgg, ubwg, grbr, rwgr, wrubw, grgwb, uuguu, rwgwb, bwrrgg, ubu, bwbwggrw, uwg, bgguu, wwu, grwgw, bwrr, uur, rwuww, bwbb, gwrr, gwgrww, rbgw, grub, wugu, grrwuwg, bburbb, wbgb, ubbr, gggu, wbu, rrbugrbu, gbbubrwg, gwwurw, grbb, gbugu, wguwrw, ubggbb, rbgbu, rwub, gb, wbrgr, wubwwb, brwg, bwwbur, gugwg, gru, rbrwurr, wrb, gwubug, ggbguu, bubg, uruub, wuw, gubbr, gu, uwrubg, wggrbug, uub, ggrb, rwu, ug, ugrggw, wgg, rrb, bbug, wrw, uubbbur, uwgb, bwgr, uru, bu, guuuguw, gwwu, uwb, uwwwb, w, rur, wguuw, guru, gwrrwwb, wwrww, rww, bbur, ruuwr, rbb, bugubgrr, ru, rbubwr, grr, bbrbu, gwww, uwwgw, wwwu, uwr, uguw, rbwrr, bguwg, rguw, guwgbbg, rub, rrur, bwwbgw, rrrg, bgggru, ggu, wrrggu, rug, uuburg, rbu, wggrbgb, brguurw, r, guwrr, bwbgrb, urwgbb, rwgur, urg, gbwrw, grb, gwburg, wbr, bwww, brwr, ugw, uwgu, uggwr, brw, wgu, gug, gbu, gwrur, ggbrb, rbubr, rrggurbw, rwrru, uug, urb, grbu, gbgug, bugg, gbw, rgu, rgurrw, gwbw, ggw, bgub, wwgugug, ugubwg, wuggr, ruw, rbr, bbwuwwgb, wg, ubw, rwwg, wggbr, urubb, wwb, bubr
ggrbbwbbwbuguwbuguwbbuwrbbbrwgurgwggbbwbguurb
gruurruwgbwwrbbggwuwrwugwrguuwwrurugbbgubrurubrgwubg
wguwwgbbggbbrbwurguububrwgbubwbwwuwgrgbuwgubg
gbgrwggwbgwuwbgwgwgubwguwwwuwbwugbwgwrgrubg
uubwgrwrwrruwrwggggwwrbgbbwgwwbwguwbrrwrgugbrbwrurggb
rgruubburgubugugbwuguwururrbbgwuurwwbugburgrbbgbbgugwgbgg
urggwuuwgubugurguwwrrbwuggbwbruuwbwugwwrwrguubbbbw
bgrwuggburgggbubbgrwwrbuuwgwrrwuuurbugwgurubrwwrrugru
rrbbrwgurwgrrgburbwurgbbuwrgrwwgrrgwrbrbrubbrwrg
uururbwwwurbruwwwbubgbrugubrwubgwuuubggburbbu
wrwrrgbrgwgububrgwggbguurgugwbuwgwwbggurbrw
uugbgwuwbgwggrbwrwruwgrrwugbguwguuuuwurugwwbbruwuubg
gwgrrwrguwgwbwgbuwuurgugugguwbrrrbguwrwubgwrgubggbburbu
bbugbburwuggwrugrbgbbubbrrurbwbwburwrgubgwurgubg
wuwubwguwuwwbbwgwugwugurgrbugurwbuubbuurrrrwwbgrgwgwgwgubg
wurgwbwrgguwbbuuurrgrrgrgurgbrubbrgrgwbrrbgrurguurw
brrburwwuwugbwrrrwruuwgrrrgruwrwgrbbgwwrruwwwbrbguuuww
wgurrugrwbbrgubwrgbuwuubrggubbrwwwbwrggwggbrbg
gurgrrwgruwbruwrbbbrugrgrrwrbbubgrbgbbgrwurwuguubgw
rwrrruwrwwruugbgbbururbubgrrugguggbwgwgwguwwurb
wuguguruwrurbwbwggrwuuwwrbwrbguuwwwruuwrguubgwbg
wggbrgubrwrwgwubbgbuwgwggwgubrwurrrrrbggubg
urgbbgggurgrbugbbubwbugrburgrurbgwbwuuuugbbuuuuub
gwbuubrgwrwrguwbwubbruurgrrwwuwrrrrrwbbwuguugguwbrurrbbugw
rrwuubbwruwuwbbbrrgbguwbguwgbruruubggbrbrwbwgbrbrbggu
gbrruuwuwruwgwuubrwwwuugubwubwuwbwwrrgbrgwrr
rwwrrbbgurgwuwgugwrgbgbgurwruwwwruugrbggwubwr
uwbrrugrbgwwgwrguwgrbgwbrbbruugggwgggwwbwrwgr
wguubgwuuwbrbgrgggrgbbguugrwgwgbrgugbrugbbuuurrruruuggrbr
uwggbgrugruguggrrgwbwbguwwgugbgrbuuwugrubbgbuubg
wbuwggugwruuurbwwrrrrbbwruugurwurrbggwgubg
buwrbburrubggwurgburuwrurrgwgbuugrruugbbbgrgurw
ubugwbrbwwrugrbwwrgwugubrrbbrwbbwbubugbububwwwubrrubwur
gwgwwuwurgruubbwgrguuggubrrubgrwwwbwbwbbrrburbbbu
rrbrwrwwrwrwbwbrbrgwwbrwwwrgwubwrrgbuugrugurrbug
wurgrrbuurrbwwgwbguuuwgruwuubuwwgrrrwubgrbgw
bbrwbrbbwgubbbwgubbruwrrbrbrrrgwbbruggbgrr
buurbwrurgwrbugruuwrbbubbbubgbuwurugrbwrubuwbwwgb
uwbwwgugruugbururbgwgrbbwruwrbruggbrrgbburggbwg
grurbwwuwruwwbrrguwbwwrgrruuguubrrubrrrwruwwrrggbuugwu
ubgrrwbwrrbbgrrgwuugrggbwgrrwrrrwbbwubrrrugugwubg
urwbugwwwbrbbggwgwggwuwwggbuurrbuguubbrgubrwgrwubbrgubr
wbbrgrugrgwuuwbubgwrgwrwuubgwwubuguugwgbgwuubg
gwwrwbruwwgwbgwbgrggwwububurbbgggruurwwbgbbrugubbwuwb
grggruggrgggbrubguwggruwbbbgrgruurrrgwguwuubrwbrrurgrubg
wugbrrurrwbgurwgggwwgrurrbwubbuwwwburrwuggubgwwggbwggubgu
bbuwrruwgrwuuwgrwrwgggbwrgrrbugubgururrwuubg
bgwgbwgguwbugrrbwwugwuwgwbuwbwuwrgwbuwubggurbruwruuubr
bwwrrggbuwwgrrgugruuurgrgrubrbwuuwbwgrubg
brbrwrurruwurrwwbuwbggbuwwrwbwwruuwguubbuubgrbbuwwgbrrr
rbwrwwrrurrrgrbuubburbrrruuurruurwwgbbguwrwgggu
wuurbgwrggbuggbgwbubgbubgrrwbrbwgwwrrbgububrbr
rgbugbrgrgwurbguuwburggwubggwrubwwggbbrrbbugbbrggrgwbbuugr
brbubwwubwbwwwrrubwggwgwwgwrbwgwwurwbugrrguurbb
grugwurwrwubbbbgubgbwrugrwwbgwburwwbrgwubu
gurrgwbbbubbggrwrrrwbburwruurgrguwggrbwbuuwguugubrwbwb
rrbgrrubuurwubrrbrrwguugrwrgrrguwggrgbrbgubububbrb
wgrwgwgrgbguwgbrwwgrwbuuubwrgbwguwbbbbuguugrwwwburrbruuuubg
uwgrrgrrbrwbrrbubggggubggbbgbbwbrugwrwrbrrwwgbwr
uburgubgbbbwgwubggwuugwbbgruwubbugbbuurwruggrggwrugrbwubg
rbguwurwwrbggrrgruuwubwgbbrgwwrgbrugguguuwwbbrggwbwurbgubg
wrurwburbugrrubggubgbwwrbwbwggrwrrrwwuguwgguwrbubbubwrb
ugrburuubbrbwgrbugrggwgbwuurgrwuwbuwrrbgubg
wgubrbggbwubgruwgrgrwrrgrugubugrwgrurguwrgrububbbg
bwgbbgwgurwgwugrbbgburgwbburrurubwbbruwgwbububgrgbrwgbuwubg
wuwbuwrbuuggwggbbugbwbbuurgbgrrubbbrgggwrbwugguwubg
wwbgbgugbgggugwrrwwguwbwubggbwgurgwurwrgwubg
bwwubrrwurbgwubbuguuubrgrwrrwuwrugguuwwurubgw
rrbbuwwrwbbruwwububbrbrwburrrrbubugwugbbgrwrw
grrrbwgwugurrwuwwrrbwggubwuugbuwwwgurwgbuurubggbgw
rwgbbgbrgubgugubwwbbruwggbwwwgbuwrrguuwwbubbrwgbgrwg
urgrwrgbrgbggrurubwwrwrwgrbgubbruurbugubww
gbburgbuggrwwgrgguugwbugwwrgurbwbugurubwbrrug
bbruuuruurrgggrwburgbrurwurgrrrbrgwbuwrwrugurwwwbb
wggguggbwguwrrrbwrgugrgwuwrubburbgbruubwuggbubuurgww
ggrubgrggwgburgwurubuubugrgrbrwwwgbbwrbuwwwruwwwwrugwb
rrrbugggrwuubwrbbgbgrwggbggwwwrwbrugruurwgrruuuubg
grurwggwgrubrbbbubgwrbrrwgwugurubgrwwwguwwbrbubwbuuuwgwwbw
uwrrguggwbrgbgrwbgguubgrrbuwurrwbubrggrwbgu
wbwgrbgwgwrwgguwrrugbwburrwugbuwwugwwurrguuuwbbwburubgrbgw
bbbrbrgwbwwgugggwwbggruwwbwurgwggbbbrurrwwbugrrgubg
gbuuguugwrburruuwbbwbbwubrwbrgwwwurrbgwbbugwwbuwuwgruubg
bwbgbwubugwgrwbubbugbwuwbubrrrwwggwbrggubwrbrbubgggw
bbbggrurgggubbbbbburugrwggwwrwggbwuwbbgbggbrbuurugbwugbg
ubgbwbguuwbrbruggwguburwwgbrwuwguwguwurbrbrrurww
bruwrrurrwwwrbrubgrrguwwrrgggbbwrwwgbggrubg
bbwugggwrwgurbrbgrwrwuurwwwruuugbgrrbuwbwbwgbgrwwburuubugg
rgbgugwwwrubgggwwbuwrugwbbwwbwuwwbbgugbwburgrr
rwrgrwbggwugguggrgurbugwbuggrrrrguwbgwubg
urwruuwgrrwggwgrwuwgrggwbuwwbrbwuwwwrubg
urwrbrrbrubbruwbguuwwggubuguwwggwwrugbuwwrbbwwgrrrbggb
uurguwwgbrbbuwrrbrrgrbggrrurbwbrwugrwugruurbgbbu
ggguuubrgwgbwuburubruuggrwwururubgwwbbubbrwbgwbubbwrg
grwbrgwbbgbwwwruubgbwbbbrbgwurrrururrgurubugbrrrugwwbuwbw
rgrubwgbwwgrbwburgwuubwbwwwbgrbbbwbbwbrwgbbrggrwubg
uuggwggrgwugrgruurgbwrugwbrrbbbgwrbbgbrubg
wurrguubwrbwuubgguuwrgrrugbgrrrwrbrwrrrgbuwwrbwrbgrgrgbwbu
gubgbwubgbbbubwgrbubbgwrrguburururbgbbruuuruu
ubwgbrwbwbgguwwruububgrrggrurruuuwwuwubuubgubwwgrubwwurggubg
grwwwubuwurruububbwugubgggwrbgrguwwwugruruubgwbbrwuruubg
ugrgbwwgbrwrwugwubbwuubburrrgrbbgruubgwug
bgrgggwurrbggwubbrgrwbgwwwwwwbgwwbwrwbbrugwrububwgubg
uugwwurrwggwrrbgwbrrgrrurugbgurggurubgbwwubbwrru
bwgggbrubwguurrgwrggggbgrwwwuggbrwbgrgbgbrrugbwwwgbbrbwu
bwgubrubrgbuwgbbuwgbwuurguwuuwwbruwuwbrrbuubg
gbuwugubrbbburrwbrwuubrwwrwburwbrwguggugbrbwburww
brguguururwgwwwbrwuwbgrrrgwwrguwwbuwrwguwgwwgwugwwugubg
brubrwbwwrgwgrgguwwgrrbggbrwgbbwugbrgwggbbgbgrbwgr
wrwgguwbrggwbgururwbrurggurwwrbuurwrrrrwburugggugbwrgubg
grwwwggubgrrrwuwggbwrwgbrrbugrrbuguggwuruwugr
wrwwwwrwubwuugurrbgugrwrbgrurgbgbubgbguuwubbwubg
rgguruwrugrrrbwwuwwrwrrrgguwbgbggwwbuguguguwwgggbr
wwwgwbbgbgbgbuwugwgrrgwbrwguguwgrggbwwbwwggbuuububgwbggugg
ubwruwgbbwwuuwuurburgwgugwuggrbbgrgwguggwrgrggru
rwrwguruubbgubrgubuwgrbwgbgbruwgurgwbbbgbrw
wuggwrbrwwurwuuuruwwrwubwrgwrwwbrugruwbgwbgguuggbubwrrwguu
ubwwuuwbggrwgbuwburuwrubgrgrbubgwrubwbwburubbbgu
bggrbbuuuubrwwrrbgrggrgurugbuwbbbgbwubrrgu
bgrwuggwwbbgubbwrggubrwwwrwwwrwgbuwbbgggwuurbugrg
ggbgubrggbwgrgwbbbbbgugurguwggbrbbgrwuguwwruwbwwruuguww
gbwbrrgwwggguwgguubwubwgrrrwrwbrgbrwbrbwbwuwrr
uwbbwrrugbgrrbwwrwgwbggbwwrwggbruwururbwgrggrrggggwbbu
uubbwuwbgbwgbugbugwrgurrgubwuguwrrbwbbbrgg
bbwrwrwurubrgrbugbgwrgruubuurwurbggbbrguubg
bbgrgbgwbbugwggwbrwubwwugwbwgrbubbubbbgwrururwwgubuuwg
rwbwgwrbgbugrbwgburburbuuggwuguggrgrwwurggwuubgw
uuuurubugrrbgwwrbuwwwbwuuwrgwrgbbwubggbwggwrgrbb
ruuwugbgbrrgrwgwwwgwrbuggbgwubwrrbbrwrrwwgwbgrwrwbg
wbbbwubwgrgwrwgwgwubwrwbwrwuuwbrwggwwrwrrugubgubg
ubwbubugggggrrbggrwwrguubgrwrrbgwuubgbbuwwubuuwubgbuguubg
rrwugrgurguguwggbwurwguuruwgwwrbwugbwrbbggbrrwgww
ruguwurwgwbrwwgburubwuugwbgbgwwrurggbrubbrubwrugugugrwrg
ggburgrubrbbbwgwuuwuugwuubrbuuwgrbwbrurbwuruu
grbbbbrwuurguruurwwgbwrbburrbwugggwrwuruurgbrwwrwgb
ruurgwgggwgbwrgrwbruuurgrbwrbgwuwbbrbggrbrrbgubbw
gurgbwbggrwbrwbbgbwuwwbugrurrbuburbwbgbgrugr
urrbgwugbuwbuwbwgrbrbugrbruwbwbwwwbugrrgrgbubbuurrrugwbwuubg
ruuwgbgbbgrgwrgurgbbggwwuwrrrugwwbgruwugbwrgrruurbrbguu
grbuurbrubrgggbbubrwgbwwgbgrbwubrurbgbuwgubgbwuguwrubgubgw
bwbbrwwruurgugggbuwugwbuuwwrruurguwbuurwgbguurbgbrwbgurgubg
rwggrwbruwgwrbuuwrruguwbbrrwwwrrgruurbwuwggrwbwgurwuubg
gguruuguurugwuwuwuwurwwbgbgbuwrrwwgwugrbuubbbwrrggrubbw
gggrbwgbggurgwrwrwgrurrrgguuwggbwwbrbbbrgwbrubrg
ububggbgrbwbbrwbggwugbwrbrgwbrgrbwugwurgwrubg
ubgugruruururwrwgguggbbgruwwruwuururbgwurwbrubgwgrw
gbgrruwurrbbwbgwbuwggggbwuwwuubrbwurrbrwrrrubg
rgwgrubrwbrwgggruwwbrwrubwwwrwbggwuugrruuwugbrg
ubgwrrgbrgbbrgwbbwubururwbwuwwwugwwwrgbbrbrwgrgrbbur
wbgbwgubbrbuwgrubbbgrwgwrgguburrgbwgbbwrgbgbwwwrwbubr
wurubbubrgwwgwrbwrurrbwgbuugugwbgwbgubbubwuwbwbugbgrwurrg
wrgggrguwgrwbbrgbrbbwwuwggrggburugwwgwuguburbwugrrgbburw
rrrruwugurugwrggbgggwrgwbuwuguwbubbwgrbwgr
rbwbbwbbwgbwggggwrbruwbugrgugubbgwrrrugubg
rbrrbrgurwbgurwbgrwuwgrwwgbbrgurgggrwbuguw
gbbgubwbguururbgrwuwrwbbbgwuurbbuwgwwruwwgubgwwbg
buwrgbgggrruugugbwuruwgwgwwurwugbbbbbrwuwwwbbugubrgrgu
gwbwrubugbrrwurwgrwwwwbwbbrgwubbguurwguuwrrb
rwugguuubbbrrgurrbbwrrwuurrggrruwururrrwwgububwgurubg
bbgbbrbgrwrgwuuwrrwubbuwuwrwuwrburggwwburwbugubgrr
uurwbwubwbgrruwwbbwgwgrrbrubrrbubwrwgubg
rrrgwguwwrwugbggrbururbgrrgugrbgbwugbgrwubg
gbuuwbrubgrrwrgwbwbgbrgbuuubrugwggwurrggbbwuwwgbwwbbuugubg
bbwbgwbwrrwgguwbrwgrgbbubwubwgwgrwguwurrrwburbgugbburuwubg
ggbuubrwrwurwgwbwburwwwgwwwrgguwgurrggbwurrgwgw
grrwrubwgbbrwburgrguurgrurwbwbrbuugrwuwrbwurubgwgu
brwwwrruggbbuwrbbgrugrbwgbwwwrbgbwgburrwrurgubg
grbwugwrugrwrwrgrrbruguwugggbrgbrwbwruwgrgguugbgwbgrur
urwgwwrgurrubugwwuwrbrrrbwwrrbwuuwuuwuwururuguruwbwurgr
urgrwuwuwbbrbwrbuurbbwbbwggbruwruwburgrwgwuwrruuubg
ruuwwrwwwgrrwwgwubwbuwgwubbggrgurruwgwrwugb
urbbgggrrrrrrrrwwbrrbgggurgwwugburwbuuuwwwrurwrrbubwrrwrw
rwbgrbbwubgbuwrrgbbguwbbrbrwbgrbuwwwwugbugwrwurwgwubg
ruwbuggwgbuuburwburgwgurrwrggrrgurrwburgbwbgr
bwwgwggrgrbbggbgrrwbggugwbgrgbbrbwbbrgrbbuubg
gggbbwbwgbbuubwrbggburrbgwwruuguruuguubrwrwwuubgw
bwwwbuwrwrwugubrwbgwrwrguubwrugurrgggubg
grwbuwwburbwbwurguuggrruuuurwwurggbgrbuwwrgr
wubbwuggrgwbrwgbwrgwwwwuubuguuwbgruuwgrwgbuuwrwwurubgwwgw
bbrwbwuwgwwbwwrrruwwbwwuwrguuuuuwrwurbbbbuuugurgugw
wggubgbuubbuurburruwurbgwbwubbgrgwgrwwbbburggbu
buurrrwbgguuurbbbgwrgggggwuwruwwbgguggbwbrrrgrggwg
gwbwrgbrburbguwbgrwuwgburgbrrubrubugbrugubg
rwgrgwwubguggrwubggbrrurwbburbuwrrbuwbgrbgrruwgrrwwubg
wbwwgwrgguguwrrgggbwwbrrgbububwwwugururrrbr
rbgurbrbgwrbgrwuwruguubgwuwbgwguwuwrbruwbbuwubbu
bgrgbwgbrwuruuugrrbugrburburgrbgubbrwbubwgubg
ggruruwrrwwwrbrgbwgwbuubgugguwgbuuwggrwgbgburbgwbr
wrgrrgrwgwbbbrgugguwbwuubbwbruuwwrbgggugwwgbbruugr
ggwwbbwugrgbgwbbbuwwwwuggrgguuwggrrbbwbugwgug
wrugrwwbwgbwruwuwwubugubggbuuwgbwgrurbgbuwguurrggrrbwwwguubg
grwurrbbuuuwrubbrwrubrbbubgugbugbwrgwggurwubg
gbggwurwgguwwurrubrgwbrbbwgbbrugburgbgrwrwguuw
rrwbwuuuugwrbwuwgbbbwbwwwrgrwrurbgrrgwrbwugbrrbrwubgr
uuwwbgguugrbrwgbwrrbbrwrgbubgwrggwwuurrgbwrbgwuugwruuwwbgr
wgrurgbugwwrrwrrrgbbggrwuruuwbrrgrrgubrrubg
uuwrruubrbbgururrrbbrwruubbwwgbwrgwrbuubgw
urwrggbbgbgrwgwugurrrgbuuwbbwrgrwburrrbugwggbuwgbw
urrggbwggggwrgrbgbrbbgrgbgubrggbgbrbwggwuurubg
wwbrbwbrrgwuuugrgwbgrwwgwuwuuwggwbbwggugwrbggwgrugrbubgw
bggggurbgugruwuggwuruububwugrbbubgrwurbbrubgw
bbwwgguwwrggwrwbwbbuwwugugrrggurbwwrgggbwuwbuburubg
rwgbgrubrrbuwwbbbbbggwruwubgbgguwuwwwgwggbubrr
rurwgwbwuugwruguwbwuururgurguggbugwwuguuwrwu
bwrbwruwubbgwguwgrwuubuwgwugwwgrbrrubgwbgbrbwugwbuwwwb
rwgbgrugggbgubugwbbbwggbguugwggrbbbrubwbubgrbb
rgwwrbrbrwrgrbgbwwuwwgwrbuwrgbrrurugwburrggrwuruub
grwbbbubbuububbrrwubgugrgrwruuwrwubrruggbuguubg
bbrrbrbrwbrgwgwuwguuuubbruwwbuuwuuwgwugbgur
uuguwbururbggrgrugbrubgggrrwwuugwgbrubwgbgwwgurr
rgwrgbbwbwwruggguwbrugwbrrwwbwrgwbwrgrrbuuuggbuubgw
wbbbguwbuuugrurggwwbgbuugwwrguggurrrbbbrbgbrb
wrbuuuwrbgwuugubguggrggbgbuguurbrrbrgbrurbrbbuugrw
bgubwwgrbwwwwwbrrrwgbwwugbuwgwruugrgbbuwwgrr
urrggurbwwrurbwbwrbwwwwuurugguwrggwwrrwgbwbrrruru
rwbgwguwurrurbwuwrubbwwbubwwwwbrggugubgw
burgrurbrugburgrbgruwggruuuwgrgwuwrgwurrrrurbwrwwwgbuwubbb
rruwuwgrubrbubugrwbwuuugwuwubbgwrbgwwgubrurwbgwbwwgwgwbwuu
wgrbggrrwbbgurwurwrwrggbwwrwugwrwuugwgwubrubgwbguuwbwwgbu
guuwrrggbrrugbrguggrbubrggbwururwbrgrwrbwb
gwgggggbgrgbbbbuurugwrruuuwrbwrggguwruggwgbbugu
rguwrwrrubbruwruubwggbuwwgbgggguwugwwubwrgwwrubrg
brggwbbbubbrrrwrbwrwbgubbugbbgwgwbrwbggurbbwuubbgrggrbbr
wuuuurbbuwgubwbwrrwbbgbuugrgwgwuburubuuwbw
ubgwrruruwbwgurwrrrrrbrrbrwuubwrwwbrwwrgww
grgbguubrugrgbgggwgrwgrguwbubbwbugrburrugrwbwbgurubgw
rgguwgruburwgbguggbwgrgggrubgwgrguubwubgw
uurubgbbuubbguwrgrwwgguwgbrrwguggggwurbwubg
uguguruuuugbgwgwbuwgbrbrwrwbubbuubugrwwbbgubg
guuwwruugbggwubrrgrbuugbwuwggwrggwgwuurwbgbwbuwbguurbrbggu
bbubwrgbggrwbbwguurrrwrugbugbruwruwwbugrwbugbbgrugwrwr
guwuuwurrububbgrwugruuuguruwbrbubgrrubgggbu
wrburuguguburrbuuwbgurbubwruubbuurgubrugrbgubub
wurbrruurgrrruggbbrbruuugbbgggurbgbgwbwbrbugubg
rwrwwrurrwgwgbrubrbwwrrgwurruwgwguuguubg
uuwwwgbgwuuruwrubrbgrbruggrggbwruurgguguwgbrrbrbwwuubg
uggugggbwrgugwrgwubwrwgrubggburgggwrbgbgbugruwugg
uggbugwwbggrbbuggubrggwrwwurbbuwugwruuubgggbww
rrrugrwrrrgwgbuguwgwugrbuguubwgrwgwbrgbbwguwuuubgwb
uwwrubgrrbbugwgwbgbrgurgrbwbgrwbwrgwruuubgwrrbuu
gwrrrwrrggwrrwgbwruwubuwwbgubgwgbwgggwuwugrgwruurwgwuubg
grrwrbugrbubuwruububbrgbuwrubrgbugrruurgwgrrgubg
gurbbbruuuuwwbbwgrgrwrrwuwubbbgburubwruwuuugwrgbgg
urggrgbwbwbgrgrrbrbwguuwbuwwbggrgbbbgggwuubwbw
ubugrubuugugwwrgwrrrbwwgbrrbruuggguugrugwrurrgrbbguwuwgrg
bubrgbbrwguuwbbgwbbbwbrgrbbbwuwrbubgrwwgbwbrubg
guwwurwgbwgbrurwuuruwbbbguuurbwuwubwbrrgrbwgwugrubrwrwbuu
rrgruubrurwurwguuwbgubruwugbuwwurrbwwuwrwwrrugrubguwubgw
ugurrrwbguggbgwggwurgggrgggrgbwuwgrgwrbugr
uwbguwugrgbgwwbugbbugubgrrgwggrgwguwgugggbu
rgbgwuwuwrrwbggrbuuwrwbrwurrrrrrwrgrgrburbu
gbwurbbbuuwugbwwgubruugwubbbbwrbwrwrrwggwgwgwbuubg
wbuggbrugrrbugbbwrbwgbbgbbgrgwwurburuurbuuuubrwgruwgrrbrubg
wrwggwurggbuwrwbgruugguwbguuurgwuwwwbbruuu
wwrurwrrwbrbwwbrgguugbugbuwwwwwwrurgbrgguguuuubg
wwubbbrubgrbrrggburgwwgugbggggburwbguguwwburbwbbgwubbur
gbubruwrwuwubbrgwuburwrgubbgbuwugruubbwrgrwubg
ugrubrugwbgbbgurrbwuwurgwggrwuwbbbuuuwugbbuugrggbgb
gwggwgwgrwubgubrbrrubrugwrbgrgbgwbuwrburrrurbgrrubgw
wgrrggwwubgurwrrruuwbwrrgwwgwruugburbguuubruwuwbrggbrbb
bbrwguwgwgwbgurbruruubrbbgrbrgburguwuwggwwurrrgu
wrrbgrgguwugwwbgurgwgbuwbwguwbwrruwwrbugwrruuwbbwurbwrru
uwuwurrwrbruwggrbbrrbwubugrbgrrurgrggwrwgrubbb
ubugrbbubgwgggrurbburwbguuugwguwgwguwurrgwuwwbugrrburb
ggrwwgrurwbrrbbbbgrbwggbwrbgurbbuurwwbbwggugww
wbuurbbbrbgruuggburrguubgrrgurbubgwuuurubrr
wgrwbwwwbrurgurrgbruggwwugwubgubububbbuuuuuubrgbwuwuurbw
bbgbggrbbburgubbruuwgggwrubuuwurgrubrwgbrggubg
rbgrbwubwurwbwwurbrruuurbrguwwwrrbugrbubrwugrwb
wrugurgwuwurrbrwugruguggwbwwwuwwwrrrwwubg
gbwuggbbwbbuububruburrrwggwbwbwgrbgwgwguwrubuururbwuubgwub
gbubwwwrruwwubruugrbgbgwrwrrwruwwuggbrburbguggubuugubg
wgbwgwrurwwurwbrububrwbrrgguwwwbwrrbruugrrru
ubrrbrugbwuwubgbbguwrwugggbrgrruuwwuwubbgrwurubg
uruuuuuuwggrbgggugugbwuuurwgruwgwugwrbgubbrrgwubg
brruurbgbburbrugwuuuwbwrurbubbbubgrgrwwurgbugwgwgrugwuuwbb
gurgwuubwrrrwbuguwuwgrbrrubrwgurrrugurbrrrrrbrwwrbugrg
wbwubwwuugrrwrbggurrgbbuwwgrwuguggbubgrrgbrbrbbgwbrubg
rrwubrwrrbgrruwrbbgrwrwuugggwgubgwuwbgwgbrwwgbgbgbgwbgrr
bbwggbbwuwwgbwuwwuuguburgwbrgbrwwruurwbuwrrbuwgbrw
rbgrbuwbuwbbrgrrurrbuwbrwrrrbruggguuuubbrbguru
ugwwubwgwgwbbbbguwbbuggbuwuburuuwwwwbwwrggwgrruwwwwbbubu
brrrrwugbuwwruwbwgbrgwwgwbbbrwrrrgbgwbbbgbubgwrurgrubg
bwrwrrwwbwguwburrrrgwbbrgubrubbbwuwrbrwuwburrugwwrwwrbbruu
gurrwuugurbuubrgbwubbgwubbbbuwruugrrbgurbggrrrguu
gwrwuuruggwbgurwwgwrwuuwwbgggbrwbugbrrgwbgrwrruuuurwrg
grggwgwgbrrbbwbrubgbrggubbbbgbrgbwwbwbrgubggbgbubgw
ugbgubrbrbrggwguwwwrgbgruggurgwgrrugbbbuuubg
gubwugguwrbuggwburrrwguwubbgrubbuwruubrgrgrugrwrrbrbbugwu
rwgwwgubggurrbwrwrguwrrbrggrggwwgwwwruuwgburrrrbuugbg
wwrwurwggggrrrbbbbruurgguwwrrurugurgubrbwgubgwgrbwbguubg
rwguurwrrwwrrwbrbrugwbgrbggbbbuwbrrrgbuggwwwuubg
wubwbgggubbbgguwurwggwbwuwbwwubwguurbwrruwwrubg
bbuugrggbbwubgurwbwrwwuwbwbggurwguggwbwubg
bgrugwuwbgwwrrwwuwubrwurwbuurwwgbrgwwggrwgwuwububwbbuubg
bubrggwuugrgrwgbruugbgrwbgbbbwbwwurrrgwgwwbuggguu
ubrbwbururbrgurgugrgurbwbbwwgrugrbubrugbbbbburbrurgrwgwgu
wuwubuwbbugbgrrwrgbgbrbbugguwbbwwwgwugwwurwwuugbwgg
bubwbgggwugrwgrrrrrrrrugguwwrrbwrrggbruwuurwguuwwgggwwwrgw
wubbbuuwwbbwubgbrgurbggggurwrrbgbrwwuggwubgw
wbubuwuuwwbuwwbwrbrggwwbbuwggbwuuwwrgrbwurguwgbrrwwubgw
gwrwggrubwguubwuggugwrrwgbrwrrrwbubgwuwbbubww
gguwuugugbuubrwbrrrbrrrubwburrgwgwgwbgurbgbrrwbrgr
bbwbbgbbwwuwbrugbwruggbugwbwgurgwgggbrwgug
ubruuuuwrggbrggbugbbwwguwguwuggbbwguuburugrugbrgruuwbbbwubg
wuggrwgwbrgwwbbwbgwrbrwgurwwgbbwrwbgubwrugggbrgrbbrbgrrgubg
rbwrubrgwrgrwugurwbguuugbrbbbwubbwbbguwbrrbbbwrrwg
brubruurbwguwrrwuwrugbuwwwgbrrgubwwgrggwgbru
rrbggwrbbwbbrwrrgrgbgubggbrwwrrbburwwbrwuwbrbbwbrgw
wrggruwrwwwwwwugbrgwgggurubbrbbgguggrwbgugugrrruwu
gggwurggwwgurugububrbbrurgwwrgrwwbwubwubrwgwrubg
uwbbwgrrrbrwbrubuuwwguwguwgubbgruruguwbwubg
bwrrgburgwguuurwggwrwgrubbbuwruwbrgwbuuwubug
ugurrwbgbuwgbuugrbwgugwguwwbrugwbbuwurugugbuuugbu
bgrbwbbuwbrrgggwugwgwrbbuwbugubgrruurubg
ggbrrgubbgurwwrgrgbbuggwrgwruguggbbrrrrbbrbwurwr
ggbgbubuubbgwgrrrbwwgbugrgrwbubburgbuuubgw
ruugggwrbbgbbuuburrgwbwwgbwgurbrbbggbgubgw
guwrbugwuubgubggwgwbruugrwbbwgwrwurrbggrrgwub
bubwgbrguugrwwgbwrwbuuurwrwrgbbuguwwbgbwubg
brubuuwgbgwgrggruruwrrubwbuuwwuubbrrrwbuurwuruuur
grgurgggwggruwuwrgrbgguggrwrbgbugwbuuubg
bwuuwgbrbwgwurrrwbrwwwbuwugbrrggbbgbuwgrubrugubg
wbbbwuwububuuuwbwgwrrbuurbwbrbgwuuwuggwubrguuwggguwuubwggr
uurgwgbgwrwwbguubuurwwrwurbuubwbwgwuurwwwwubgwrugrgru
rgwgbbbgguuwuugugwbrurbwbbbubwurwubggwuurggrugwbgb
gwgbwuwwgwuugruugrruwgbwwgwugbuwbrrbbgwwuwgwbgwugwbbrrguw
grrbbuuggrugbgbbbgbrgubuwrrrwrbwwwguwwgbgwgggwug
wwwrwgbgruubuwbrwuuuwggubwbrgrrguuuwbuwugbrgrbubrbrubg
ruwbrwugbbrggwguurgbrugrgbruuuwugugwurruuwbrbwggubg
uuuwuguwuwrubgbwbgurguubwwrbwrrgbrgrrbbgrrrgwgrur
uwubuubwrggbwwrugrbwrwwruuwbrrbuubbgrruwbg
buuwwwggwbuwwwwgwbwbguwgrwrrgbwuubwgurrguubwwwub
gguurgrurbrgwwrwgugbgurbwguugrgwrrwbruugrrubggw
rbuuwbwgwrrubbrbgrrrugggrrubgbbrbwgbuuurrubg
rbburbbwbwurrrbbggwwgwbgwggbrbubwgrugurbbbrgubwwuwwu
guwrbgbwwuwbbuwrwgurbgwrbwbwburwwggwruruburguw
ugubbggbwbubbgrwuubruwggbbwrgwgbguubbwgwwggrrburuurwrgguuubg
wggburwgrgrwuugrggburubrbwbbbwggrwbwuwguuwbr
burrbuwuwwwbrrwguwggubbrbrgrrguwuwwuuuwwbgguuuwubg
wrbbwubrrugrrbruruuubuuwbruruwburrwguwggbwwuurrgwugbruubgw
gggwbubwwrwbugwuwwuuubgwguwbubgwrbuuwbwubbbrbrugbgbur
wrgbruuguubgwbuwrrbubwwggrrrrbugugggbrrurrrgggbbgrguwrgwb
gugbrwurgruwgrrwgbruuuuwburbgwwwwwubgbrgwwrrrbgubg
wgwurwwbuwbggwgugrbwuruwuwuururbrrgwrbugugrrugubg
wbgwgrwwuubrurwwwuwwuuwrwuwuburwuwwuubgggwuuuwubgubg
rwgwguwuubwuwgwggrwgwrrbbggrwruuggrbubrrgbuugwuruubgrgr
rbububguururbwrurbrubbubuuubguwbrbuugrrbgwwgww
grubwubrgwurubbwbgwgubguguuwbgruwubwwrbuurwgurgbr
uubwgwwuubgggbgbruwuguuwbwurguuguwbgguuwwrb
bwwgbubrwwbugbrrwguwugruwwgbwbururbrbgrubg
ugugggbggbgrwwugrggbwbuwggguugububuwbubbubuwgubgw
ugrubgbbuuuwgbuurbgwbwubguggrurgwrwgbrrgrbruwrgw
rrggurwrrwugguuwrwuruuguggrbwwbrrgwwbrgubgw
rbrbgburgbuuruuugbrggbwgrubrugrbwruuwwwwrgrwwr
rrggbrgrwrbgrbrrwrgwrwwwwuubrgwwggubbwgugrwrurbgrrruwrb
rrbrwrrrruurgbwbggrrwwgubrwgggwwwugrwwubgwruguwugwbbbug
rgbgrwgbbbguggwgwbwugbbbwgbgbrgguurgbbbugrubuwrrgwubw
bggwwrbuurgwwwbrbggggbgbbgwwgwwrbwbbrwbgbbrrbgrgwwbbggbwuw
rwururuuggwbugguwgwgrbubrgbrrbruguuwbbbuurg
gbbbrbgbwrrrgwrrwgrrrbubrggrwrgrgburrrruwwurw
guguugwbrgwugwwwbuwrrbugurbbbruubggwuuwguguwu
uwbggwbururwuwbrggbuwrwubuurbrugrurruwurubuggbbwwgww
rruuububwrruugrurubbbwwugrbruggbrugrrwwgwrguwbburubwwbwbrubg
bbwrggbgrrbuwwggwgwbubwgbwugwgbrurgbwbbbbbuuuubw
gbgbgwrrugggubgrrubwguwuuwwwwguubwggwuwgugwuuubu
rguuubuwbrbrwwgwggbugbubwrrruggwrwuuguwwggugrrbgrbrwwuww
rrgrggruggbgwgggbrgurggurburrurbuburbgrgbbubrwgru
gburrbwbrbuwugwwbbrggwbwwgrbbrwwuwgubbuwbwr
bgurwuggrwuwwwgrrgrwwgurbrbgbruggrbwbgurwbwwwg
bgbbgrubbruggrgrguwrbbgbwguwwubwbrrwwubgw
bgurguwrbbrrrbgrubrwrwgwggbbggbbubgrguggbwggbbugbgbwgrwuw
urugbbrbbbwugruwrwrggbgwbwwrwgrugwugbguwubgb
rgurrwbwwugggbgwubbwbwwwruguggwruuwrwrurbbrwwggbrrbgubbwubg
ugrgwruuruuggwrrurwwwguwwuggrwwgbruburbggbrb
uurgbgbgwgbwgrburrurrrruruurrubwbgurbwubguwgubwbwrbgrr
grbrggbbbgwbbuwwrbuwuruwwrgbuguwgbgrgrgrwwbwgrbw
wwruburuwggbrwbruwurrrgbbwwrwgguruwbrwubbr
bbwburbbrbwubrbwuruugrrwwgbubgugggrwugrbgurgwwgubg
ugbwwbrgubrrrurwgbgubrrbbrbggwburrwuuuuruwgurubgwgubg
wbwubrbgbrbgugrrguggwrrgwbugrwubgwgrrgbgrurbwrbrububwwgwubg
rrububggbrwbrubwubuuwwrbubrbuggwrbubgwwururrgwwurwr
wbrbrgbrbgubguugwruwrrgrwgguurugbguwubbuubwggrrggubwbb
rguuwbrururbwbubggugbwbwuwgggruubwbuubwrrrrug
ruwwggggwruwrurwgrguwwgurbgwrgwuuwrbrrwbgbuubrwubgbg
rugrgrwgbbrgwrggguggbwrugrrrbguwwbguwrbwwwrwugbgwwrwbr
wwubggbwubgrubwrbrgbrbwgbrggbwggggwggggguggrbr
bbuwgwgbbuwbuburgwgbgggugrgrrbrgurrguurugbbuurubggbg
rruwbwwwgurbgugbubwwwuwwuwbururgwwrrwubg
ubgbbuubwbwgrbbrbuwwuuwubrgugurbgruwurwwgu
grbwbubbrrruuuuuwuwrwugwuwgbubwbbwrbwbbubbg
urgrugbgbruwwburwrgrburbubrbbuwrrgwgbgrubg
ggububgubgwgbgguwrbrubwwburugwubuuwrgubg
brgwuugggbbuwbuuuwruwubrgguuugrggbwbwwrbugrwbguurugwgbu
wwwggugwwbbbgwgururugbgrwubgbwrwrggrubgrgwbrbrr
ggburgrrbrbwbrruwwwrwurgbwgrbrgguwrgubbubwwubg
buubugggwrbwrbbbgrbbgwwwwgbrrbbugggggbgguwbruwurwbrwbrgw
rbuurwgrwuuuwrggurbubbgbrgwrbwgrwbbuubgrrbwbwubruubg
wgwwbrrrgwbuubwgwgubwwggurggrrwugbugurrbugwbwrubbrgurbbgw
ugwguuugbrggggurubrbbgbrrwwbbwurrruwrugruwuwubwu
urrbbgwwbburrbrwbwggwrbbwbgwwbruwubrbwbgubbgwrgu

View File

@@ -1,141 +0,0 @@
#############################################################################################################################################
#.......#.........#.....#.....#...#...###...###.....###...#...###.....#.....#.......#.......#.....#...#####.....#...#...#...#...............#
#.#####.#.#######.#.###.#.###.#.#.#.#.###.#.###.###.###.#.#.#.###.###.#.###.#.#####.#.#####.#.###.#.#.#####.###.#.#.#.#.#.#.#.#############.#
#...#...#.......#.#...#.#...#.#.#...#...#.#...#...#.....#.#.#...#...#.#...#.#.....#.#...#...#.#...#.#...#...#...#.#...#.#.#.#...#...........#
###.#.#########.#.###.#.###.#.#.#######.#.###.###.#######.#.###.###.#.###.#.#####.#.###.#.###.#.###.###.#.###.###.#####.#.#.###.#.###########
#...#.....#.....#.#...#.#...#.#.......#.#.#...###.#.......#.#...#...#.....#.......#...#.#...#.#...#.#...#...#.###.....#...#...#.#...........#
#.#######.#.#####.#.###.#.###.#######.#.#.#.#####.#.#######.#.###.###################.#.###.#.###.#.#.#####.#.#######.#######.#.###########.#
#...#.....#.....#.#.#...#...#...#...#.#...#...#...#.......#.#...#...........#.......#...#...#.#...#.#...#...#...#...#.#.......#.#.........#.#
###.#.#########.#.#.#.#####.###.#.#.#.#######.#.#########.#.###.###########.#.#####.#####.###.#.###.###.#.#####.#.#.#.#.#######.#.#######.#.#
###.#.###.....#.#.#.#.#...#.#...#.#.#...#.....#.....#.....#.#...#...###...#...#...#.#.....#...#...#.#...#...#...#.#.#.#.###...#.#.#.....#.#.#
###.#.###.###.#.#.#.#.#.#.#.#.###.#.###.#.#########.#.#####.#.###.#.###.#.#####.#.#.#.#####.#####.#.#.#####.#.###.#.#.#.###.#.#.#.#.###.#.#.#
#...#...#...#.#.#.#.#.#.#...#.#...#.....#...###.....#...#...#...#.#.#...#.###...#...#...###.....#.#.#.#.....#...#.#.#.#.....#...#...#...#...#
#.#####.###.#.#.#.#.#.#.#####.#.###########.###.#######.#.#####.#.#.#.###.###.#########.#######.#.#.#.#.#######.#.#.#.###############.#######
#.....#.....#...#.#.#.#.....#.#...........#...#.#.....#.#.....#.#.#.#.#...#...#.......#.#...###.#.#.#.#.....#...#.#...#.............#.......#
#####.###########.#.#.#####.#.###########.###.#.#.###.#.#####.#.#.#.#.#.###.###.#####.#.#.#.###.#.#.#.#####.#.###.#####.###########.#######.#
#...#.........#...#.#.#...#.#...#...#...#.#...#.#...#...#.....#.#.#...#.###...#.#.....#...#...#.#.#.#.....#.#.###.#...#...........#...#.....#
#.#.#########.#.###.#.#.#.#.###.#.#.#.#.#.#.###.###.#####.#####.#.#####.#####.#.#.###########.#.#.#.#####.#.#.###.#.#.###########.###.#.#####
#.#...........#...#.#.#.#.#...#...#.#.#.#.#.....#...#...#...#...#...#...#...#...#...#.....#...#.#...#.....#.#...#.#.#.......#...#...#.#.....#
#.###############.#.#.#.#.###.#####.#.#.#.#######.###.#.###.#.#####.#.###.#.#######.#.###.#.###.#####.#####.###.#.#.#######.#.#.###.#.#####.#
#...#.....#.....#...#...#...#.....#.#.#.#.#.......#...#.....#...#...#...#.#...#...#.#...#...###.....#.#...#...#.#.#.#...###.#.#.#...#.......#
###.#.###.#.###.###########.#####.#.#.#.#.#.#######.###########.#.#####.#.###.#.#.#.###.###########.#.#.#.###.#.#.#.#.#.###.#.#.#.###########
###...###...#...#...#...#...#...#.#.#.#.#.#...#...#.........#...#.....#.#.#...#.#...#...#...#...#...#...#.....#...#...#...#.#.#...#...#...###
#############.###.#.#.#.#.###.#.#.#.#.#.#.###.#.#.#########.#.#######.#.#.#.###.#####.###.#.#.#.#.#######################.#.#.#####.#.#.#.###
#.............#...#...#.#...#.#.#.#.#.#.#.#...#.#.#...###...#.#...#...#...#...#...#...#...#.#.#.#.....#.........#.........#.#.....#.#.#.#...#
#.#############.#######.###.#.#.#.#.#.#.#.#.###.#.#.#.###.###.#.#.#.#########.###.#.###.###.#.#.#####.#.#######.#.#########.#####.#.#.#.###.#
#.#.............###...#...#.#.#...#...#...#.....#.#.#.#...#...#.#.#...#.......#...#...#.#...#.#.#...#.#.......#.#.......###.......#.#.#.#...#
#.#.###############.#.###.#.#.###################.#.#.#.###.###.#.###.#.#######.#####.#.#.###.#.#.#.#.#######.#.#######.###########.#.#.#.###
#...#...#...........#.....#...#...#...#...#.......#.#.#...#...#.#.#...#.#.....#.....#.#.#...#.#.#.#...#.......#...#...#.......#.....#...#...#
#####.#.#.#####################.#.#.#.#.#.#.#######.#.###.###.#.#.#.###.#.###.#####.#.#.###.#.#.#.#####.#########.#.#.#######.#.###########.#
#...#.#.#.........#.......#.....#...#...#.#.#...###.#.#...#...#.#.#...#...#...#.....#.#...#.#.#.#.#...#...###...#...#.........#...#.....#...#
#.#.#.#.#########.#.#####.#.#############.#.#.#.###.#.#.###.###.#.###.#####.###.#####.###.#.#.#.#.#.#.###.###.#.#################.#.###.#.###
#.#...#.......#...#.#.....#...#...#...#...#...#.#...#.#...#...#.#...#.#...#...#.....#...#.#...#.#...#.#...#...#.......###...#...#.#...#.#...#
#.###########.#.###.#.#######.#.#.#.#.#.#######.#.###.###.###.#.###.#.#.#.###.#####.###.#.#####.#####.#.###.#########.###.#.#.#.#.###.#.###.#
#.........#...#.....#.........#.#...#.#.#.......#...#.###.#...#.#...#...#.#...#...#.#...#.#.....#...#.#.###.#.......#.#...#...#.#.#...#.....#
#########.#.###################.#####.#.#.#########.#.###.#.###.#.#######.#.###.#.#.#.###.#.#####.#.#.#.###.#.#####.#.#.#######.#.#.#########
###...###.#.#...#...#.........#.....#...#...#.....#.#.#...#.#...#...#...#.#.....#.#.#.#...#...#...#...#.....#.....#.#.#...#.....#.#.....#...#
###.#.###.#.#.#.#.#.#.#######.#####.#######.#.###.#.#.#.###.#.#####.#.#.#.#######.#.#.#.#####.#.#################.#.#.###.#.#####.#####.#.#.#
#...#.....#...#.#.#.#.....#...#...#.......#.#.#...#.#.#...#.#.....#.#.#.#.....###.#.#.#.#.....#.....###.........#.#...###.#.......#...#...#.#
#.#############.#.#.#####.#.###.#.#######.#.#.#.###.#.###.#.#####.#.#.#.#####.###.#.#.#.#.#########.###.#######.#.#######.#########.#.#####.#
#.#...........#...#.......#.#...#.#.......#.#.#...#.#.#...#.#.....#.#.#.#...#.#...#.#.#.#...#.....#...#.......#...#.......#.........#.....#.#
#.#.#########.#############.#.###.#.#######.#.###.#.#.#.###.#.#####.#.#.#.#.#.#.###.#.#.###.#.###.###.#######.#####.#######.#############.#.#
#...#.....###.............#.#...#...#.....#...###.#.#.#.#...#...#...#.#.#.#.#.#...#.#...#...#.###.#...#.....#...#...#...#...#...#...#...#...#
#####.###.###############.#.###.#####.###.#######.#.#.#.#.#####.#.###.#.#.#.#.###.#.#####.###.###.#.###.###.###.#.###.#.#.###.#.#.#.#.#.#####
#...#...#.....#...........#.....#...#.#...#.....#...#...#...#...#...#.#.#.#.#S###.#.....#...#...#...###...#...#...#...#.#.....#.#.#...#...###
#.#.###.#####.#.#################.#.#.#.###.###.###########.#.#####.#.#.#.#.#####.#####.###.###.#########.###.#####.###.#######.#.#######.###
#.#.###.....#...#...#.....#.......#...#...#.#...#...#.......#.#...#...#...#...###.#.....#...#...#...#...#...#.#...#...#.........#.......#...#
#.#.#######.#####.#.#.###.#.#############.#.#.###.#.#.#######.#.#.###########.###.#.#####.###.###.#.#.#.###.#.#.#.###.#################.###.#
#.#.#...#...#...#.#.#.###.#.###.........#...#.....#.#.#.....#...#.......#.....###.#...#...#...###.#...#.....#...#.....#.....#...#.......#...#
#.#.#.#.#.###.#.#.#.#.###.#.###.#######.###########.#.#.###.###########.#.#######.###.#.###.#####.#####################.###.#.#.#.#######.###
#.#.#.#.#...#.#...#...#...#.#...#.....#.#...#...#...#.#.#...#.....#...#.#.#...###.#...#...#.....#...#...........###...#...#.#.#.#.#.......###
#.#.#.#.###.#.#########.###.#.###.###.#.#.#.#.#.#.###.#.#.###.###.#.#.#.#.#.#.###.#.#####.#####.###.#.#########.###.#.###.#.#.#.#.#.#########
#.#...#...#...###...###...#.#.....#...#.#.#...#...###...#...#...#.#.#...#...#.###.#.#.....#...#.#...#.#.........#...#...#.#...#...#...#...###
#.#######.#######.#.#####.#.#######.###.#.#################.###.#.#.#########.###.#.#.#####.#.#.#.###.#.#########.#####.#.###########.#.#.###
#.......#.....#...#.#.....#.#.......###...#.........#.......#...#...###...#...###...#...#...#...#.....#...........#...#.#.#...........#.#...#
#######.#####.#.###.#.#####.#.#############.#######.#.#######.#########.#.#.###########.#.#########################.#.#.#.#.###########.###.#
#...###.#.....#...#...#...#.#...#...#.....#.#.......#.....#...###...#...#.#...#######...#.###.................#...#.#...#.#...#...#.....#...#
#.#.###.#.#######.#####.#.#.###.#.#.#.###.#.#.###########.#.#####.#.#.###.###.#######.###.###.###############.#.#.#.#####.###.#.#.#.#####.###
#.#.....#.....###...#...#...###...#...#...#.#.....###...#.#...#...#.#...#.....#######...#.#...#.......#.....#.#.#...#...#.#...#.#...#...#...#
#.###########.#####.#.#################.###.#####.###.#.#.###.#.###.###.###############.#.#.###.#####.#.###.#.#.#####.#.#.#.###.#####.#.###.#
#...#.......#.#...#...###...#...#.......###.#.....#...#.#.....#...#.#...#.....#######...#.#...#.#.....#.#...#...#.....#...#.....#.....#.....#
###.#.#####.#.#.#.#######.#.#.#.#.#########.#.#####.###.#########.#.#.###.###.#######.###.###.#.#.#####.#.#######.###############.###########
#...#.#...#.#.#.#.........#.#.#.#.......#...#.....#...#.#...#...#.#...#...#...#######...#.###...#.......#.........#.......#.....#...........#
#.###.#.#.#.#.#.###########.#.#.#######.#.#######.###.#.#.#.#.#.#.#####.###.###########.#.#########################.#####.#.###.###########.#
#.#...#.#...#...#.........#...#.........#.#.....#...#.#.#.#.#.#.#.#...#...#...#...###E#...#...###...........#.....#.....#.#...#.#.....#.....#
#.#.###.#########.#######.###############.#.###.###.#.#.#.#.#.#.#.#.#.###.###.#.#.###.#####.#.###.#########.#.###.#####.#.###.#.#.###.#.#####
#...###.....#...#.#...###.................#.###.....#.#...#.#.#.#...#.#...#...#.#.#...#.....#.#...#...#...#...###.......#.#...#.#...#.#.....#
###########.#.#.#.#.#.#####################.#########.#####.#.#.#####.#.###.###.#.#.###.#####.#.###.#.#.#.###############.#.###.###.#.#####.#
#...###...#...#...#.#.#...#...#...#...#...#...#.......#...#...#.....#...###...#.#...###.....#.#...#.#...#.......#.......#.#...#...#.#...#...#
#.#.###.#.#########.#.#.#.#.#.#.#.#.#.#.#.###.#.#######.#.#########.#########.#.###########.#.###.#.###########.#.#####.#.###.###.#.###.#.###
#.#.#...#...#...#...#...#...#...#...#...#...#...#.....#.#.........#.#.....###...#.....#...#.#.###...#...........#.#.....#.....#...#...#...###
#.#.#.#####.#.#.#.#########################.#####.###.#.#########.#.#.###.#######.###.#.#.#.#.#######.###########.#.###########.#####.#######
#.#.#.....#.#.#.#.......................###.#.....###.#.........#...#...#.......#...#.#.#...#.#...###.............#.....###...#...#...#...###
#.#.#####.#.#.#.#######################.###.#.#######.#########.#######.#######.###.#.#.#####.#.#.#####################.###.#.###.#.###.#.###
#.#.#...#.#...#.......................#...#...#.....#...........#...#...#.......#...#.#.....#.#.#.#...###.....#.......#.....#...#...#...#...#
#.#.#.#.#.###########################.###.#####.###.#############.#.#.###.#######.###.#####.#.#.#.#.#.###.###.#.#####.#########.#####.#####.#
#.#...#...#...#.......#.....#...#...#.....#...#.#...###...#...###.#.#...#.....###...#.###...#...#...#.....###.#.....#...#...#...#...#...#...#
#.#########.#.#.#####.#.###.#.#.#.#.#######.#.#.#.#####.#.#.#.###.#.###.#####.#####.#.###.###################.#####.###.#.#.#.###.#.###.#.###
#...#.....#.#.#.#.....#.#...#.#...#.....###.#.#.#.......#.#.#.#...#...#.#.....#...#.#.....#.....#...#.......#.#...#.###...#...#...#.....#...#
###.#.###.#.#.#.#.#####.#.###.#########.###.#.#.#########.#.#.#.#####.#.#.#####.#.#.#######.###.#.#.#.#####.#.#.#.#.###########.###########.#
#...#...#.#.#.#.#...#...#...#.#.........#...#...#...#.....#.#.#.....#.#.#.#...#.#.#.......#...#...#.#.#.....#...#.#.#...#...#...#...#.......#
#.#####.#.#.#.#.###.#.#####.#.#.#########.#######.#.#.#####.#.#####.#.#.#.#.#.#.#.#######.###.#####.#.#.#########.#.#.#.#.#.#.###.#.#.#######
#.......#...#...###...#####...#...........#...#...#...###...#...###.#.#.#.#.#...#...#.....#...#...#...#...#...###.#...#...#...#...#.#.......#
###########################################.#.#.#########.#####.###.#.#.#.#.#######.#.#####.###.#.#######.#.#.###.#############.###.#######.#
#.........#.....###.....#.......#.......#...#.#.#...#...#.....#.....#.#.#.#.#.......#.......###.#...#...#...#...#...............###.#.......#
#.#######.#.###.###.###.#.#####.#.#####.#.###.#.#.#.#.#.#####.#######.#.#.#.#.#################.###.#.#.#######.###################.#.#######
#.......#.#...#.....#...#.....#.#.....#.#...#...#.#.#.#.#...#.......#.#.#.#.#.....#.....#.....#...#.#.#.......#...................#...###...#
#######.#.###.#######.#######.#.#####.#.###.#####.#.#.#.#.#.#######.#.#.#.#.#####.#.###.#.###.###.#.#.#######.###################.#######.#.#
#.......#.###.......#.#...#...#.......#.....#...#.#.#.#.#.#...#.....#...#.#.#.....#...#.#...#.###.#.#.......#.#...............#...###...#.#.#
#.#######.#########.#.#.#.#.#################.#.#.#.#.#.#.###.#.#########.#.#.#######.#.###.#.###.#.#######.#.#.#############.#.#####.#.#.#.#
#.......#.#...#.....#...#...#.............###.#...#...#.#...#.#.........#.#.#.....#...#.#...#.....#.....#...#...#.......#...#...#...#.#...#.#
#######.#.#.#.#.#############.###########.###.#########.###.#.#########.#.#.#####.#.###.#.#############.#.#######.#####.#.#.#####.#.#.#####.#
#...#...#...#...#.............#...........#...#.......#.#...#.#...#...#.#.#.#.....#...#...#.....#.....#...###.....#.....#.#...#...#.#.#.....#
#.#.#.###########.#############.###########.###.#####.#.#.###.#.#.#.#.#.#.#.#.#######.#####.###.#.###.#######.#####.#####.###.#.###.#.#.#####
#.#...#.......#...###...........#...#...###...#.....#.#.#...#.#.#.#.#...#...#...#...#...#...###...#...#.......#.....#.....#...#.#...#.#.#...#
#.#####.#####.#.#####.###########.#.#.#.#####.#####.#.#.###.#.#.#.#.###########.#.#.###.#.#########.###.#######.#####.#####.###.#.###.#.#.#.#
#...#...#.....#.#...#...........#.#.#.#.....#.#.....#...###.#.#.#.#...#...#...#.#.#...#...#.......#.....#...#...#...#.#.....#...#.....#...#.#
###.#.###.#####.#.#.###########.#.#.#.#####.#.#.###########.#.#.#.###.#.#.#.#.#.#.###.#####.#####.#######.#.#.###.#.#.#.#####.#############.#
#...#.#...#...#.#.#.#.........#...#...#.....#.#...#...###...#.#.#...#...#.#.#...#.#...#...#.....#.........#...###.#...#.......#...#...#...#.#
#.###.#.###.#.#.#.#.#.#######.#########.#####.###.#.#.###.###.#.###.#####.#.#####.#.###.#.#####.#################.#############.#.#.#.#.#.#.#
#...#.#...#.#.#.#.#...#.....#...#.......#...#.#...#.#.#...#...#.#...#.....#...#...#...#.#.#...#...#.............#...#...........#.#.#.#.#.#.#
###.#.###.#.#.#.#.#####.###.###.#.#######.#.#.#.###.#.#.###.###.#.###.#######.#.#####.#.#.#.#.###.#.###########.###.#.###########.#.#.#.#.#.#
###...#...#.#.#.#.#...#...#...#.#.........#.#.#...#.#.#...#...#.#...#.......#.#.....#.#.#.#.#.###...###.........#...#...........#...#.#.#...#
#######.###.#.#.#.#.#.###.###.#.###########.#.###.#.#.###.###.#.###.#######.#.#####.#.#.#.#.#.#########.#########.#############.#####.#.#####
###...#.....#...#...#.....#...#.............#.#...#.#.###.#...#...#.###...#.#.#...#.#.#.#.#.#.#...#...#...........#.......#...#...###.#.....#
###.#.#####################.#################.#.###.#.###.#.#####.#.###.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#.#############.#####.#.#.###.###.#####.#
#...#.......###.......#...#.........#.......#.#.#...#...#.#...#...#...#.#.#.#.#.#.#.#.#.#.#.#.#.#...#.#.....#.......#...#...#...#...#.......#
#.#########.###.#####.#.#.#########.#.#####.#.#.#.#####.#.###.#.#####.#.#.#.#.#.#.#.#.#.#.#.#.#.#####.#.###.#.#######.#.#######.###.#########
#.........#.....#...#...#.........#.#...###.#.#...#...#.#...#.#.#.....#.#...#.#.#...#.#.#...#.#.###...#.#...#.........#.......#...#.#.......#
#########.#######.#.#############.#.###.###.#.#####.#.#.###.#.#.#.#####.#####.#.#####.#.#####.#.###.###.#.###################.###.#.#.#####.#
###.....#.......#.#.............#...#...#...#.......#.#...#.#...#...#...#.....#.#.....#.#.....#...#...#.#...#...#...........#.#...#...#.....#
###.###.#######.#.#############.#####.###.###########.###.#.#######.#.###.#####.#.#####.#.#######.###.#.###.#.#.#.#########.#.#.#######.#####
#...#...#.....#...###...........#.....#...#.....#.....###.#.....###.#.###...#...#.#...#.#...#.....#...#...#.#.#.#.....#...#...#.......#.....#
#.###.###.###.#######.###########.#####.###.###.#.#######.#####.###.#.#####.#.###.#.#.#.###.#.#####.#####.#.#.#.#####.#.#.###########.#####.#
#...#...#...#.#.......#.....#...#.#.....#...###.#.......#...#...#...#.....#.#...#.#.#...###.#...###...#...#...#.#...#...#...........#...#...#
###.###.###.#.#.#######.###.#.#.#.#.#####.#####.#######.###.#.###.#######.#.###.#.#.#######.###.#####.#.#######.#.#.###############.###.#.###
#...#...#...#...#...#...#...#.#.#.#.....#.....#...#.....###...###.#.....#.#...#.#.#.......#...#...#...#.#...###...#...#.....#.......#...#...#
#.###.###.#######.#.#.###.###.#.#.#####.#####.###.#.#############.#.###.#.###.#.#.#######.###.###.#.###.#.#.#########.#.###.#.#######.#####.#
#...#.....#...#...#.#.###...#.#...#...#.#...#.#...#.......#.......#...#.#.#...#.#.#.....#...#.#...#...#...#.....#.....#...#.#.......#...#...#
###.#######.#.#.###.#.#####.#.#####.#.#.#.#.#.#.#########.#.#########.#.#.#.###.#.#.###.###.#.#.#####.#########.#.#######.#.#######.###.#.###
###...#...#.#.#.###...#.....#...#...#...#.#...#...#...#...#...#...#...#.#.#...#.#...###...#.#...#...#...#.......#.#.......#.#.......#...#...#
#####.#.#.#.#.#.#######.#######.#.#######.#######.#.#.#.#####.#.#.#.###.#.###.#.#########.#.#####.#.###.#.#######.#.#######.#.#######.#####.#
#.....#.#.#.#.#.#.....#.....#...#...#...#.....###...#.#.....#.#.#.#.###...#...#.....#.....#...#...#.....#.......#.#.....#...#.....###.......#
#.#####.#.#.#.#.#.###.#####.#.#####.#.#.#####.#######.#####.#.#.#.#.#######.#######.#.#######.#.###############.#.#####.#.#######.###########
#...#...#.#.#...#...#.#.....#.#####...#.#...#.....###.#.....#...#.#...#.....#.......#.......#.#.#...#...#.......#...#...#.........#.........#
###.#.###.#.#######.#.#.#####.#########.#.#.#####.###.#.#########.###.#.#####.#############.#.#.#.#.#.#.#.#########.#.#############.#######.#
###.#...#.#.#.......#...#...#...#.......#.#.#.....#...#...#.......#...#.....#.....#.........#.#.#.#.#.#.#.......#...#.........###...#...#...#
###.###.#.#.#.###########.#.###.#.#######.#.#.#####.#####.#.#######.#######.#####.#.#########.#.#.#.#.#.#######.#.###########.###.###.#.#.###
#...#...#...#.....#...#...#...#.#...#...#.#.#.....#.#...#.#.........#...###.#...#.#.#.......#.#...#.#.#.#.......#.....#.....#.....#...#.#...#
#.###.###########.#.#.#.#####.#.###.#.#.#.#.#####.#.#.#.#.###########.#.###.#.#.#.#.#.#####.#.#####.#.#.#.###########.#.###.#######.###.###.#
#...#.....#####...#.#.#.....#.#.#...#.#.#.#...#...#...#.#.....#.......#.....#.#.#.#...#.....#...#...#.#.#...........#.#...#.#...#...#...#...#
###.#####.#####.###.#.#####.#.#.#.###.#.#.###.#.#######.#####.#.#############.#.#.#####.#######.#.###.#.###########.#.###.#.#.#.#.###.###.###
#...#...#...#...#...#.....#.#...#...#.#.#.###.#.......#...#...#.....#...#...#.#.#.....#.#...#...#...#.#.#.....#...#.#.#...#...#...###.#...###
#.###.#.###.#.###.#######.#.#######.#.#.#.###.#######.###.#.#######.#.#.#.#.#.#.#####.#.#.#.#.#####.#.#.#.###.#.#.#.#.#.#############.#.#####
#.....#.....#...#.......#.#.#.......#.#...#...#...#...###.#...#.....#.#...#.#.#.#.....#...#.#.#...#...#.#...#.#.#.#.#.#.............#...#...#
###############.#######.#.#.#.#######.#####.###.#.#.#####.###.#.#####.#####.#.#.#.#########.#.#.#.#####.###.#.#.#.#.#.#############.#####.#.#
###...#.........#...#...#...#.....#...###...#...#...###...#...#.#...#...#...#.#.#...#.......#...#.###...#...#.#.#.#.#.#...#...#...#.....#.#.#
###.#.#.#########.#.#.###########.#.#####.###.#########.###.###.#.#.###.#.###.#.###.#.###########.###.###.###.#.#.#.#.#.#.#.#.#.#.#####.#.#.#
#...#...#.....#...#.#...#.........#.....#...#.........#...#...#.#.#...#.#...#.#...#.#.#.....#...#.#...#...#...#.#.#.#.#.#.#.#.#.#.#...#...#.#
#.#######.###.#.###.###.#.#############.###.#########.###.###.#.#.###.#.###.#.###.#.#.#.###.#.#.#.#.###.###.###.#.#.#.#.#.#.#.#.#.#.#.#####.#
#.........###...###.....#...............###...........###.....#...###...###...###...#...###...#...#.....###.....#...#...#...#...#...#.......#
#############################################################################################################################################

Some files were not shown because too many files have changed in this diff Show More